
Experimental Program for Super Tau-Charm Facility

Xiaorong Zhou (On behalf of STCF working group) State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

10th International Workshop on Charm Physics (CHARM 2020) 2021.5.31-2021.6.4 (online)

Super Tau-Charm Facility (STCF) in China

- Peaking luminosity >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV
- Energy range $E_{cm} = 2-7 \text{ GeV}$
- Potential to increase luminosity and realize beam polarization
- A nature extension and a viable option for China accelerator project in the post **BEPCII/BESIII** era

1 ab⁻¹ data expected per year

STCF Detector

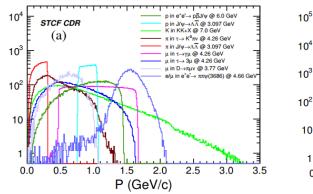
□ Inner Tracker

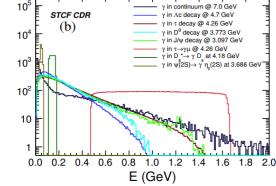
- \sim ~0.15% X₀ / layer
- $\succ \sigma_{xy} \sim 50 \,\mu m$

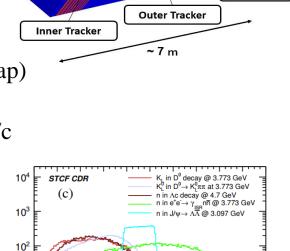
Out Tracker

- \succ σ_{xy}~130 µm, σ_p/p~0.5% @1 GeV/c
- \rightarrow dE/dx ~ 6%

D PID system

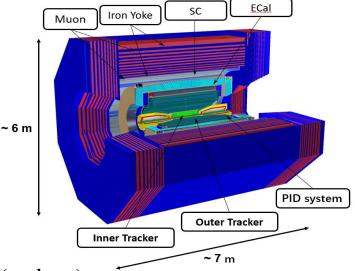

> π/K (*K*/*p*) 3-4 σ separation up to 2 GeV/c

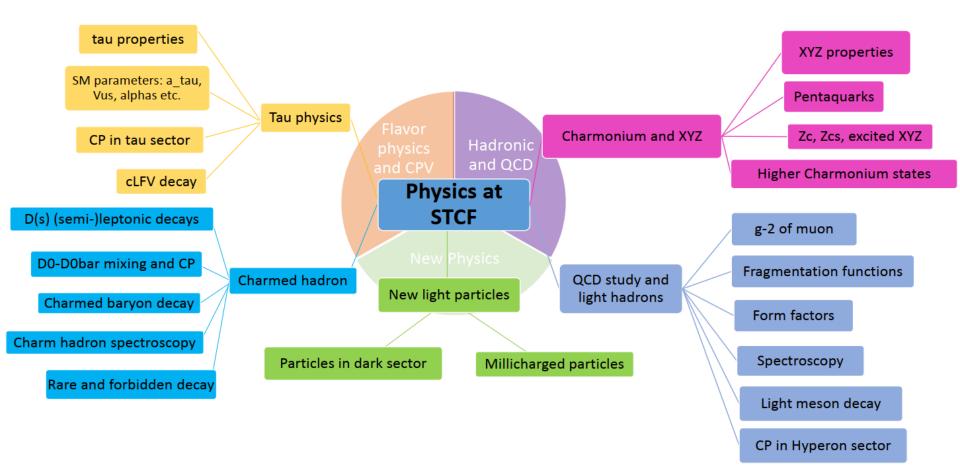

Belectromagnetic Calorimeter


- ➢ Range: 0.02 − 3 GeV
- ➢ Resolution (1 GeV): 2.5% (barrel) and 4% (endcap)

D Muon system

► π suppression power: >10 and lower to 0.4 GeV/c




0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

P (GeV/c)

