Dalitz Plot analysis of $D \rightarrow h h h @ L H C b$

Patricia C. Magahães

Aeronautics Institute of Technology (BR) p.magalhaes@cern.ch

Ist June 202|

Charm 2020 - Mexico City

- D three-body HADRONIC decay are dominated by resonances

\rightarrow spectroscopy low energy resonances
\rightarrow underlying strong force behave
\rightarrow meson-meson interactions and resonance structures
- CP-Violation
- $B^{ \pm} \rightarrow h^{ \pm} h^{-} h^{+}$massive localized direct CP asymmetry
- Ist observation in charm theb $A_{c p}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{c p}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$ Angelo and Lorenzo talks
\rightarrow CPV on $D \rightarrow h h h ? \quad \rightarrow$ searches in many process
\rightarrow can lead to new physics

$D \rightarrow h h h$ @LHCb

- full description of the underling structures (amplitude analysis):
- $D^{+} \rightarrow K^{+} K^{-} K^{+}$(DCS) JHEP 04 (2019) 063 will discuss
- $D^{0} \rightarrow K_{s} K^{ \pm} \pi^{\mp}$ (SCS) \quad PRD 93 (2016) 052018
- $D^{+} \rightarrow \pi^{-} \pi^{+} \pi^{+}$and $D_{s}^{+} \rightarrow \pi^{-} \pi^{+} \pi^{+}$- on going
- $D^{0} \rightarrow K_{s} h^{+} h^{-}(h=K, \pi)$ good sensitivity to measure mixing
- input for γ determination in $B \rightarrow D K \quad$ JHEP 08 (2018) 176
- measurement of the mass difference $\left(D^{0}, \overline{D^{0}}\right)$ in $D^{0} \rightarrow K_{s} \pi^{+} \pi^{-}$PRL 122 (2019) 231802 Angelo's talk
\longrightarrow model dependent - on going
- LHCb data for each $D \rightarrow h h h$ decays include $\sim 10^{6}-10^{7}$ events \rightarrow extremely challenging $\quad \geq$ claim for precise theoretical models

weak transition

QCD, CKM coupling and phase

Final State Interactions - strong -

- To extract information from data we need an amplitude MODEL

$$
\frac{d \Gamma}{d s_{12} d s_{23}}=\frac{1}{(2 \pi)^{3}} \frac{1}{32 M}\left|\mathcal{A}\left(s_{12}, s_{23}\right)\right|^{2}
$$

- common cartoon to described 3-body decay

- Standard isobar model widely used by experimentalists:
- $3=(2+\mathrm{I}) \rightarrow$ ignore the interaction with 3 rd particle (bachelor) $A=\sum c_{k} A_{k} ;+\mathrm{NR}\left\{\begin{array}{l}\text { non-resonant as constant or exponential! } \\ \text { each resonance as Breit-Wigner } \quad \operatorname{BW}\left(s_{12}\right)=\frac{1}{m_{R}^{2}-s_{12}-i m_{R} \Gamma\left(s_{12}\right)},\end{array}\right.$
- always good to remember why we don't like this approach:
- sum of BW violates two-body unitarity (2 res in the same channel);
- do NOT include rescattering and coupled-channels;
- free parameters are not connected with theory !

Two-body resonances signature in DP

- common cartoon to described 3-body decay

- one expect to see all 3 channels res:
\longrightarrow But in reality.......
not all of them are clearly present

- $D^{0} \rightarrow K_{s} \pi^{-} \pi^{+}$

- $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$

PRL 103 (2009) 103211801
\longrightarrow Similar final state but different interference pattern \hookrightarrow different dynamics to be understood
\longrightarrow to disentangle the interference we need amplitude analysis

same final state different signatures

- $D^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$

PRD 76 (2007)012001

\rightarrow projection highlight that S-wave is very different
\rightarrow production environment matters

- $D_{s}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$

PRD 79 (2009)032003

2-body x 3-body phases

- $D_{s}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$
- If this is the "nature" picture \rightarrow decay phase should be the same as 2-body \longrightarrow Watson's Theorem
- Quantum numbers:
- 2-body amplitude: spin and isospin well defined!
- 3-body data: only spin! and \neq dynamics

