Evolution of open charm production with event multiplicity with ALICE Marco Giacalone University and INFN, Bologna for the ALICE Collaboration The 10th International Workshop on CHARM Physics (CHARM 2020) ## Open charm production measurements: physics motivation Which collision systems? - pp collisions → test perturbative QCD calculations - p-Pb collisions → Inspect Cold Nuclear Matter (CNM) effects Why studying production vs multiplicity? - Multi-Parton interactions - Color Reconnection (CR) mechanisms - Spectra modification in high multiplicity with respect to Minimum Bias - Collectivity in high-mult p-Pb collisions? #### ALICE and open heavy flavours #### Hadronic decays: In this talk $$D^0 \rightarrow K^- \pi^+$$ $$D^+ \rightarrow K^- \pi^+ \pi^+$$ $$D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$$ $$D_s^+ \rightarrow \varphi \pi^+ \rightarrow K^+ K^- \pi^+$$ $$\Lambda_c^+ \rightarrow p K^- \pi^+ \& \Lambda_c^+ \rightarrow p K_s^0$$ $$\Sigma_c^{\ 0} \rightarrow \Lambda_c^{\ +} \pi^+ \& \Sigma_c^{\ 0} \rightarrow \Lambda_c^{\ +} \pi^+$$ $$\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+} \& \Xi_{c}^{+} \rightarrow \Xi^{-} \pi^{+} \pi^{+}$$ $\Omega_c^{\ 0} \rightarrow \Omega^- \pi^+$ #### Semi-leptonic decays: B, D $$\rightarrow$$ e + X • B, D $$\rightarrow \mu + X$$ • $$\Xi_c^0 \rightarrow \Xi^- e^+ v_e$$ $$\Lambda_c^+ \rightarrow \Lambda e^+ v_e$$ #### Multiplicity measurement #### Two methods: SPD tracklets → track segments built from two hits in SPD layers in line with reconstructed primary vertex VOM percentile → multiplicity estimation based on the percentile distribution of the VOM amplitude, which is a weighted sum of charge deposition in the VOA and #### Run 1 results at $\sqrt{s} = 7$ TeV Self normalised yield vs charged particle multiplicity $$\frac{\mathrm{d}^2 N/(\mathrm{d}y \mathrm{d}p_{\mathrm{T}})}{\langle \mathrm{d}^2 N/(\mathrm{d}y \mathrm{d}p_{\mathrm{T}}) \rangle} = \frac{Y_{\mathrm{mult}}^{\mathrm{corr}}}{Y_{\mathrm{int}}^{\mathrm{corr}}}$$ with $Y_{\text{mult/int}}^{\text{corr}}$ = corrected yield in multiplicity interval/integrated case D-mesons and J/ψ measurements at $\sqrt{s}=7$ TeV show a faster than linear increasing trend and no strong p_{T} dependence within uncertainties ## D mesons self normalised yield in pp at $\sqrt{s} = 13$ TeV New and more precise 13 TeV results show faster than linear increase vs multiplicity Higher p_{T} intervals show a steeper self normalised yield trend than lower ones \rightarrow significant dependence #### D-meson self normalised yield vs models in pp at $\sqrt{s} = 13$ TeV ## Measurements compared with models: *1. EPOS3 generator with initial conditions followed by a hydrodynamical evolution (EPOS + hydro) #### Closer to data *2. EPOS3 with no hydro #### Underestimates data *3. 3-Pomeron Color Glass Condensate (CGC) #### Overestimates data ALI-PREL-488879 [[]K. Werner et al, Phys. Rev. C 89, 064903 (2014)] [[]I. Schmidt et al, Phys. Rev. D 101, 094020 (2020)] ## c,b \rightarrow e in pp at $\sqrt{s} = 13 \text{ TeV}$ Heavy-flavour decay electrons described well by PYTHIA 8.2 Monash 2013 tune → Color Reconnection and Multiple Parton interactions included ## Heavy Flavour μ^{\pm} yield in pp at $\sqrt{s}=8$ TeV - Faster than linear trend observed similarly to the other heavy-flavour particles → weaker p_T dependence compared to D mesons - EPOS predictions underestimate the muon production ### Particles production comparison in pp at $\sqrt{s} = 13$ TeV Self normalised yields of J/ ψ , electrons from heavy-flavour decays and average D mesons compatible in similar p_T ranges ## Λ_c^+/D^0 in pp at $\sqrt{s} = 13$ TeV • Measurements show a dependence of the Λ_c^+/D^0 yield ratio vs multiplicity Modification of hadronization mechanisms with multiplicity PYTHIA8 