

Precision hyperon physics at J/ψ and ψ' factories Andrzej Kupsc (UU&NCBJ)

 $\begin{array}{c} \overbrace{}\\ e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda} & \text{Nature Phys. 15 (2019) 631} \\ J/\psi(\psi') \rightarrow \Sigma^+ \overline{\Sigma}^- & \text{PRL125 (2020) 052004} \\ J/\psi \rightarrow \Xi & \text{arXiv:2105.11155} \\ \psi' \rightarrow \Omega^- \overline{\Omega}^+ & \text{PRL126 (2021) 092002} \end{array}$

Polarization and spin correlations Sequential decays Determination of hyperon decay parameters CP tests

Methods (UU&NCBJ):

- 1. G.Fäldt, AK PLB772 (2017) 16
- 2. E.Perotti, G.Fäldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008
- 3. P.Adlarson, AK PRD100 (2019) 114005
- 4. P.Adlarson, V.Batozskaya, AK, N.Salone in preparation

CHARM20, Mexico (zoom), 1 June 2021

Prospects at $10^{13} J/\psi$ factory

Ground-state strange baryons

Spin ¹/₂ baryon octet

Decay amplitudes in hyperon decays

 $\Lambda \rightarrow p\pi^{-}$ $\Xi^{-} \rightarrow \Lambda\pi^{-}$ P and S $\Sigma \rightarrow N\pi$

P and D in $\overline{\Omega}^- \to \Lambda K^-$ transitions

Measurable: BF and two decay parameters

 $\alpha = \frac{2 \operatorname{Re}(S^* P)}{|S|^2 + |P|^2}$

 $\beta = \frac{2 \text{Im}(S^* P)}{|P|^2 + |S|^2}$

$$\mathcal{A}(\Xi^- \to \Lambda \pi^-) = S + P \boldsymbol{\sigma} \cdot \hat{\mathbf{n}}$$

$$\beta = \sqrt{1 - \alpha^2} \sin \phi$$
$$\gamma = \sqrt{1 - \alpha^2} \cos \phi$$

For $\Lambda \rightarrow p\pi^-$ admixture of $|\Delta I| = 3/2 \ (\sim 1/22)$

Measuring hyperon decay parameters

Measuring α , β , γ in the 20th century

James Cronin 1931-2016 Oliver Overseth 1928-2008

PHYSICAL REVIEW

VOLUME 129, NUMBER

15 FEBRUARY 1963

Measurement of the Decay Parameters of the Λ^0 Particle*

JAMES W. CRONIN AND OLIVER E. OVERSETH[†] Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received 26 September 1962)

The decay parameters of $\Lambda^0 \to \pi^- + p$ have been measured by observing the polarization of the decay protons by scattering in a carbon-plate spark chamber. The experimental procedure is discussed in some detail. A total of 1156 decays with useful proton scatters was obtained. The results are expressed in terms of polarization parameters, α , β , and γ given below:

$$\begin{split} &\alpha = 2 \operatorname{Res} p^{*} / (|s|^{2} + |p|^{2}) = +0.62 \pm 0.07, \\ &\beta = 2 \operatorname{Ims} p^{*} / (|s|^{2} + |p|^{2}) = +0.18 \pm 0.24, \\ &\gamma = |s|^{2} - |p|^{2} / (|s|^{2} + |p|^{2}) = +0.78 \pm 0.06, \end{split}$$

where s and p are the s- and p-wave decay amplitudes in an effective Hamiltonian $s + \rho \sigma \cdot \mathbf{p} / |\mathbf{p}|$, where **p** is the momentum of the decay proton in the center-of-mass system of the Λ^0 , and σ is the Pauli spin operator. The helicity of the decay proton is positive. The ratio |p|/|s| is $0.36_{-0.06}^{+0.06}$ which supports the conclusion that the KAN parity is odd. The result $\beta = 0.18 \pm 0.24$ is consistent with the value $\beta = 0.08$ expected on the basis of time-reversal invariance.

$$\mathbf{P}_{\boldsymbol{p}} = \frac{\left(\alpha + P_{\Lambda}\cos\theta\right)\,\widehat{\mathbf{z}} + \beta P_{\Lambda}\widehat{\mathbf{x}} + \gamma P_{\Lambda}\widehat{\mathbf{y}}}{1 + \alpha P_{\Lambda}\cos\theta}$$