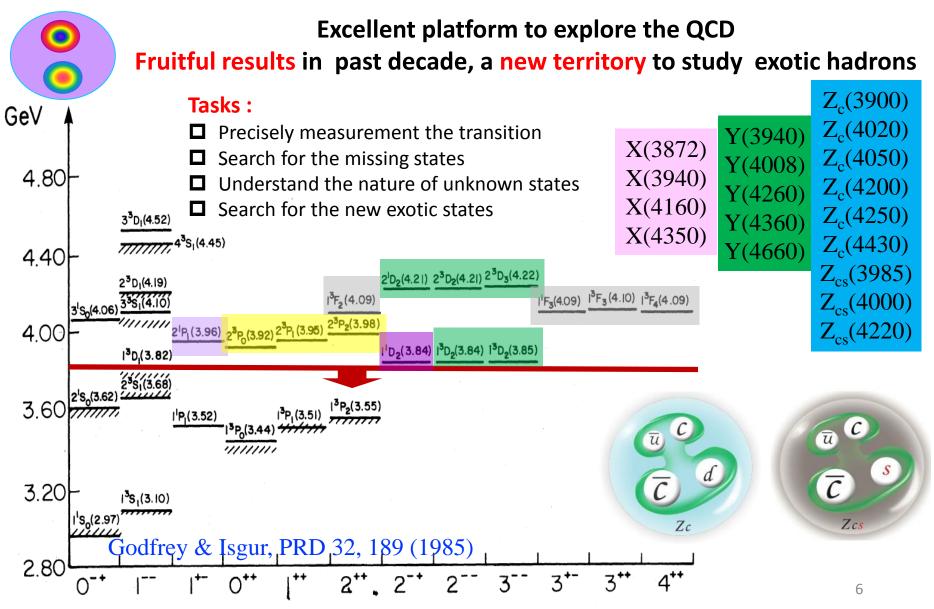
10

Physics at STCF

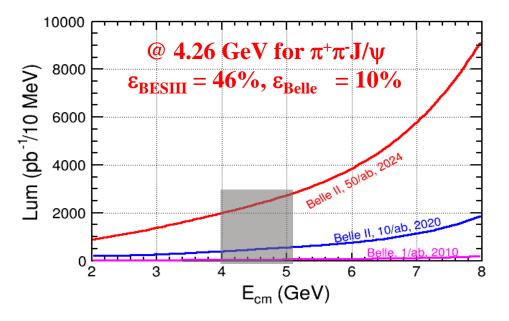
- rich of physics program, unique for physics with *c* quark and τ leptons,
- important playground for study of QCD, exotic hadrons, flavor and search for new physics.

Data Samples

Expected data samples with 1 ab⁻¹ integral luminosity

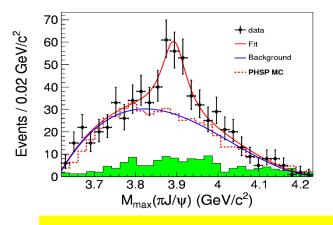

	STCF			Belle II				
Data Set	process	$\sigma/{\rm nb}$	N	ST eff./ $\%$	ST N	$\sigma/{\rm nb}$	N	Tag N
J/ψ	_		1.0×10^{12}		_	_	_	_
$\psi(2S)$	—		$3.0 imes 10^{11}$		_	—	_	_
D^0	$D^0 \bar{D^0}(3.77)$	~ 3.6	3.6×10^9	10.8	0.78×10^{9}	—	1.4×10^9	_
D^+	$D^+D^-(3.77)$	~ 2.8	2.8×10^9	9.4	0.53×10^{9}	_	7.7×10^8	_
D_s	$D_s D_s^*(4.18)$	~ 0.9	$0.9 imes 10^9$	6.0	0.11×10^9	—	2.5×10^8	_
$ au^+$	$\tau^{+}\tau^{-}(3.68)$	~ 2.4	2.4×10^9	_	_	0.9	$0.9 imes 10^9$	_
au	$\tau^{+}\tau^{-}(4.25)$	~ 3.6	3.5×10^9	_	_	—	_	_
Λ_c	$\Lambda_c \Lambda_c (4.64)$	~ 0.6	5.5×10^8	5.0	0.55×10^8	—	1.6×10^8	$3.6 \times 10^{4*}$

The luminosity is 1.0 ab⁻¹. * process $e^+e^- \rightarrow D^{(*)-}\bar{p}\pi^+\Lambda_c^+$.

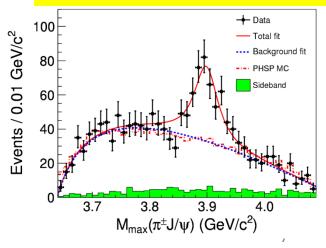

- Belle-II (50/ab) has 50~100 times more statistics
- STCF is expected to have higher detection efficiency and low backgrounds for productions at threshold

1			1 1	*
XYZ	Y(4260)	$Z_c(3900)$	$Z_c(4020)$	X(3872)
No. of events	10 ¹⁰	10 ⁹	109	5×10^{6}

