

Study of Baryon Pair Production at BESIII

Xiongfei Wang (王雄飞)

(On behalf of BESIII Collaboration)

Lanzhou University
10th International Workshop on Charm Physics
June 1st, 2021

Outline

- **□** Introduction
- □ Recent results
 - \rightarrow BB production in Charmonium decay

```
\checkmark J/\psi \rightarrow \Xi(1530)^{-}\overline{\Xi}^{+} + c.c.
```

- $\checkmark \quad \psi(3686) \to \Xi(1530)^- \; \overline{\Xi}(1530)^+$
- $\checkmark \qquad \psi(3686) \to \Omega^- \overline{\Omega}{}^+$
- $ightharpoonup B\overline{B}$ production in e^+e^- annihilation

$$\checkmark$$
 $e^+e^- \rightarrow N\overline{N}$

- $\checkmark \qquad e^+e^- \to \Sigma^{\pm}\overline{\Sigma}^{\mp}$
- $\checkmark \qquad e^+e^- \to \Xi^-\overline{\Xi}{}^+$
- **□** Summary

Charmonium (-like) states

Nonrelativistic $c\bar{c}$ bound states

 $\eta_c(1S)$

2.8

 $> J/\psi (1^3S_1),$ first member with $J^{PC} = 1^{--}(1974)$

Understand well

2++ 2-+ 2- 3- 3+-

Baryon States

Baryon Decuplet (spin $\frac{3}{2}$)

 $M = 2286.46 \pm 0.14 \text{ MeV}$

$B\overline{B}$ production in Charmonium (-like) decay

Main Feynman Diagrams

□ Provide a rich laboratory to prob both pQCD and non-pQCD.

$B\overline{B}$ production in e^+e^- annihilation

One Photon Exchange

• Differential cross section with combination of $G_{E/G}$

$$\frac{d\sigma^{B}(s)}{d\Omega} = \frac{\alpha^{2}\beta C}{4s} [|G_{M}(s)|^{2} (1 + \cos^{2}\theta) + \frac{1}{\tau} |G_{E}(s)|^{2} \sin^{2}\theta]$$

• Form factor (Effective, $G_{E/G}$)

$$|G_{\text{eff}}(s)| = \sqrt{\frac{2\tau |G_M(s)|^2 + |G_E(s)|^2}{2\tau + 1}} = \sqrt{\frac{\sigma^B(s)}{(1 + \frac{1}{2\tau}) \cdot (\frac{4\pi\alpha^2\beta}{3s})}}$$

$$R = |\frac{G_E(s)}{G_M(s)}| = \sqrt{\frac{\tau(1 - \eta)}{1 + \eta}} \left(\frac{d\sigma^B(s)}{d\cos\theta} \propto 1 + \eta\cos^2\theta\right)$$

- Understand the internal structure of hadron
- ☐ Provide extra insights for Charmonium(-like) states

Outline

- □ Introduction
- □ Recent results
 - \rightarrow BB production in Charmonium decay

```
\checkmark J/\psi \rightarrow \Xi(1530)^{-}\overline{\Xi}^{+} + c.c.
```

- $\checkmark \quad \psi(3686) \to \Xi(1530)^- \; \overline{\Xi}(1530)^+$
- $\checkmark \qquad \psi(3686) \to \Omega^{-}\overline{\Omega}{}^{+}$
- \triangleright BB production in e^+e^- annihilation

$$\checkmark$$
 $e^+e^- \rightarrow N\overline{N}$

- \checkmark $e^+e^- \rightarrow \Sigma^{\pm}\overline{\Sigma}^{\mp}$
- \checkmark $e^+e^- \rightarrow \Xi^-\overline{\Xi}^+$
- □ Summary

Measurements of $J/\psi \to \Xi(1530)^-\overline{\Xi}^+ + c. c. and \Xi(1530)^- \to \gamma\Xi^-$

Data Sample: 1310M J/ψ

PRD101, 012004 (2020)

- Precise measurement for $J/\psi \to \Xi(1530)^{-}\bar{\Xi}^{+} + c.c.$
- First evidence: $B[\Xi(1530)^- \to \gamma\Xi^-] < 3.7\%@90\%$ C.L.
- Provide complementary experimental information for isolating both the octet-decuplet mixing mechanism.

Observations of $\psi(3686) \rightarrow \Xi(1530)^{-}\overline{\Xi}(1530)^{+}$ and $\Xi(1530)^{-}\overline{\Xi}^{+}$

Data Sample: 448M ψ(3686)

PRD100, 051101(RC) (2019)

- **The measured** α value favors the theoretical prediction
 - > Quark mass effect, SU(3) violated effect, Electro-magnetic effect, etc.
- Provide new input to test pQCD.