Monash tune doesn't describe data PYTHIA Enhanced CR Mode 2 tune* describes the measured p_T trend and the multiplicity trend ## D_s^+/D^0 in pp at $\sqrt{s} = 13$ TeV - Results show no clear multiplicity dependence - Compatible with the average of the p_T integrated measurements performed at e⁺e⁻ collisions [L. Gladilin, Eur. Phys. J. C 75, 19 (2015)] $$R_{\rm pPb}$$ at $\sqrt{s_{\rm NN}}=5.02~{\rm TeV}$ NEW for Λ_c^+ down to - D mesons R_{pPb}≈1 - D mesons and Λ_c^+ compatible with POWHEG+PYTHIA6 at low p_T - Λ_c^+ significant suppression in $p_T < 2 \text{ GeV/}c \rightarrow$ above unity elsewhere \rightarrow compatible with POWLANG up to 4 GeV/c - Trend hints a deviation from model predictions at intermediate-high p_T → radial flow in p-Pb or modification of hadronization mechanism? $$^{\circ}R_{\mathrm{pPb}} = \frac{1}{A} \frac{\mathrm{d}\sigma_{\mathrm{pPb}}/\mathrm{d}p_{\mathrm{T}}}{\mathrm{d}\sigma_{\mathrm{pp}}/\mathrm{d}p_{\mathrm{T}}}$$ Marco Giacalone ## D-meson Q_{cp} in p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV Ratio of prompt D meson yield with 60-100% multiplicity class calculated using the formula $$Q_{\rm CP} = \frac{({\rm d}^2 N^{\rm prompt\,D}/{\rm d}p_{\rm T}{\rm d}y)_{\rm p-Pb}^{\rm i}/\langle T_{\rm pPb}\rangle_{\rm i}}{({\rm d}^2 N^{\rm prompt\,D}/{\rm d}p_{\rm T}{\rm d}y)_{\rm p-Pb}^{60-100\%}/\langle T_{\rm pPb}\rangle_{60-100\%}}, \quad _{0.6}^{0.8}$$ where $\langle T_{\rm pPb} \rangle$ is the nuclear overlap function • Hint of an enhancement of the $Q_{\rm cp}$ at intermediate $p_{\rm T}$ due to radial flow JHEP 12 (2019) 092 #### Elliptic flow e and μ in p-Pb collisions - Heavy flavour decay electrons v_2 at midrapidity compatible with muons at forward rapidity - Leptons show positive elliptic flow observed in 0-20% VOM multiplicity class Indication of collectivity in the collision system #### Summary #### pp collisions: • Average D mesons, J/ ψ and heavy-flavour hadron decays electrons compatible in similar p_T intervals Trends faster than linear vs multiplicity and significant p_T dependence Average D reproduced fairly well by EPOS3 with hydro, heavy flavour electrons well by Monash 2013 • Λ_c^+/D^0 enhancement compared to e^+e^- and with increasing multiplicity (not observed in D_s^+/D^0) \rightarrow well reproduced by PYTHIA8 mode 2 Hint of modification of hadronization mechanisms vs multiplicity Non-universality of charm fragmentation in different collision systems • Muons from heavy-flavour hadron decays production at forward rapidity faster than linear vs multiplicity \rightarrow weak p_{T} dependence #### p-Pb collisions: - Λ_c^+ production at intermediate-high p_T not fully understood $\rightarrow R_{pPb}$ compatible with POWLANG and with POWHEG+PYTHIA6 in lower intervals - Indication of collectivity in p-Pb collisions # ALICE #### Model references - EPOS [Phys. Rev. C 89, 064903 (2014)] - With Hydrodynamic evolution → initial conditions set by the EPOS generator and particles produced at "freeze-out" directly from the flowing medium - Without Hydro - 3-pomeron Color Glass Condensate → included contribution to charm quarks from 3-gluons fusion [Phys. Rev. D 49, 2233-3352 (1994)] [Phys. Rev. D 50, 2225 (1994)] - Pythia8 - With Colour reconnection [JHEP 08 (2015) 003] → Added junctions connection topologies enhancing the formation of baryons → mode parameters consider string reconnection, time dilation etc. - Without ## D mesons and HFe in p-Pb at $\sqrt{s} = 5.02$ TeV The 10th International Workshop on CHARM Physics (CHARM 2020) Average D mesons and HFe compatible in lower and middle multiplicity intervals Trend faster than linear shown even in this collision system EPOS3, with and without hydro, reproduces well the measurements \rightarrow better results with hydro at higher multiplicity