Charmonium (Like) Spectroscopy



Charmonium(Like) Spectroscopy at STCF



- B factory : Total integrate effective luminosity between 4-5 GeV is 0.23 ab⁻¹ for 50 ab⁻¹ data
 τ-C factory : scan in 4-5 GeV, 10 MeV/step, every point have 10 fb⁻¹/year, 5 time of Belle II for 50 ab⁻¹ data
- τ-C factory have much higher efficiency and low background than B Factory

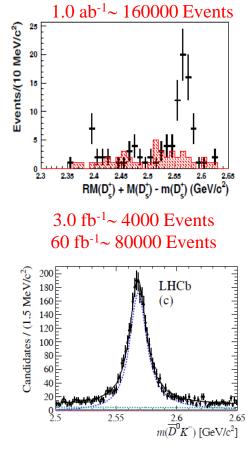
Belle with ISR: PRL110, 252002 967 fb-1 in 10 years running time

BESIII at 4.260 GeV: PRL110, 252001 0.525 fb⁻¹ in one month running time

Facilities for Charm Study

≻LHCb: huge x-sec, boost, 9 fb⁻¹ now (×40 current B factories)

- B-factories (Belle(-II), BaBar): more kinematic constrains, clean environment, ~100% trigger efficiency
- τ-charm factory : Low backgrounds and high efficiency, Quantum correlations and CP-tagging are unique

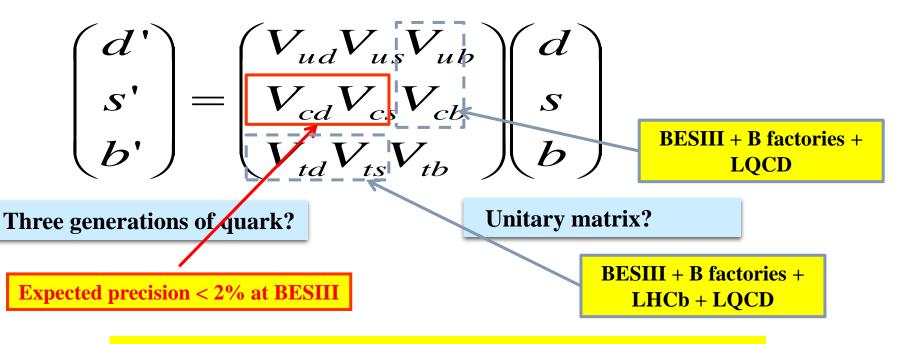

 \succ STCF :

- 4×10^9 pairs of $D^{\pm,0}$ and $10^8 D_s$ pairs per year
 - -10^{10} charm from Belle II/year
- Highlighted Physics programs
 - Precise measurement of (semi-)leptonic decay (f_D, f_{Ds}, CKM matrix...)
 - *D* decay strong phase (Determination of $\gamma/\phi 3$ angle)
 - $D^0 \overline{D}^0$ mixing, CPV
 - Rare decay (FCNC, LFV, LNV....)
 - Excite charm meson states D_J , D_{sJ} (mass, width, J^{PC} , decay modes)
 - Charmed baryons (JPC, Decay modes, absolute BF)

Features in Charm Hadron Decays

 $0.5 \text{ fb}^{-1} \sim 80 \text{ Events}$

	STCF	Belle II	LHCb
Production yields	**	****	****
Background level	****	***	**
Systematic error	****	***	**
Completeness	****	***	*
(Semi)-Leptonic mode	****	****	**
Neutron/K _L mode	****	***	☆
Photon-involved	****	****	*
Absolute measurement	****	***	☆



- Most are precision measurements, which are mostly dominant by the systematic uncertainty
- STCF has overall advantages in several studies

Precision Measurements of CKM Elements

CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

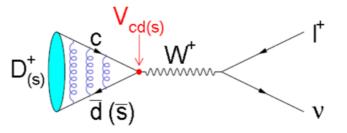
- □ A precise test of EW theory
- □ New physics beyond SM?