There is more than only 2-body

- Three-body FSI (beyond 2+I)

- shown to be relevant on charm sector

Scattering

Decay projected in one pair mass

Models available

- Three-body FSI (beyond 2+I)

amplitude analysis @LHCb

$$
D^{+} \rightarrow K^{-} K^{+} K^{+}
$$

Theoretical model
PHYSICAL REVIEW D 98, 056021 (2018) arXiv:1805.11764 [hep-ph]

Multimeson model for the $\boldsymbol{D}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{K}^{+}$decay amplitude
R. T. Aoude, ${ }^{1,2}$ P. C. Magalhães, ${ }^{1,3,}{ }^{*}$ A.C. dos Reis, ${ }^{1}$ and M. R. Robilotta ${ }^{4}$

KK scattering
amplitude

- hypothesis that annihilation is dominant

- depart from a fundamental theory \rightarrow ChPT Lagrangian
- track the ingredients we include in our model!
- $A_{a b}^{J I} \longrightarrow$ unitary scattering amplitude for $a b \rightarrow K^{+} K^{-}$
- fit the model to LHCb data run I (8 TeV CM) $2 \mathrm{fb}^{-1}$ JHEP 1904 (2019) 063
\rightarrow predict KK scattering amplitude
\rightarrow parameters have physical meaning: resonance masses and coupling constants

Chiral symmetry

- $K \bar{K}$ coupled-channel unitary amplitude $\pi \pi, \eta \eta, \pi \eta, \rho \pi$
- isospin decomposition $[J, I=(0,1),(0,1)]$

$$
\left\langle K^{-} K^{+}\right|=(i / 2)\left\langle V_{3}^{K K}+V_{8}^{K K}\right|-(1 / 2)\left\langle U_{3}^{K K}+S^{K K}\right|
$$

- Theoretical sound model

Hich

$$
\begin{aligned}
& T^{S}=T_{N R}^{S}+T^{00}+T^{01} \\
& T^{P}=T_{N R}^{P}+T^{11}+T^{10}
\end{aligned}
$$

- free parameters

parameter	value
F	$94.3_{-1.7}^{+2.8} \pm 1.5 \mathrm{MeV}$
$m_{a_{0}}$	$947.7_{-5.0}^{+5.5} \pm 6.6 \mathrm{MeV}$
$m_{S_{o}}$	$992.0_{-7.5}^{+8.5} \pm 8.6 \mathrm{MeV}$
$m_{S_{1}}$	$1330.2_{-6.5}^{+5.9} \pm 5.1 \mathrm{MeV}$
m_{ϕ}	$1019.54_{-0.10}^{+0.10} \pm 0.51 \mathrm{MeV}$
G_{ϕ}	$0.464_{-0.009}^{+0.013} \pm 0.007$
c_{d}	$-78.9_{-2.7}^{+4.2} \pm 1.9 \mathrm{MeV}$
c_{m}	$106.0_{-4.6}^{+7.7} \pm 3.3 \mathrm{MeV}$
\tilde{c}_{d}	$-6.15_{-0.54}^{+0.55} \pm 0.19 \mathrm{MeV}$
\tilde{c}_{m}	$-10.8_{-1.5}^{+2.0} \pm 0.4 \mathrm{MeV}$

$\mathrm{FF}_{\mathrm{NR}}$	FF^{00}	FF^{01}	FF^{10}	FF^{11}	$\mathrm{FF}_{\mathrm{S}-\text { wave }}$
14 ± 1	29 ± 1	131 ± 2	7.1 ± 0.9	0.26 ± 0.01	94 ± 1
$\chi^{2} /$ ndof $=1.12$					(Isobar 1.14-1.6)

\rightarrow good fit with fewer parameters than the isobar

- Any 3-body decay amplitude

$(2+I)$ approach $-T=-(W)+()^{(1)}$

Form factor
meson-meson

$$
\square{ }^{-}=\square+(A)
$$

(A) $=K+K$ K K K K $K+\cdots$
\hookrightarrow provide the building block (A) in $\mathrm{SU}(3)$

- includes multiple resonances in the same channel (as many as wanted)
- free parameter (massas and couplings) to be fitted to data.
\rightarrow Available to be implement in data analysis!!

ex: TTT amplitude

- coupled-channels: $\pi \pi, \mathrm{KK}$ and $\eta \eta$
- 3 resonances: $m x=0.98, m y=1.37, m z=1.7 \mathrm{GeV}$
 α and β are couplings from mz

\rightarrow extra res do not disturb the low-energy!
\rightarrow parameter should be fixed by data
\rightarrow will apply this methodology in other $D \rightarrow h h h$

CP violation in charm

Dalitz plot analysis

What we learn from CPV in B decays?