T. D. Lee, C.-N. Yang, PR 108 (1957) 1645

no H_2 target, no magnet; use kinematics and proton's range in carbon to infer E_p

Testing CP violation in hyperon decays

for c.c. decay modes $\overline{\alpha} = -$ if CP conserved:	- α and $\overline{\phi} = -\phi$						
CP-test: $A_{\rm CP} = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}}, B_{\rm CP}$	$_{\mathrm{CP}} = rac{\phi + \overline{\phi}}{2}$						
Leading order $(\Delta I = 1/2)$:							
$A_{ m CP} = -\sin\phi an(\xi_P - \xi_S)$	$(x_{3})\frac{\sqrt{1-\alpha^{2}}}{\alpha}$						
$B_{\rm CP} = \cos\phi \tan(\xi_P - \xi_S) \frac{\ddot{\alpha}}{\sqrt{1 - \alpha^2}}$							
weak <i>P-S</i> phase diff.							
	$\begin{array}{c c} \xi_S & \xi_P & C_B & C'_B \\ \hline (m)^5 A^2 & (m)^5 A^2 \end{array}$						
HyperCP:	$\begin{array}{c} (\eta \land A \) & (\eta \land A \) \\ \text{SM Ref. [13]} & \text{BSM Ref. [21]} \end{array}$						
$A^{\Xi}_{CP}+A^{\Lambda}_{CP}=0(5)(4) imes10^{-4}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$-3 \times 10^{-5} \le A_{\Lambda} \le 4 \times 10^{-5} \\ -2 \times 10^{-5} \le A_{\Xi} \le 1 \times 10^{-5} $ SM	$(\xi_P - \xi_S)_{BSM} = \frac{C'_B}{B_G} \left(\frac{\epsilon'}{\epsilon}\right)_{BSM} + \frac{C_B}{\kappa} \epsilon_{BSM}$						
Tandean,Valencia PRD67 (2003) 056001	0.5 $< B_{G} <$ 2 and 0.2 $< \kappa <$ 1						

 $e^+e^- \rightarrow \gamma^* \rightarrow B\overline{B} \text{ (spin 1/2)}$

F₁ (Dirac) and F₂ (Pauli) Form Factors

Sachs Form Factors (FFs) ⇔ helicity amplitudes:

 $G_M(s) = F_1(s) + F_2(s), \quad G_E(s) = F_1(s) + \tau F_2(s)$ helicity non-flip helicity flip

$$\tau = \frac{s}{4M_B^2}$$

Baryon-antibaryon spin density matrix $e^+e^- \rightarrow B_1\overline{B}_2$

General two spin ¹/₂ **particle state**:

$$\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu \overline{\nu}} C_{\mu \overline{\nu}} \sigma_{\mu}^{B_1} \otimes \sigma_{\overline{\nu}}^{\overline{B}_2}$$

$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi) \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$$

$$e^{-} B_1 \qquad \theta$$

$$\hat{x}_2 \qquad \theta^{-} B_2 \qquad \theta^{+} \hat{z}$$

$$B_2 \qquad \theta^{+} \hat{z}$$

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

Baryon FFs (continuum):

Fäldt EPJ A51 (2015) 74; EPJ A52 (2016)141

$e^+e^- \rightarrow J/\psi, \psi(2S) \rightarrow B\overline{B}$

#events at BESIII (estimate)

				BESIII
decay mode	$\mathcal{B}(\text{units } 10^{-4})$	α_{η}	\mathbf{eff}	1010 1/1
0		Ŷ	СТ	10 ¹⁰ J/Ψ
			31	1 1
$J/\psi \to \Lambda \bar{\Lambda}$	$19.43 \pm 0.03 \pm 0.33$	0.469 ± 0.026	40%	3200×10^3
$\psi(2S) \to \Lambda \bar{\Lambda}$	$3.97 \pm 0.02 \pm 0.12$	0.824 ± 0.074	40%	650×10^{3}
$J/\psi \rightarrow \Xi^0 \bar{\Xi}^0$	11.65 ± 0.04	0.66 ± 0.03	14%	670×10^3
$\eta/(2S) \rightarrow \Xi^0 \overline{\Xi}^0$	2.73 ± 0.03	0.65 ± 0.09	14%	160×10^{3}
$J/\psi \to \Xi^- \bar{\Xi}^+$	10.40 ± 0.06	0.58 ± 0.04	19%	810×10^3
$\psi(2S) \to \Xi^- \bar{\Xi}^+$	2.78 ± 0.05	0.91 ± 0.13	19%	210×10^3

