

Krista Smith for the PHENIX Collaboration

10<sup>th</sup> International Workshop on Charm Physics

June 1, 2021

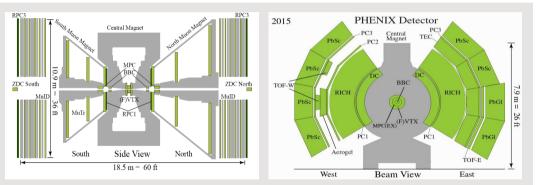


Krista Smith

# **PHENIX** Quarkonia Overview



Three recent PHENIX analyses focus on the following collision systems and attempt to answer the following questions:


- 2013 p + p at  $\sqrt{s} = 510$  GeV
- 2014 <sup>3</sup>**He+Au** at
  - $\sqrt{s_{NN}} = 200 \text{ GeV}$
- 2015 p+p, p+Al, p+Au at  $\sqrt{s_{NN}} = 200 \text{ GeV}$

- I Is  $J/\psi$  polarization in p+p collisions consistent with zero in all frames?
- 2 Can NRQCD+CGC predictions describe  $J/\psi$  production at RHIC?
- **3** If QGP is present in small systems, does it affect charmonium production?



### 10<sup>th</sup> International Workshop on Charm Physics

## PHENIX Muon and Central Arms



- Muon arms measure muons and inclusive charged hadrons
- Mid-rapidity arms measure electrons, photons, and identified hadrons



Krista Smith

### $10^{\rm th}$ International Workshop on Charm Physics

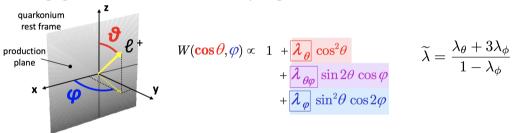




# $\mathbf{J}/\psi$ Polarization



Krista Smith


10<sup>th</sup> International Workshop on Charm Physics

# **Angular Coefficients**

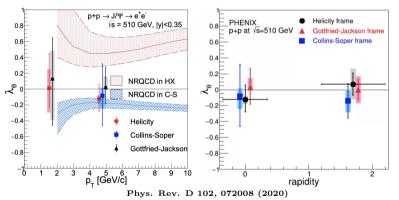


5/25

### Pedagogical illustration of the decay angular distribution



P. Faciolli, Quarkonium in Hot Medium (2009) and Eur. Phys. J. C 69, 657 (2010)


J/ψ polarization characterized by spin alignment of positively charged decay lepton
λ<sub>θ</sub>, λ<sub>φ</sub> and λ<sub>θφ</sub> determined using Helicity, Collins-Soper, or Gottfried-Jackson frames
λ<sub>θ</sub> ={+1,0,-1} ⇒ fully transverse, fully zero, or fully longitudinal J/ψ polarization
Frame invariant angular decay coefficient λ̃ can be used for consistency check



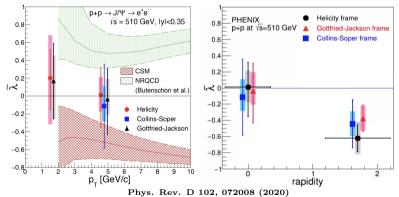
#### Krista Smith

### 10<sup>th</sup> International Workshop on Charm Physics

# $\mathbf{J}/\psi$ Polarization $\lambda_{\theta}$



J/ψ polarization as a function of p<sub>T</sub> in all three frames is consistent with zero
NRQCD Model<sup>[1]</sup> in both Helicity and Collins-Soper frames agrees with data
J/ψ polarization at both mid and forward rapidity consistent with zero






#### Krista Smith

 $10^{\rm th}$  International Workshop on Charm Physics

# $\mathbf{J}/\psi$ Polarization $\tilde{\lambda}$



•  $J/\psi$  polarization as a function of  $p_T$  in all three frames is consistent with zero

• Neither NRQCD or Color Singlet Model<sup>[1]</sup> can be ruled out

• At forward rapidity,  $J/\psi$  polarization consistent with longitudinal polarization

