ATLAS results on charmonium and B_c and exotic heavy hadrons

- $J/\psi \& \psi(2S)$ at 13 TeV, ATLAS-CONF-2019-047
- B_c^{\pm}/B^{\pm} at 8 TeV, arXiv:1912.02672 (subm. to PRD)
- P_c⁺ at 7-8 TeV, ATLAS-CONF-2019-048

Zijun Xu (SLAC) on behalf of the ATLAS Collaboration CHARM 2021, May 31 - June 4, Mexico

ATLAS Detector @LHC

- Inner Detector (Pixel+SCT+TRT)
 - Pt>0.4(0.1) GeV, |η|<2.5
- Muon Spectrometer
 - Offline tracking: $|\eta| < 2.7$
 - Triggering: $|\eta| < 2.4$
- Run-2 improvements
 - Detector: IBL (Insertable B-layer), inner-most pixel layer(r=33mm) and thinner beam-pipe
 - resolution in mµµ: ~50 MeV at J/ ψ mass, ~150 MeV at Y(nS) masses; ~10 µm impact parameter resolution
 - time resolution* ~60 fs after installation of IBL in Run 2 (30% improvement w.r.t. Run 1)
 - higher Luminosity and Sqrt(s) 7/8 TeV -> 13 TeV
 - Trigger upgrade to maintain low muon threshold at high lumi
- Great potential for new results in heavy flavor physics studies

ATLAS charmonium production

[ATL-COM-DAQ-2019-040]

J/ψ and $\psi(2S)$ production

- studies of heavy quarkonia provide insight into QCD near boundary of perturbative and non-perturbative regimes
- cross section measurement is important for refining quarkonia production models
- ATLAS Run 1:
 - low-threshold dimuon triggers, limiting pT range to ~ 100 GeV
- ATLAS Run2
 - use single muon trigger with high threshold at 50 GeV, un-prescaled for the full Run2 data, 139 fb⁻¹
 - Provides coverage of the high-pT end of the distribution, well beyond previously achieved transverse momenta

ATLAS Preliminary

J/ψ and $\psi(2S)$: Mass and lifetime Fits

- pT 60-360 GeV for J/ ψ in 11 bins (60-140 GeV for $\psi(2S))$
- Rapidity |y| < 2 covered in 3 bins
- Yields for J/ψ and ψ(2S), as well as both non-prompt fractions and ψ(2S) to J/ψ ratios determined from 2D fit
 - mass and pseudo-proper lifetime

ATLAS Preliminary

ATLAS Preliminary

J/ψ and $\psi(2S)$: non-prompt fractions

- Plateau at ~0.7 for pT >~ 40 GeV
- Similar behavior in pp and $p\overline{p}$ collisions
- No strong dependence from rapidity
- Similar for J/ψ and $\psi(2S)$

0.9

0.8

0.7 0.6 0.5

0.4

0.3

0.2

0.1

60

Non-prompt fraction of J/ ψ

J/ψ and $\psi(2S)$: non-prompt x-sections

7

 $p_{_{T}}(\mu\mu)$ [GeV]

p_(μμ) [GeV]

J/ψ : Prompt cross section at 13TeV

- ATLAS and CMS good agree in the overlap region
 - CMS, pT from 20 up to 120-150 GeV
 - PLB 780(2018) 251
 - Together smoothly cover 20-360 GeV
- Simple parameterisation describes data well, over 7 orders of magnitude
 - (b+p_T)⁻ⁿ with b=4.40, and n=5.91
- It would be interesting to see NRQCD predictions, especially for the high pT end

B_c^{\pm}/B^{\pm} x-section ratios at 8TeV with 20fb⁻¹

- unique probe for heavy quark dynamics
 - B_c^{\pm} is a bound state of two heaviest distinct quarks, b and c $\frac{1}{2}$
- relative cross-section with similar decay mode for $B_c{}^{\pm}$ and B^{\pm}

$$\frac{\sigma(B_c^{\pm}) \cdot \mathcal{B}(B_c^{\pm} \to J/\psi\pi^{\pm}) \cdot \mathcal{B}(J/\psi \to \mu^+\mu^-)}{\sigma(B^{\pm}) \cdot \mathcal{B}(B^{\pm} \to J/\psiK^{\pm}) \cdot \mathcal{B}(J/\psi \to \mu^+\mu^-)} = \frac{N^{\text{reco}}(B_c^{\pm})}{N^{\text{reco}}(B^{\pm})} \cdot \frac{\epsilon(B^{\pm})}{\epsilon(B_c^{\pm})}.$$