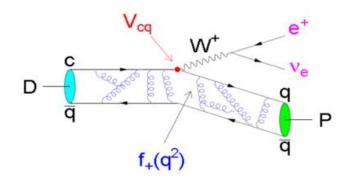
A direct measurement of V_{cd(s)} is one of the most important task in charm physics

11

D_(s) (Semi-)Leptonic decay

Purely Leptonic:


$$\Gamma(D_{(s)}^+ \to \ell^+ \nu_\ell) = \frac{G_F^2 f_{D_{(s)}^+}^2}{8\pi} |V_{cd(s)}|^2 m_\ell^2 m_{D_{(s)}^+} \left(1 - \frac{m_\ell^2}{m_{D_{(s)}^+}^2}\right)^2$$

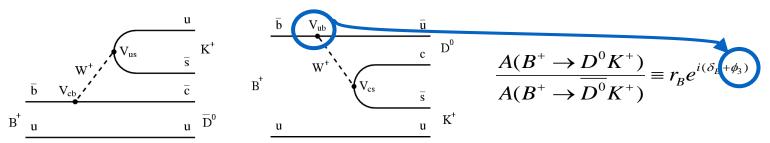

Semi-Leptonic:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \frac{G_F^2}{2|4\pi^3|} |V_{cs(d)}|^2 p_{K(\pi)}^3 |f_+^{K(\pi)}(q^2)|^2,$$

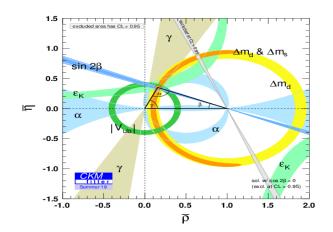
Directly measurement : $|V_{cd(s)}| \ge f_{D(s)}$ or $|V_{cd(s)}| \ge FF$

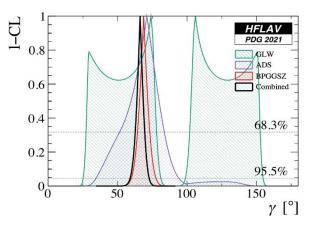
- $\square \text{ Input } f_{D(s)} \text{ or } f^{k(\pi)}(0) \text{ from LQCD } \Rightarrow |V_{cd(s)}|$
- $\square \text{ Input } |V_{cd(s)}| \text{ from a global fit } \Rightarrow f_{D(s)} \text{ or } f^{k(\pi)}(0)$
- **D** Validate LQCD calculation of Input $f_{B(s)}$ and provide constrain of CKM-unitarity

D_(s) (Semi-)Leptonic decay


	BESIII	STCF	Belle II	
Luminosity	2.93 fb ⁻¹ at 3.773 GeV	1 ab ⁻¹ at 3.773 GeV	50 ab ⁻¹ at $\Upsilon(nS)$	
$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$	5.1% _{stat} 1.6% _{syst} [8]	$0.28\%_{stat}$	_	
f_{D^+} (MeV)	2.6%stat 0.9%syst [8]	0.15% _{stat}	Theory · 0.2%	(0.1% expected)
$ V_{cd} $	$2.6\%_{\text{stat}} 1.0\%_{\text{syst}}^{*} [8]$	$0.15\%_{stat}$	mcor <u>y</u> . 0.270	(0.170 expected)
$\mathcal{B}(D^+ \to \tau^+ \nu_{\tau})$	20%stat 10%syst [9]	$0.41\%_{stat}$	_	
$\frac{\mathcal{B}(D^+ \to \tau^+ \nu_{\tau})}{\mathcal{B}(D^+ \to \mu^+ \nu_{\mu})}$	21% _{stat} 13% _{syst} [9]	$0.50\%_{stat}$	-	
Luminosity	3.2 fb ⁻¹ at 4.178 GeV	1 ab ⁻¹ at 4.009 GeV	50 ab ⁻¹ at $\Upsilon(nS)$	
$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$	2.8%stat 2.7%syst [10]	0.30%stat	0.8%stat 1.8%syst	
$f_{D_s^+}$ (MeV)	1.5%stat 1.6%syst [10]	0.15% _{stat}	Theory · 0 2%	(0.1% expected)
$ V_{cs} $	1.5%stat 1.6%syst [10]	$0.15\%_{stat}$	111e01 <u>y</u> .0.270	(U.1 /0 Expected)
$f_{D_s^+}/f_{D^+}$	3.0% _{stat} 1.5% _{syst} [10]	$0.21\%_{stat}$	-	
$\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})$	$1.9\%_{\mathrm{stat}}2.3\%_{\mathrm{syst}}^{\dagger}$	0.24%stat	$0.6\%_{stat} 2.7\%_{syst}$	
$f_{D_s^+}$ (MeV)	$0.9\%_{ ext{stat}} 1.2\%_{ ext{syst}}^\dagger$	0.11% _{stat}	Theory : 0.2%	(0.1% expected)
$ V_{cs} $	$0.9\%_{ ext{stat}} 1.2\%_{ ext{syst}}^\dagger$	$0.11\%_{stat}$	_	-
$\overline{f}_{D_{s_{o}}^{+}}^{\mu\&\tau}$ (MeV)	$0.9\%_{\mathrm{stat}}1.0\%_{\mathrm{syst}}^\dagger$	$0.09\%_{stat}$	0.3%stat 1.0%syst	
$ \overline{V}_{cs}^{\mu\& au} $	$0.9\%_{\mathrm{stat}}1.0\%_{\mathrm{syst}}^{\dagger}$	$0.09\%_{stat}$	-	
$\frac{\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})}{\mathcal{B}(D_s^+ \to \mu^+ \nu_{\mu})}$	$3.6\%_{stat}3.0\%_{syst}^{\dagger}$	0.38%stat	0.9%stat 3.2%syst	