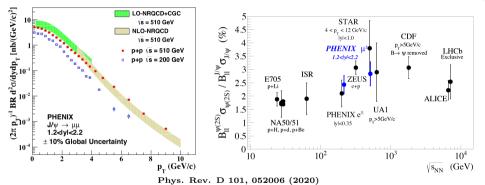


7 / 25

Krista Smith

### 10<sup>th</sup> International Workshop on Charm Physics

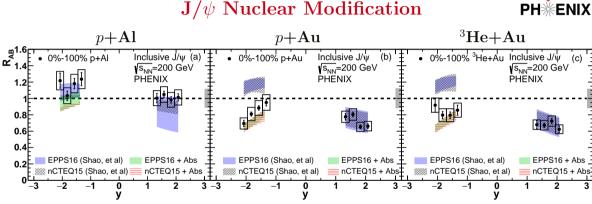





# $\mathbf{J}/\psi$ Production & Modification



### $\mathbf{10}^{\mathrm{th}}$ International Workshop on Charm Physics


# $\mathbf{J}/\psi$ Production, Forward Rapidity

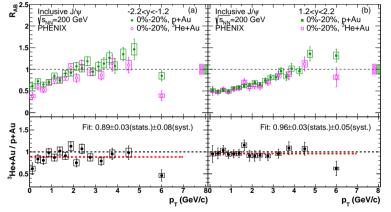


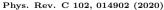
 $\, \circ \,$  Inclusive J/ $\psi$  differential cross section compared to prompt J/ $\psi$  calculations

- $\circ~$  Non-prompt J/ $\psi$  contribution more significant at high  $p_T$
- $\circ~$  LO NRQCD+Color Glass Condensate  $^{[3]}$  at low  $p_T$  overestimates data
- $\psi(2S)/J/\psi$  ratio consistent with world data no clear energy dependence






Phys. Rev. C 102, 014902 (2020)


- Predictions for  $p/{}^{3}\text{He}+\text{Au}$  based on Bayesian reweighting method using  $J/\psi$  constraints from p+Pb data at the LHC<sup>[4]</sup>
  - PHENIX nuclear absorption estimate included at backward rapidity<sup>[5]</sup>

### $10^{\mathrm{th}}$ International Workshop on Charm Physics

## $J/\psi$ Modification Ratio for <sup>3</sup>He+Au to *p*+Au (0-20%)







 $\bullet\,$  Slightly stronger suppression in  $^3\mathrm{He}+\mathrm{Au}$  at bkwd rapidity with significance  $1.3\sigma$ 

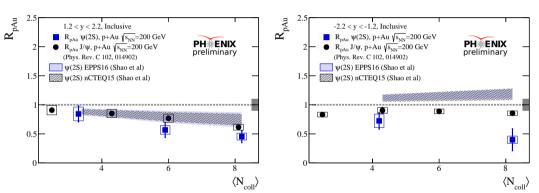
• No final state effect at fwd rapidity, small final state effect at bkwd rapidity



Krista Smith

### $10^{\rm th}$ International Workshop on Charm Physics






# $\psi(2S)$ Nuclear Modification



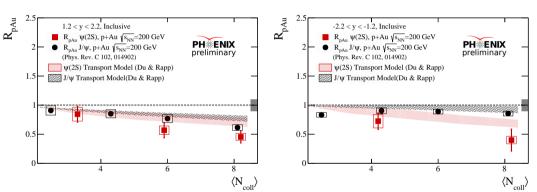
### $\mathbf{10}^{\mathrm{th}}$ International Workshop on Charm Physics

 $\psi(2S)$  Nuclear Modification



• At forward rapidity,  $J/\psi$  and  $\psi(2S)$  modification follow similar trend

 $\circ~$  EPPS16 and nCTEQ15 shadowing predictions describe data reasonably well

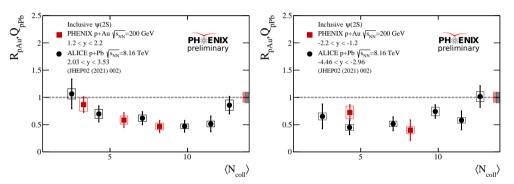

• At backward rapidity, anti-shadowing predictions alone cannot describe the data



13 / 25

### $\mathbf{10}^{\mathrm{th}}$ International Workshop on Charm Physics

 $\psi(2S)$  Nuclear Modification




At forward rapidity, largest contribution to Transport Model EPS09 shadowing <sup>[6]</sup>
At backward rapidity, clear difference in ψ(2S) modification in most central collisions
Consistent with final state effects in small system collisions