- fiducial volume: pT >13 GeV, |y|<2.3
- 2 pT bin (13-22, >22 GeV), and 2 |y| bin (<0.75, 0.75-2.3)
- extended unbinned ML fits to the mass distributions of B_c^{\pm} and B^{\pm} to extract N^{reco} from the data in each bin

arXiv:1912.02672

B_c^{\pm}/B^{\pm} x-section ratios

• relative X-section in fiducial region (horizontal line)

 $\frac{\sigma(B_c^{\pm}) \cdot \mathcal{B}(B_c^{\pm} \to J/\psi\pi^{\pm})}{\sigma(B^{\pm}) \cdot \mathcal{B}(B^{\pm} \to J/\psi K^{\pm})} = (0.34 \pm 0.04_{\text{stat}} + 0.06_{-0.02}_{-0.02} \text{syst} \pm 0.01_{\text{lifetime}})\%,$

- 2 bins of pT and |y|:
 - ratio decreases with pT
 - no significant |y| dependency
- complements CMS and LHCb results

 $0.683 \pm 0.018 \pm 0.009$ pT < 20 GeV, 2.0 < |y| < 4.5LHCb at 8 TeV $0.48 \pm 0.05 \pm 0.03 \pm 0.05$ pT > 15 GeV, |y| < 1.6CMS at 7 TeV $0.44 \pm 0.07^{+0.09}_{-0.04} \pm 0.01$ 13 < pT < 22 GeV, |y| < 2.3ATLAS at 8 TeV

0.24 \pm 0.04 $^{+0.05}_{-0.01}$ \pm 0.01 **pT > 22 GeV**, |y| < 2.3 (ATLAS at 8 TeV

Pentaquark search in J/ ψ p

- LHCb: structures observed in J/ ψ p mass spectrum Λ^{0}_{b} > J/ ψ pK- decay
 - $P_c(4312)^+$, $P_c(4440)^+$ and $P_c(4457)^+$
 - hint for $P_c(4380)^+$
- not observed by GLUEX in γp ->J/ ψp s-channel
 - PRL 123 (2019) 072001
- D0: 3sigma unresolved P_c(4440)+P_c(4457) peak in inclusive P_c->J/ψp channel
 - arXiv:1910.11767

ATLAS Pentaquark search in $\Lambda^0_{b} \rightarrow J/\psi p K^-$

 $N(\Lambda_b \rightarrow J/\psi, p, K) = 2270 \pm 300$

 $N(B^0 \rightarrow J/\psi, K, \pi) = 10770,$

 $N(B_s \rightarrow J/\psi, K, K) = 2290,$

N($B^0 \rightarrow J/\psi, \pi, \pi$) = 1070,

N($B_c \rightarrow J/\psi, \pi, \pi$) = 1390;

- ATLAS search with 4.9fb⁻¹ (7TeV) and 20.9fb⁻¹ (8TeV) data
- no PID: No $\pi^{\pm}/K^{\pm}/p$ separation
 - need to consider all b hadrons decay to $J/\psi h_1 h_2$ candidates
- performing sequence of iterative fits in Λ^0_b signal region, B⁰(J/ $\psi\pi$ K) and B⁰_s(J/ ψ KK) control regions and in full range of selected dataset
- $\Lambda^0_{b} \rightarrow J/\psi pK$ signal is observed on the top of
 - very large B->J/ψK+π-, large Bs->J/ψK+K-
 - large combinatorial background
 - tail from $B \rightarrow J/\psi \pi + \pi$ and $Bs \rightarrow J/\psi \pi + \pi$ -

Fitting with 2 or 4 Pentaquarks

- Fitting with 2 pentaquarks hypothesis with spin parity of 3/2-(light) and 5/2+(heavy)
 - good description of data: χ2/n.d.f = 37.1/39
 - systematic uncertainties comparable to statistical ones

Parameter	Value	LHCb value [5]
$N(P_{c1})$	$400^{+130}_{-140}(\text{stat})^{+110}_{-100}(\text{syst})$	_
$N(P_{c2})$	$150^{+170}_{-100}(\text{stat})^{+50}_{-90}(\text{syst})$	_
$N(P_{c1} + P_{c2})$	$540^{+80}_{-70}(\text{stat})^{+70}_{-80}(\text{syst})$	_
$\Delta \phi$	$2.8^{+1.0}_{-1.6}(\text{stat})^{+0.2}_{-0.1}(\text{syst})$ rad	_
$m(P_{c1})$	$4282^{+33}_{-26}(\text{stat})^{+28}_{-7}(\text{syst}) \text{ MeV}$	$4380 \pm 8 \pm 29$ MeV
$\Gamma(P_{c1})$	$140_{-50}^{+77} (\text{stat})_{-33}^{+41} (\text{syst}) \text{ MeV}$	$205 \pm 18 \pm 86 \text{ MeV}$
$m(P_{c2})$	$4449_{-29}^{+20} (\text{stat})_{-10}^{+18} (\text{syst}) \text{ MeV}$	$4449.8 \pm 1.7 \pm 2.5$ MeV
$\Gamma(P_{c2})$	51_{-48}^{+59} (stat) $_{-46}^{+14}$ (syst) MeV	$39 \pm 5 \pm 19$ MeV