- CP-Violation directly from Dalitz plot

- hadronic Final State Interactions are important sources to generate CPV
- to disentangle CPV mechanisms in data we need amplitude analysis!
- recent LHCb work on $B^{ \pm} \rightarrow \pi^{-} \pi^{+} \pi^{ \pm} \quad$ PRDIOI (2020) 012006; PRL I24 (2020) 031801 $\longrightarrow \mathrm{CPV}$ on $f_{2}(1270)$ and rescattering $\pi \pi \rightarrow K K$ in S-wave
- New results on CPV on charm can hint for new searches procedures
$\hookrightarrow A_{c p}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{c p}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \quad$ PRL 122 (2019) 211803
\hookrightarrow run I + run II
- we expect to see CPV in $D \rightarrow h h h$: similar weak vertices are present!
- To extract CPV from Dalitz plot (as in B decay) we need:

I - model independent procedure to show localized CP asymmetry
Mirandizing
2 - Amplitude analysis with a theoretical sound model to describe FSI properly

- on going in LHCb for $D_{(s)} \rightarrow \pi \pi \pi$
- A consistent treatment of FSI is crucial to reach precision in $D \rightarrow h h h$ ANA
\longrightarrow two-body coupled-channels description in mandatory
\longrightarrow learn much more about the underling dynamics
\longrightarrow relevant for CPV search
- New LHCb $D^{+} \rightarrow h^{+} h^{-} h^{+}$amplitude analysis are expected soon (SCS, CF)
huge data samples claim accurate models
- $D^{+} \rightarrow K K K$: exempla of theory/experimental join work
\longrightarrow tool kit for amplitude analysis with theoretically sound models

Backup slides!

meson-meson interactions at low E

- solid theory to describe MM interactions at low energy == ChPT

- LO:

$$
\begin{aligned}
& \mathcal{L}_{M}^{(2)}=-\frac{1}{6 F^{2}} f_{i j s} f_{k l s} \phi_{i} \partial_{\mu} \phi_{j} \phi_{k} \partial^{\mu} \phi_{l}+\frac{B}{24 F^{2}}\left[\sigma_{0}\left(\frac{4}{3} \delta_{i j} \delta_{k l}+2 d_{i j s} d_{k l s}\right)\right. \\
& \text { Gasser \& Leutwyler }\left.+\sigma_{8}\left(\frac{4}{3} \delta_{i j} d_{k l 8}+\frac{4}{3} d_{i j 8} \delta_{k l}+2 d_{i j m} d_{k l n} d_{8 m n}\right)\right] \phi_{i} \phi_{j} \phi_{k} \phi_{l} \\
& {[\text { Nucl. Phys. B250(I985)] }}
\end{aligned}
$$

- NLO: include resonances as a field

scalars

$$
\begin{array}{cl|l}
\mathcal{L}_{S}^{(2)}=\frac{2 \ddot{c}_{d}}{F^{2}} R_{0} \partial_{\mu} \phi_{i} \partial^{\mu} \phi_{i}-\frac{4 \ddot{c}_{m}}{F^{2}} B R_{0}\left(\sigma_{0} \delta_{i j}+\sigma_{8} d_{8 i j}\right) \phi_{i} \phi_{j} & \mathcal{L}_{V}^{(2)}=\frac{i G_{V}}{\sqrt{2}}\left\langle V_{\mu \nu} u^{\mu} u^{\nu}\right\rangle \\
+\frac{2 c_{d}}{\sqrt{2} F^{2}} d_{i j k} R_{k} \partial_{\mu} \phi_{i} \partial^{\mu} \phi_{i}-\frac{4 B c_{m}}{\sqrt{2} F^{2}}\left[\sigma_{0} d_{i j k}+\sigma_{8}\left(\frac{2}{3} \delta_{i k} \delta_{j 8}+d_{i 8 s} d_{j s k}\right)\right] \phi_{i} \phi_{j} R_{k} & \left\langle V_{\mu \nu} u^{\mu} u^{\nu}\right\rangle=\frac{1}{F^{2}} V_{a}^{\mu \nu} \partial_{\mu} \phi_{i} \partial_{\nu} \phi_{j}\left(i f_{a i j}+d_{a i j}\right)
\end{array}
$$