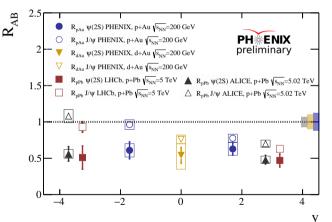
### $10^{\rm th}$ International Workshop on Charm Physics

# $\psi(2S)$ Modification at RHIC and LHC



• PHENIX and ALICE  $\psi(2S)$  modification quite similar at forward rapidity

 $\circ~$  Cold nuclear matter effects appear to be dominant


 $\bullet\,$  PHENIX and ALICE  $\psi(2{\rm S})$  modification very similar at backward rapidity as well

 $\circ~$  Suggests final state effects in small system collisions



### $10^{\rm th}$ International Workshop on Charm Physics

## $\mathbf{J}/\psi,\,\psi(\mathbf{2S})$ Modification at RHIC and LHC



At forward rapidity, J/ψ nuclear modification similar to ψ(2S) nuclear modification
Much stronger suppression observed for ψ(2S) at backward rapidity





Krista Smith

 $\mathbf{10}^{\mathrm{th}}$  International Workshop on Charm Physics

# PHENIX Quarkonia Summary



# **1** p+p at $\sqrt{s} = 510 \text{ GeV}$

- J/ $\psi$  polarization is consistent with zero at mid-rapidity and with longitudinal polarization at forward rapidity
- At low  $p_T$ , J/ $\psi$  production at RHIC is not well described by NRQCD+Color Glass Condensate predictions
- World data on the  $\psi(2S)/J/\psi$  ratio in small system collisions shows no clear energy dependence
- $\bigcirc$  p+Al, p+Au, <sup>3</sup>He+Au at  $\sqrt{s_{NN}} = 200 \text{ GeV}$ 
  - PHENIX J/ $\psi$  nuclear modification in small systems best described by nPDFs with a nuclear absorption model included at backward rapidity
  - At both RHIC and LHC energies,  $\psi(2{\rm S})$  nuclear modification as function of  $\langle N_{coll}\rangle$  very similar in  $p{+}{\rm A}$  collisions
  - Strong suppression of  $\psi(2S)$  nuclear modification at backward rapidity supports final state effects in small systems



#### Krista Smith

### $10^{\rm th}$ International Workshop on Charm Physics

# Theory References



- [2] M. Butenschon and B. A. Kniehl Reconciling J/ψ Production at HERA, RHIC, Tevatron, and LHC with Nonrelativistic QCD Factorization at Next-to-Leading Order *Phys. Rev. Lett.* 106, 022003 (2011)
- [3] Y.-Q Ma, K. Wang, K.-T. Chao  $J/\psi(\psi')$  Production at the Tevatron and LHC at  $O(\alpha_s^4 v^4)$  in Nonrelativistic QCD *Phys. Rev. Lett.* 106, 042002 (2011)
- [4] Kusina, Aleksander and Lansberg, Jean-Philippe and Schienbein, Ingo and Shao, Hua-Sheng Gluon Shadowing in Heavy-Flavor Production at the LHC *Phys. Rev. Lett* 121, 052004
- [5] D. McGlinchey, A.D. Frawley and R. Vogt Impact-parameter dependence of the nuclear modification of J/ψ production in d+Au collisions at √s<sub>NN</sub> =200 GeV Phys. Rev. C 87, 054910 (2013)
- [6] Du, Xiaojian and Rapp, Ralf In-Medium Charmonium Production in Proton-Nucleus Collisions JHEP 03, 015

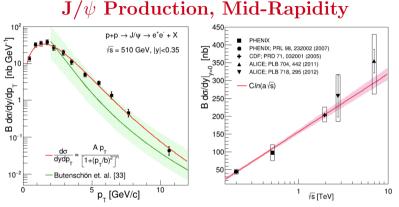




Krista Smith

### $10^{\rm th}$ International Workshop on Charm Physics



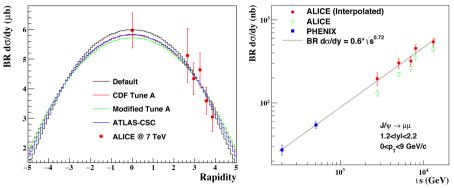



# **Back-Up**



#### Krista Smith

### $\mathbf{10}^{\mathrm{th}}$ International Workshop on Charm Physics




Phys. Rev. D 102, 072008 (2020)