 $\mathcal{B}(J/\psi \to p\overline{p}\,) = (21.21 \pm 0.29) \times 10^{-4}$

PRD 93, 072003 (2016) PLB770,217 (2017) PRD 95, 052003 (2017)

BESIII proposal: $3.2 \times 10^9 \psi(2S)$

<mark>€€</mark>SⅢ

 $\mathcal{B}(\psi(2S) \rightarrow \Omega^{-}\overline{\Omega}^{+}) = 5.85(28) \times 10^{-5}$

Inclusive experiment (Single Tag - ST)

 $\Lambda \rightarrow p\pi^{-}: \widehat{\mathbf{n}}_{1} \rightarrow \Omega_{1} = (\cos \theta_{1}, \phi_{1}) : \alpha_{\Lambda}$

 \Rightarrow Determine product: $\alpha_{\Lambda} P_{\nu} \sim \alpha_{\Lambda} \sin(\Delta \Phi)$

Fäldt, Kupsc PLB772 (2017) 16

DT - joint angular distribution (modular form) $e^+e^- \rightarrow (\Lambda \rightarrow p\pi^-)(\overline{\Lambda} \rightarrow \overline{p}\pi^+)$

General two spin ¹/₂ **particle state:**

$$\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu \overline{\nu}} C_{\mu \overline{\nu}} \sigma_{\mu}^{\Lambda} \otimes \sigma_{\overline{\nu}}^{\overline{\Lambda}}$$

$$(\sigma_0 = \mathbf{1}_2, \sigma_1 = \sigma_x, \sigma_2 = \sigma_y, \sigma_3 = \sigma_z)$$

$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi) \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$$

Apply decay matrices:

$$\sigma^{\Lambda}_{\mu} \rightarrow \sum_{\mu'=0}^{3} a^{\Lambda}_{\mu,\mu'} \sigma^{p}_{\mu'}$$

Modular angular distribution:

$$W = Tr\rho_{p,\bar{p}} = \sum_{\mu,\overline{\nu}=0}^{3} C_{\mu\overline{\nu}} a^{\Lambda}_{\mu,0} a^{\overline{\Lambda}}_{\overline{\nu},0}$$

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

BESIII measurement $e^+e^- \rightarrow (\Lambda \rightarrow p\pi^-)(\overline{\Lambda} \rightarrow \overline{p}\pi^+)$

 $0.750 \pm 0.009 \pm 0.004$

 $-0.758 \pm 0.010 \pm 0.007$ -0.71 ± 0.08

 $\frac{\alpha_{\Lambda}}{\overline{\alpha}_{\Lambda}}$

₿€SШ

BESIII Nature Phys. 15 (2019) 631

PDG

 0.642 ± 0.013

Implications of the BESIII $\Lambda\overline{\Lambda}$ result

$$A_{\Lambda} = 0.013 \pm 0.021$$

PS185 PRC54(96)1877

 $\begin{array}{l} \alpha_{J/\psi}/\alpha_{\psi} = \ -0.507 \pm 0.006 \pm 0.002 \\ \Delta \Phi(J/\psi\,,\psi) = (-15.4 \pm 0.7 \pm 0.3)^{\circ} \end{array}$

 $\langle \alpha \rangle = (\alpha - \overline{\alpha})/2 = -0.994(4)(2)$

 $A_{CP} = -0.004 \pm 0.037 \pm 0.010$

 $0.676 \pm 0.030 \pm 0.006$ (21.5 ± 0.4 ± 0.5)°

PRL 125 (2020) 052004

$e^+e^- \rightarrow J/\psi \rightarrow \Xi^-\overline{\Xi}^+ \rightarrow \Lambda \pi^-\overline{\Lambda}\pi^+ \rightarrow p\pi^-\pi^-\overline{p}\pi^+\pi^+$

 $d\Gamma \propto W(\xi; \omega) \qquad \xi \quad 9 \text{ kinematical variables, 9D PhSp}$ Parameters: 2 production + 6 for decay chains $\omega = (\alpha_{\psi}, \Delta \Phi, \alpha_{\Xi}, \phi_{\Xi}, \alpha_{\Lambda}, \overline{\alpha}_{\Xi}, \overline{\phi}_{\Xi}, \overline{\alpha}_{\Lambda})$