Helicity Amplitude Analysis of $\psi(2S) \to \Omega^- \overline{\Omega}^+$

Data Sample: 448M ψ(3686)

Phys. Rev. Lett. 126, 092002 (2021)

□ Improve precision for branching fraction

\square The degree of polarization for Ω^- baryon is determined

(Two solutions)

$$d_{\left(\boldsymbol{\rho}_{\frac{3}{2}}\right)} = \sqrt{\sum_{\mu=1}^{15} \left(\frac{r_{\mu}}{r_{0}}\right)^{2}}$$

vector (r1), quadrupole (r6, r7, r8) octupole (r10, r11) polarization

Outline

- ☐ Introduction
- **□** Recent results
 - **>** BB production in Charmonium decay
 - \checkmark $J/\psi \rightarrow \Xi(1530)^{-}\overline{\Xi}^{+} + c.c.$
 - $\checkmark \quad \psi(3686) \to \Xi(1530)^{-} \, \overline{\Xi}(1530)^{+}$
 - $\checkmark \quad \psi(3686) \rightarrow \Omega^{-}\overline{\Omega}^{+}$
 - $ightharpoonup B\overline{B}$ production in e^+e^- annihilation
 - \checkmark $e^+e^- \rightarrow N\overline{N}$
 - $\checkmark \qquad e^+e^- \to \Sigma^{\pm}\overline{\Sigma}^{\mp}$
 - \checkmark $e^+e^- \rightarrow \Xi^-\overline{\Xi}^+$
- **□** Summary

Measurement of $\sigma^{B}(e^{+}e^{-} \rightarrow n\overline{n})$ near threshold

- Most accurate measurements for Born cross section and |G| form factor
- \blacksquare The ratio R_{np} is not consistent with FENICE results
- An oscillatory behavior of the effective form factor (observed for the proton) is discussed for the neutron

Measurement of proton EFFs using ISR method

Data Sample: 7.4/pb @ $\sqrt{s} = 3.773 \ to \ 4.6 \ GeV$

Phy. Lett. B 817 (2021) 136328

- Oscillating structure: a) Interference effect involving re-scattering processes in the final state; b) Independent resonant structures
- Results are consistent with previous experiments and parameterization

Measurement of $\sigma^B(e^+e^- \to \Sigma^{\pm}\overline{\Sigma}^{\mp})$ near threshold

Data Sample: ~400/pb (6 points: 2.3864 to 3.0200 GeV)

PLB 814,136059 (2021)

- > No obvious enhancement near threshold
- > Nonzero cross sections near threshold
- The cross sections for $\Sigma^{\pm}\overline{\Sigma}^{\mp}$ baryon pairs disagree with each other within the sector of isospin conservation
- ➤ First measurements in the off-resonance region, provide precision experimental input for understanding baryonic structure

First measurement for the ratio of EM form factors at point $\sqrt{s} = 2.396$ GeV with a study of angular distribution

Study of $e^+e^- \to \Xi^-\overline{\Xi}^+$ above open charm

Data Sample: 11.0 fb⁻¹ @ \sqrt{s} =4.009-4.6GeV

Phys.Rev.Lett. 124, 032002, (2020)

First study of $e^+e^- \rightarrow \Xi^-\overline{\Xi}^+$ above open charm threshold

■ A maximum likelihood fit to cross section:

$$\sigma^{\text{dressed}}(\sqrt{s}) = |c_0 \frac{\sqrt{P(\sqrt{s})}}{s^n} + e^{i\phi} BW(\sqrt{s}) \sqrt{\frac{P(\sqrt{s})}{P(M)}}|^2$$

$$BW(\sqrt{s}) = \frac{\sqrt{12\pi\Gamma_{ee}B\Gamma}}{s - M^2 + iM\Gamma}$$

No obvious significances for $\psi(4230/4260)$ are observed in the $\Xi^{-}\overline{\Xi}^{+}$ final states

$$\Gamma_{ee}B[Y(4230) \to \Xi^{-}\overline{\Xi}^{+}] < 0.33 \times 10^{-3} eV$$

 $\Gamma_{ee}B[Y(4260) \to \Xi^{-}\overline{\Xi}^{+}] < 0.27 \times 10^{-3} eV$

- Provide more experimental information to understand the nature of Y (4260)
- Charmless decays of the Y (4260) are expected by the hybrid model (F. E. Close and P. R. Page, PLB628,215(2005))

Study of $e^+e^- \rightarrow \Xi^-\overline{\Xi}^+$ above open charm

Phys.Rev.Lett. 124, 032002, (2020)