\longrightarrow because we want to extend this to high E the parameters change meaning and can be free to fit!

- QCD factorization approach \rightarrow factorize the quark currents

Chau [Phys. Rep. 95, I(1983)]

$\mathcal{H}_{\text {eff }}^{\Delta B=1}=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p q}^{*} V_{p b}\left[C_{1}(\mu) O_{1}^{p}(\mu)+C_{2}(\mu) O_{2}^{p}(\mu)+\sum_{i=3}^{10} C_{i}(\mu) O_{i}(\mu)+C_{\tau \gamma}(\mu) O_{\tau \gamma}(\mu)+C_{8 g}(\mu) O_{8 g}(\mu)\right]+$ h.c.,
\rightarrow ex: $\quad B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$how to describe it?

- naive factorization $\left\{\begin{array}{l}\text { - intermediate by a resonance } R \text {; } \\ - \text { FSI with scalar and vector form factors FF }\end{array}\right.$
\longrightarrow parametrizations for B and $D \rightarrow 3 h \quad$ Boito et al. PRD96 ||3003 (2017)
- modern QDC factorization: improvement to include "long distance"

Klein, Mannel,Virto, Keri Vos JHEPIO II7 (20I7)

- annihilation

- color allowed

\longrightarrow need a rescattering!
- both are doubly Cabibbo-suppressed
- hypotheses that annihilation is dominant

- separate the different energy scales:

$$
\mathcal{T}=\left\langle(K K K)^{+}\right| T\left|D^{+}\right\rangle=\underbrace{\left\langle(K K K)^{+}\right| A_{\mu}|0\rangle}_{\mathrm{ChPT}}\langle 0| A^{\mu}\left|D^{+}\right\rangle .
$$

\longrightarrow know how to calculate everything

- CPT must be preserved

Lifetime $\quad \tau=1 / \Gamma_{\text {total }}=1 / \bar{\Gamma}_{\text {total }}$ $\bar{\Gamma}_{\text {total }}=\bar{\Gamma}_{1}+\bar{\Gamma}_{2}+\bar{\Gamma}_{3}+\bar{\Gamma}_{4}+\bar{\Gamma}_{5}+\bar{\Gamma}_{6}+\ldots$

$\Gamma_{\text {total }}=\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}+\Gamma_{5}+\Gamma_{6}+\ldots \quad$ CPV in one channel should be compensated by

- rescattering $\pi \pi \rightarrow K K$

explain CPV at [1-1.6] GeV
Frederico, Bediaga, Lourenço
PRD89(2014)094013

$$
B^{ \pm} \rightarrow \pi^{ \pm} K^{-} K^{+}
$$

- confirmed by LHCb Amplitude Analysis $B^{ \pm} \rightarrow \pi^{-} \pi^{+} \pi^{ \pm}$and $B^{ \pm} \rightarrow \pi^{ \pm} K^{-} K^{+}$

[^0]- $\pi \pi$ scattering data S-Wave
- amplitude $\hat{f}_{l}(s)=\left[\frac{\eta_{l} e^{2 i \delta_{l}}-1}{2 i}\right]$.
- elasticity

$$
\sigma_{l}^{\mathrm{el}}=\frac{1}{2}\left\{\frac{1+\eta_{l}^{2}}{2}-\eta \cos 2 \delta_{l}\right\}
$$

Inelasticity: one minus the probability of losing signal (1=>elastic)

[^0]: PRDIOI (2020) 0I2006; PRL I24 (2020) 03180 I PRL I23 (2019) 231802