- Fitting with 4 pentaquarks hypothesis
 - can NOT be distinguished because of low mass resolution
 - tested by fixing parameters to LHCb values
 - χ2/n.d.f = 37.1/42

1010±140 direct $\Lambda_b \rightarrow J/\psi, p, K$

No-Pentaquark hypothesis

- $\chi 2$ fits of the mass distribution in the signal region for the hypothesis without pentaquarks with the extended $\Lambda_{b}^{0} \rightarrow J/\psi \Lambda^{*0}$ decay model
 - χ2/n.d.f = 42.0/23, p-value=9.1e-3
- Model without pentaquark disfavored but can't be excluded

Summary

- ATLAS has a rich physics program for heavy flavor, selected results reported
 - J/ ψ and ψ (2S) production at high pT at 13TeV 139fb⁻¹ data
 - non-prompt fraction ~0.7 for both J/ ψ and ψ (2S)
 - non-prompt x-sec from FONLL tend to be higher than data at high pT end
 - B_c^{\pm}/B_c^{\pm} production cross-section at 8TeV 20fb⁻¹ data
 - complements LHCb and CMS measurements
 - the ratio decreases with pT, no significant |y| dependence
 - Pentaquark search at 7-8 TeV 25fb⁻¹ data
 - Model with 2(or 4) pentaquarks Pc->J/ ψ p consistent with data (and with LHCb results)
 - no-pentaquark hypothesis disfavored but can't be excluded so far
- stay tuned for the new results!

Backup

Data Taking

Peak Lumi: 7.73 x 10³³ cm⁻² s⁻¹

21.0 x 10³³ cm⁻² s⁻¹

J/ψ and $\psi(2S)$: Differential cross sections

J/ψ and $\psi(2S)$: fitting model

i	Туре	P/NP	$f_i(m)$	$h_i(\tau)$			
1	J/ψ	Р	$\omega G_1(m) + (1 - \omega)CB_1(m)$	$\delta(au)$	-	Notation	Function
2	J/ψ	NP	$\omega G_1(m) + (1 - \omega)CB_1(m)$	$E_1(\tau)$	-	G	Gaussian
3	$\psi(2S)$	Р	$\omega G_2(m) + (1 - \omega)CB_2(m)$	$\delta(au)$		CB	Crystal Ball
4	$\psi(2S)$	NP	$\omega G_2(m) + (1 - \omega)CB_2(m)$	$E_2(\tau)$			
5	Dlra	D		$\frac{2()}{S(-)}$		E	Exponential
2	Бкд	P	D	$O(\tau)$		В	Bernstein polynomials
6	Bkg	NP	$E_4(m)$	$E_5(\tau)$	-	2	Dernstein polynomiais
7	Bkg	NP	$E_6(m)$	$E_7(\tau)$			

Table 1: Parameterisation of the fit model. Notation is explained in the text and in the table on the right. Correlation between *m* and τ is introduced in one of the sub-terms for *i* = 1, see the text for details.

J/ψ and $\psi(2S)$: uncertainties

Figure 2: The total, statistical, and systematic fractional uncertainties are shown as a function of p_T for (a) prompt J/ψ , (b) non-prompt J/ψ , (c) prompt $\psi(2S)$, (d) non-prompt $\psi(2S)$ mesons for the rapidity slice |y| < 0.75. The main components of the systematic uncertainties are also shown.

B_c^{\pm}/B^{\pm} x-section ratios: yields

Table 1: Summary of the main parameters of the B^{\pm} fits. The uncertainties quoted are statistical.