■ Observed an excited **E** state by combining all energy points

 \square Observed $e^+e^-\to\Xi^{\mp}X(1820)$ with 6.2σ significance

$$M = (1825.5 \pm 4.7 \pm 4.7) GeV$$

 $\Gamma = (17.0 \pm 15.0 \pm 7.9) MeV$

- \Box Consistent with the mass and width of $\Xi(1820)$ from PDG within the 1σ uncertainty
- ☐ JPC has not determined due to limited statistics

Measurement of $\sigma^B(e^+e^- \to \Xi \overline{\Xi})$ near threshold

Data Sample: ~360/pb (8 points: 2.644 to 3.080 GeV)

PRD103, 012005(2021),

arXiv: 2105.14657

First study for $\Xi \overline{\Xi}$ production near threshold

- lacksquare No obvious $\Xi\overline{\Xi}$ threshold enhancement
- The ratio of Born cross sections for both modes agrees with the expectation of isospin symmetry.

 17

Summary

- **■BESIII** is successfully operating since 2008.
 - \checkmark Collected large data samples in the τ -charm physics region
 - ✓ Continues to take data in coming 5 years (at least)
- Many studies for $B\overline{B}$ production in Charmonium decay and in e^+e^- annihilation achieved:
 - ✓ More new observation for $B\overline{B}$ production in Charmonium decay
 - **✓** Hyperon polarization observation
 - ✓ Most accurate measurement for neutron and proton form factor
 - ✓ More new/precise study for baryon pair production near threshold
 - ✓ Still need more experimental/theoretical efforts
- ■More new results for $B\overline{B}$ pair production in Charmonioum decay and in e^+e^- annihilation are on the way!

Backup

Observation of Σ^+ hyperon spin polarization in $\psi \to \Sigma^+ \overline{\Sigma}^-$

Data Sample: 1310M J/ ψ & 448M ψ (3686)

Phys. Rev. Lett. 125, 052004 (2020)

Moment: $M(\cos\theta) = \frac{m}{N} \sum_{i}^{N(\theta_{\Sigma})} (\sin\theta_{p}^{i} \sin\phi_{p}^{i} - \sin\theta_{\overline{p}}^{i} \sin\phi_{\overline{p}}^{i})$

Parameter	Measured value	
$\overline{lpha_{J/\psi}}$	$-0.508 \pm 0.006 \pm 0.004$	
$\Delta\Phi_{J/\psi}$	$-0.270 \pm 0.012 \pm 0.009$	
$lpha_{\psi'}$	$0.682 \pm 0.03 \pm 0.011$	
$\Delta\Phi_{\psi'}$	$0.379 \pm 0.07 \pm 0.014$	
α_0	$-0.998 \pm 0.037 \pm 0.009$	
\bar{lpha}_0	$0.990 \pm 0.037 \pm 0.011$	

Test of CP violation:

$$A_{CP} = \frac{\alpha_0 + \overline{\alpha}_0}{\alpha_0 - \overline{\alpha}_0} = -0.015 \pm 0.037 \pm 0.008 \approx 0$$
?

Observation of Λ hyperon spin polarization in $J/\psi \to \Lambda \overline{\Lambda}$

Data Sample: 1310M J/ψ

Nature Physics **15**, 631 (2019)

Moment: $\mu(\cos\theta_{\Lambda}) = \frac{m}{N} \sum_{i}^{N(\theta_{\Lambda})} (\sin\theta_{1}^{i} \sin\phi_{1}^{i} - \sin\theta_{2}^{i} \sin\phi_{2}^{i})$

- **Moment corresponds to the polarization calculated for 50 bins in** $\cos \theta$ **.**
- **A** clear polarization signal, strongly dependent on the Λ direction $cos\theta$ is observed for Λ and $\overline{\Lambda}$.

Observation of Λ hyperon spin polarization in $J/\psi \to \Lambda \overline{\Lambda}$

Data Sample: 1310M J/ψ

Nature Physics 15, 631 (2019)

Table 1 | Summary of the results

First observation of a transverse polarization.

Parameters	This work	Previous results
$lpha_w$	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 (ref. ¹⁴)
$\Delta arPhi$	42.4 ± 0.6 ± 0.5°	-
α_{-}	0.750±0.009±0.004	0.642 ± 0.013 (ref. ⁶)
$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08 (ref. ⁶)
$\overline{\alpha}_0$	$-0.692 \pm 0.016 \pm 0.006$	_
A _{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021 (ref. 6)
$\overline{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	-

 $>5\sigma$ difference (17% higher than) to PDG

Test of CP violation:

$$A_{CP} = \frac{\alpha_- + \alpha_+}{\alpha_- - \alpha_+}$$

- Most sensitive test of CP violation for Λ baryons with precision over previous measurements.
- **BESIII** has collected 10B J/ ψ data sample, test of CP violation in baryon decays are hopeful to reach sensitivities $(A_{CP}^{SM} \approx 10^{-4})$.