Modular angular distribution:

$$W = \sum_{\mu,\overline{\nu}=0}^{3} C_{\mu\overline{\nu}} \sum_{\mu',\overline{\nu}'=0}^{3} a_{\mu,\mu}^{\Xi} a_{\overline{\nu},\overline{\nu}}^{\overline{\Xi}}, a_{\mu',0}^{\Lambda} a_{\overline{\nu}',0}^{\overline{\Lambda}}$$

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008 P.Adlarson, AK PRD100 (2019) 114005 Exclusive (DT) analyses based on $1.31 \times 10^9 \text{ J/} \psi$

Nature Phys. 15 (2019) 631

arXiv:2105.11155

B€S II.⁼	Preliminary	Previous result	
α_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$	39
$\Delta \Phi$	$1.213 \pm 0.046 \pm 0.016 \text{ rad}$	-	
α_{Ξ}	$-0.376 \pm 0.007 \pm 0.003$	-0.401 ± 0.010	8 fit
ϕ_{Ξ}	$0.011 \pm 0.019 \pm 0.009 \text{ rad}$	-0.037 ± 0.014 rad	parameters
$\overline{\alpha}_{\Xi}$	$0.371 \pm 0.007 \pm 0.002$	-	
$\overline{\phi}_{\Xi}$	$-0.021 \pm 0.019 \pm 0.007 \text{ rad}$	-	
$lpha_\Lambda$	$0.757 \pm 0.011 \pm 0.008$	$0.750 \pm 0.009 \pm 0.004$	4
\overline{lpha}_Λ	$-0.763 \pm 0.011 \pm 0.007$	$-0.758 \pm 0.010 \pm 0.007$	4
$\xi_P - \xi_S$	$(1.2\pm3.4\pm0.8)\times10^{-2}~\text{rad}$	-	
$\delta_P - \delta_S$	$(-4.0\pm 3.3\pm 1.7)\times 10^{-2}~\text{rad}$	$(10.2\pm3.9) imes10^{-2}$ ra	ad ³
A_{CP}^{Ξ}	$(6.0\pm13.4\pm5.6)\times10^{-3}$	-	2 CD
$\Delta \phi^{\Xi}_{\mathrm{CP}}$	$(-4.8\pm13.7\pm2.9)\times10^{-3}~\text{rad}$	-	
$A_{\rm CP}^{\Lambda}$	$(-3.7 \pm 11.7 \pm 9.0) \times 10^{-3}$	$(-6\pm 12\pm 7)\times 10^{-3}$	
$\langle \phi_{\Xi} \rangle$	$0.016 \pm 0.014 \pm 0.007$ rad		

arXiv:2105.11155

Polarization and C_{ii} for $e^+e^- \rightarrow J/\psi \rightarrow \Xi^-\overline{\Xi}^+$

$$e^+e^-
ightarrow \psi'
ightarrow \Omega^- \overline{\Omega}^+$$

$$e^+e^- \rightarrow \gamma^* \rightarrow \psi' \rightarrow B\overline{B} \text{ (spin 3/2)}$$

$$A = \begin{pmatrix} \mathbf{h}_4 & \mathbf{h}_3 & 0 & 0 \\ \mathbf{h}_3 & \mathbf{h}_1 & \mathbf{h}_2 & 0 \\ 0 & \mathbf{h}_2 & \mathbf{h}_1 & \mathbf{h}_3 \\ 0 & 0 & \mathbf{h}_3 & \mathbf{h}_4 \end{pmatrix}$$

Four (Complex) Form Factors

Using base 3/2 spin matrices Q:

$$\rho_{3/2,\overline{3/2}} = \sum_{\mu=0}^{15} \sum_{\bar{\nu}=0}^{15} C_{\mu,\bar{\nu}} Q_{\mu} \otimes Q_{\bar{\nu}}$$