Analysis bin	Fitted mass of the B^{\pm} [MeV]	Number of the B^{\pm} candidates	σ_m of the B^{\pm} [MeV]
$p_{\rm T}(B) > 13 \text{ GeV}, y(B) < 2.3$	5278.6 ± 0.1	$(398.3 \pm 0.8) \times 10^3$	37.5 ± 0.1
$13 < p_{\rm T}(B) < 22 \text{ GeV}, y(B) < 2.3$	5278.5 ± 0.1	$(207.6 \pm 0.6) \times 10^3$	37.5 ± 0.1
$p_{\rm T}(B) > 22 \text{ GeV}, y(B) < 2.3$	5278.8 ± 0.1	$(190.9 \pm 0.6) \times 10^3$	38.1 ± 0.1
$p_{\rm T}(B) > 13$ GeV, $ y(B) < 0.75$	5278.4 ± 0.1	$(147.9 \pm 0.5) \times 10^3$	26.6 ± 0.1
$p_{\rm T}(B) > 13 \text{ GeV}, 0.75 < y(B) < 2.3$	5279.1 ± 0.1	$(248.8 \pm 0.6) \times 10^3$	45.9 ± 0.1

Table 2: Summary of the main parameters of the B_c^{\pm} fits. The uncertainties quoted are statistical.

Analysis bin	Fitted mass of the B_c^{\pm} [MeV]	Number of the B_c^{\pm} candidates	σ_m of the B_c^{\pm} [MeV]
$p_{\rm T}(B) > 13 \text{ GeV}, y(B) < 2.3$	6281.0 ± 4.5	798 ⁺⁹² -84	52.4 ± 5.6
$13 < p_{\rm T}(B) < 22 \text{ GeV}, y(B) < 2.3$	6283.7 ± 6.9	417^{+68}_{-63}	59.5 ± 9.2
$p_{\rm T}(B) > 22 \text{ GeV}, y(B) < 2.3$	6278.4 ± 5.7	363^{+59}_{-56}	45.7 ± 6.7
$p_{\rm T}(B) > 13 \text{ GeV}, y(B) < 0.75$	6275.1 ± 1.7	319^{+57}_{-52}	31.5 ± 5.7
$p_{\rm T}(B) > 13 \text{ GeV}, 0.75 < y(B) < 2.3$	6275.2 ± 9.0	454_{-66}^{+71}	67.1 ± 10.4

B_c^{\pm}/B^{\pm} x-section ratios: uncertainties

Table 1. Summary of the associate variates of systematic aneofamilies for the analysis employed at the							
Source of uncertainty		Absolute value of the uncertainty in the efficiency ratio					
	$p_{\rm T} > 13 {\rm GeV}$	$13 < p_{\rm T} < 22 {\rm GeV}$	$p_{\mathrm{T}} > 22 \mathrm{GeV}$	<i>y</i> < 0.75	0.75 < y < 2.3		
Size of the MC samples and the event counting	0.03	0.05	0.03	0.05	0.04		
sPlot-based MC reweighting procedure	0.04	0.03	0.03	0.05	0.06		
Minimal selection criteria	0.04	0.09	0.02	0.06	0.03		
Tracking uncertainty	0.01	0.01	0.01	0.01	0.01		

Table 4: Summary of the absolute values of systematic uncertainties for the analysis efficiency ratios.

Table 5: Summary of all systematic uncertainties for the number of signal events in the two $p_{\rm T}$ bins.

Source of uncertainty	Uncertainty value				
	B_{C}^{\pm}		B^{\pm}		
	$13 { m GeV} < p_{ m T} < 22 { m GeV}$	$p_{\rm T} > 22 {\rm GeV}$	$13 { m GeV} < p_{ m T} < 22 { m GeV}$	$p_{\rm T} > 22 {\rm GeV}$	
Signal model of the fit	2.4%	1.1%	0.1%	0.2%	
CS and PRD components	+19.3% -2.4%	+19.9% -2.4%	0.5%	0.5%	
Background model of the fit	1.7%	1.2%	0.2%	0.2%	
Trigger and reconstruction effects	0.9%	0.8%	1.2%	1.2%	
<i>B</i> -meson lifetime uncer- tainty	1.1%	0.9%	< 0.1%	< 0.1%	

Table 0. Summary of an systematic uncertainties for the number of signal events in the two [y] onis.
--

Source of uncertainty	Uncertainty value				
	B_c^{\pm}			B^{\pm}	
	<i>y</i> < 0.75	0.75 < y < 2.3	<i>y</i> < 0.75	0.75 < y < 2.3	
Signal model of the fit	2.5%	2.8%	0.1%	0.2%	
CS and PRD components	+11.2% -2.4%	+23.2% -2.4%	0.5%	0.5%	
Background model of the fit	2.8%	1.3%	0.2%	0.2%	
Trigger effects and recon- struction effects	1.1%	1.0%	1.2%	1.1%	
<i>B</i> -meson lifetime uncer- tainty	1.0%	0.9%	< 0.1%	< 0.1%	

Table 7: Summary of all systematic uncertainties for the number of signal events in the combined bin ($p_T > 13$ GeV, |y| < 2.3).