NLO NRQCD<sup>[2]</sup> prediction describes J/ψ differential cross section well for p<sub>T</sub>>2 GeV/c
J/ψ production as a function of √s follows simple logarithmic curve Cln(a√s)

 $\circ~p_T$  integrated PHENIX results are compared with CDF and ALICE measurements

# $J/\psi$ Production, Forward Rapidity



Phys. Rev. D 101, 052006 (2020)

• Here  $J/\psi$  production as a function of  $\sqrt{s}$  is fit with the power law  $C\sqrt{s}^{a}$ 

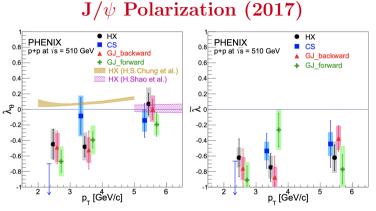
- ALICE data interpolated to PHENIX forward rapidity range 1.2 < y < 2.2
- This was done using various PYTHIA tunes and fitting the  $d\sigma/dy$  distribution

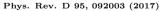


 $10^{\mathrm{th}}$  International Workshop on Charm Physics

## Polarization Coordinate Frames




- The Helicity frame (HX): [9], traditionally used in collider experiments, takes the  $\hat{z}$ -axis as the spin-1 particle momentum direction.
- The Collins-Soper frame (CS): [10], widely used in Drell-Yan measurements, chooses the  $\hat{z}$ -axis as the difference between the momenta of the colliding partons boosted into the spin-1 particle rest frame. Note that while the original paper [10] and subsequent theoretical studies used colliding parton momenta in their calculations, the colliding hadron momenta are used here, because we do not have information about the parton momenta.
- The Gottfried-Jackson frame (GJ): [11], typically used in fixed target experiments, takes the  $\hat{z}$ -axis as the beam momentum boosted into the spin-1 particle rest frame. At forward angles in a collider environment, the definition of the GJ frame depends heavily on which beam is used in the definition. If the beam circulating in the same direction as the  $J/\psi$  momentum is chosen (GJ forward), the resulting  $\hat{z}$ -axis is nearly collinear with the  $\hat{z}$ -axis of the HX and CS frames and points in the same direction. In GJ backward frame (beam circulating in the direction opposite to  $J/\psi$  momentum is chosen) the  $\hat{z}$ -axis points in the opposite direction.

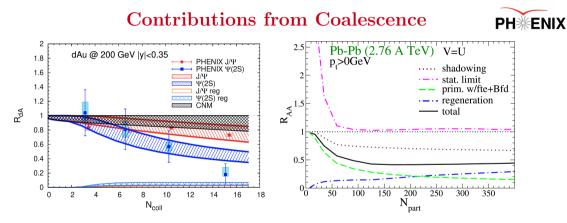

Phys. Rev. D 95, 092003 (2017)

- Helicity frame is most commonly used for collider experiments
- Definition of  $\hat{z}$  is main difference between coordinate frames



 $10^{\mathrm{th}}$  International Workshop on Charm Physics






• Previous PHENIX  $J/\psi$  polarization results at forward rapidity (2017)

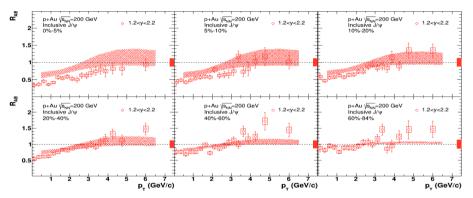
• Also indicates longitudinal polarization at forward rapidity with the frame invariant  $\tilde{\lambda}$  angular decay coefficient







 $\, \bullet \,$  Coalescence predictions for J/ $\psi, \, \psi(2{\rm S})$  nuclear modification in  $d{+}{\rm Au}$  collisions at RHIC


- $\circ~$  Similar expectations at LHC in  $p{+}{\rm Pb}$  collisions
- Much more significant contribution from coalescence in Pb+Pb collisions



#### Krista Smith

### 10<sup>th</sup> International Workshop on Charm Physics

# $J/\psi$ Modification in p+Au, Fwd Rapidity



- Transport effects small at forward rapidity
  - $\circ~{\rm EPS09}$  shadowing dominates model calculations
  - $\circ~$  Shadowing not strong enough in central collisions