DT Experiment

Nucl. Phys. B38, 477(1972) $\rho_{3/2} = \sum_{\mu=0}^{15} r_{\mu} Q_{\mu}$

ST Experiment

$$\begin{split} r_{-1}^{1} &\to P_{y} \ r_{0}^{1} \to P_{x} \ r_{1}^{1} \to P_{z} \\ \rho_{3/2} &= r_{0} \left(Q_{0} + \frac{3}{4} \sum_{M=-1}^{1} r_{M}^{1} Q_{M}^{1} + \frac{3}{4} \sum_{M=-2}^{2} r_{M}^{2} Q_{M}^{2} + \frac{3}{4} \sum_{M=-3}^{3} r_{M}^{3} Q_{M}^{3} \right) \\ Q_{0} &= \frac{1}{4} I \qquad \qquad \frac{3}{4} Q_{M}^{L} \to Q_{\mu} , \mu = 1, \dots, 15 \end{split}$$

Single tag $e^+e^- \rightarrow \Omega^-\overline{\Omega}^+$

Single 3/2-spin baryon density matrix is

$$\rho_{3/2} = \sum_{\mu=0}^{15} r_{\mu}Q_{\mu} = \sum_{\mu=0}^{15} C_{\mu,0}Q_{\mu}$$

ST angular distribution:

$$W = \sum_{\mu=0}^{15} C_{\mu,0} \sum_{\mu'=0}^{3} b_{\mu,\mu'}^{\Omega} a_{\mu',0}^{\Lambda}$$

decay $\frac{1}{2} \rightarrow \frac{1}{2} + 0$
 $decay \frac{3}{2} \rightarrow \frac{1}{2} + 0$ $(\Lambda \rightarrow p\pi^{-})$
 $(\Omega^{-} \rightarrow \Lambda\pi^{-})$

Degree of polarization

$$d(\rho_{3/2}) = \sqrt{\sum_{L=1}^{3} \sum_{M=-L}^{L} (r_M^L)^2}$$

At threshold: d(3/2)=23%

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

Single tag $e^+e^- \rightarrow \psi' \rightarrow \Omega^- \overline{\Omega}^+$

 $\cos\theta_{\Omega}$

Conclusions I

J/ ψ and ψ ' decays into hyperon-antihyperon unique spin entangled system: A determination of (anti) hyperon decay permeters B Results using: 1.3 × 10⁹ J/ ψ 4.5 × 10⁸ ψ (2S)

- determination of (anti-)hyperon decay parameters
- CP tests
- polarization observed for $J/\psi,(\psi') \rightarrow \Lambda \overline{\Lambda}, \Sigma^+ \overline{\Sigma}^-, \Xi^- \overline{\Xi}^+, \Omega^- \overline{\Omega}^+$

Outlook: high luminosity (HL) J/ψ factory AK, Hai-Bo Li, and Steve Olsen

CP test:
$$A_{CP}(\Lambda) = \frac{\alpha_{\Lambda} + \bar{\alpha}_{\Lambda}}{\alpha_{\Lambda} - \bar{\alpha}_{\Lambda}}$$

 $A_{\Lambda} = -0.006 \pm 0.012 \pm 0.007$
 $A_{\Lambda} = -0.004 \pm 0.012 \pm 0.009$
 $J/\psi \to \Lambda\bar{\Lambda}, \Xi\bar{\Xi}$

	Events	Stat error A_{Λ}	
BESIII(2018)	4.2 x10 ⁵	1.2x 10 ⁻²	1.31 10 ⁹ J/ψ
BESIII(full stat)	3.2 ·10 ⁶	4.4 ·10 ⁻³	10 ¹⁰ J/ψ L=0.47·10 ³³ cm ⁻² s ⁻¹
SCTF	4.5 · 10 ⁸	3.1 ·10 ⁻⁴	2·10 ¹² J/ψ L=10 ³⁵ cm ⁻² s ⁻¹

 $|A_{\Lambda}| \le 4 \times 10^{-5}$ CKM Tandean, Valencia PRD67 (2003) 056001

Polarized *e*⁻ beam

$$e^+e^- \to J/\psi \to \Lambda\bar{\Lambda}$$

+ monochromator

V.Telenov arXiv:2008.13668

Goal for HL Factory: $>10^{13} J/\psi$

+ polarization (equivalent to $16 \times \text{more } J/\psi \rightarrow \Lambda \overline{\Lambda} \text{ data}$)

Potential to test CPV in hyperon decays $A_{\Lambda,\Xi} < 10^{-4}$ using $J/\psi \rightarrow B\overline{B}$ decays CKM estimate: (1-5) $\cdot 10^{-5}$