Source of uncertainty	Uncertainty value	
	B_c^{\pm}	B^{\pm}
Signal model of the fit	2.4%	0.1%
CS and PRD components	+17.4% -2.4%	0.5%
Background model of the fit	2.9%	0.1%
Trigger effects and reconstruction effects	0.9%	0.9%
B-meson lifetime uncertainty	0.7%	< 0.1%

pentaquak fit procedure

Fit to all kinematic distributions

- M(J/ψ Kπ)
- M(J/ψ πK)
- M(J/ψ KK)
- M(J/ψ ππ)
- M(J/ψ h) & M(h₁h₂) in B⁰ CR
- $M(J/\psi h) \& M(h_1h_2)$ in $B_s CR$

Figure 7: The $m(J/\psi, h_1 = K, h_2 = \pi), m(J/\psi, h_1 = \pi, h_2 = K), m(J/\psi, h_1 = K, h_2 = K)$ and $m(J/\psi, h_1 = \pi, h_2 = \pi)$ distributions for all selected H_b candidates. The "global" fit results are also shown.

4.8

pentaquak fit procedure

Figure 8: The $m(J/\psi, h_1 = K)$ (united with $m(J/\psi, h_2 = K)$), $m(J/\psi, h_2 = \pi)$ (united with $m(J/\psi, h_1 = \pi)$), $m(h_1 = K, h_2 = \pi)$ and $m(h_1 = \pi, h_2 = K)$ distributions for for events from the B^0 CR. The "global" fit results are also shown.

Figure 9: The $m(J/\psi, h_1 = K), m(J/\psi, h_2 = K)$ and $m(h_1 = K, h_2 = K)$ distributions for for events from the B_s^0 CR. The "global" fit results are also shown.

pentaquak: uncertainty

Source	$N(P_{c1})$	$N(P_{c2})$	$N(P_{c1} + P_{c2})$	$\Delta \phi$
Number of $\Lambda_b^0 \to J/\psi p K^-$ decays	+1.8 % -0.6	+6.6 % -9.2	+1.6 % -0.8	$^{+0.3}_{-0.0}$ %
Pentaquark modelling	+21 %	+1 % -22 %	+8.7 % -4.4	+1.6% -0.0
Non-pentaquark $\Lambda_b^0 \to J/\psi p K^-$ modelling	+14 %	+5 % -44	+9.2 % -9.1	+3.60% -1.6
Combinatorial background	$^{+0.7}_{-4.0}$ %	+18 %	+4.2 % -4.8	+3.2 % -0.0
<i>B</i> meson decays modelling	+13 c/o	+28 % -35 %	+1.6% -9.3	+0.5 %
Total systematic uncertainty	$^{+28}_{-25}$ %	$+35_{-61}$	+14 % -15	+5.1% -2.7%

Table 2: Systematic uncertainties for measurements of the pentaquark yields under assumption of no interference effects, the yield of a sum of two pentaquarks and the relative phase between pentaquark amplitudes.

Source	$m(P_{c1})$	$\Gamma(P_{c1})$	$m(P_{c2})$	$\Gamma(P_{c2})$
Number of $\Lambda_b^0 \to J/\psi p K^-$ decays	$^{+0.06}_{-0.03}$ %	+3.5 % -2.5	+0.07 % -0.04	+7 % -13
Pentaquark modelling	$^{+0.6}_{-0.0}$ %	+18 %	+0.2 %	$^{+0}_{-33}\%$
Non-pentaquark $\Lambda_b^0 \to J/\psi p K^-$ modelling	+0.23 % -0.05	+9.2% -1.2	+0.24 %	$^{+2}_{-62}\%$
Combinatorial background	$^{+0.03}_{-0.15}$ %	$^{+0}_{-11}$ %	+0.01 % -0.17	+22 %
<i>B</i> meson decays modelling	$^{+0.24}_{-0.00}$ %	$^{+21}_{-21}$ %	$^{+0.27}_{-0.14}$ %	+17 % -57
Total systematic uncertainty	+0.7 c/0 -0.2	+30 % -24	+0.4% -0.2	$^{+28}_{-91}$ %

Table 3: Systematic uncertainties for measurements of the pentaquark masses and natural widths.

The systematic uncertainties are summarised in Tables 2 and 3. Contributions from the systematic uncertainties listed above are added in quadrature separately for positive and negative variations.