* assuming Belle II improved systematics by a factor 2


Stat. uncertainty is closed to theory precision Sys. is challenging


Determination of γ/ϕ_3 angle

\Box The cleanest way to extract γ is from $B \rightarrow DK$ decays:

- Interference between tree-level decays; theoretically clean
- current uncertainty $\sigma(\gamma) \sim 5^0$
- however, theoretical relative error $\sim 10^{-7}$ (very small!)
- □ Information of *D decay strong phase* is needed
 - Best way is to employ quantum coherence of DD production at threshold

Determination of γ/ϕ_3 angle

Runs	Collected / Expected	Year	γ/ϕ_3	
	integrated luminosity	attained	sensitivity	
LHCb Run-1 $[7, 8 \text{ TeV}]$	$3~{ m fb}^{-1}$	2012	8°	BESIII 20/fb:
LHCb Run-2 [13 TeV]	$5~{ m fb}^{-1}$	2018	4°	$\sigma(\gamma) \sim 0.4^{\circ}$
Belle II Run	$50 { m ~ab^{-1}}$	2025	1.5°	$0(\gamma) \sim 0.4^{\circ}$
LHCb upgrade I [14 TeV]	$50 { m ~fb^{-1}}$	2030	< 1°	
LHCb upgrade II [14 TeV]	$300 {\rm ~fb^{-1}}$	(>)2035	< 0.4°	STCF is needed!

Three methods for exploiting interference (choice of D⁰ decay modes):

□ Gronau, London, Wyler (GLW): Use CP eigenstates of D^{(*)0} decay,

e.g. $D^0 \rightarrow K_s \pi^0$, $D^0 \rightarrow \pi^+ \pi^-$

□ Atwood, Dunietz, Soni (ADS): Use doubly Cabibbo-suppressed decays, e.g. $D^0 \rightarrow K^+\pi^-$

− With 1 ab⁻¹ @ STCF : $\sigma(\cos\delta_{K\pi}) \sim 0.007$; $\sigma(\delta_{K\pi}) \sim 2^{\circ} \rightarrow \sigma(\gamma) < 0.5^{\circ}$

- □ Giri, Grossman, Soffer, Zupan (GGSZ): Use Dalitz plot analysis of 3-body D⁰ decays, e.g. $K_s \pi^+ \pi^-$; high statistics; need precise Dalitz model
 - STCF reduces the contribution of *D* Dalitz model to a level of $\sim 0.1^{\circ}$

$D^0 - \overline{D}^0$ Mixing and CPV

➢ STCF provide a unique place for the study of $D^0 - \overline{D}^0$ mixing and CPV by means of quantum coherence of D^0 and \overline{D}^0 produced through

 $\psi(3770) \rightarrow (D^0 \bar{D}^0)_{\text{CP}=-} \text{ or } \psi(4140) \rightarrow D^0 \bar{D}^{*0} \rightarrow \pi^0 (D^0 \bar{D}^0)_{\text{CP}=-} \text{ or } \gamma (D^0 \bar{D}^0)_{\text{CP}=+}$

- ➢ Mixing rate R_M = $\frac{x^2 + y^2}{2}$ ~10⁻⁵ with 1 ab⁻¹ data at 3.773 GeV via same charged final states $(K^{\pm}\pi^{\mp})(K^{\pm}\pi^{\mp})$ or $(K^{\pm}l^{\mp}v)(K^{\pm}l^{\mp}v)$
- → Mixing parameter $(x, y) \sim 0.05\%$ with 1 ab⁻¹ data at 4.040 by $e^+e^- \rightarrow \gamma D^0 \overline{D}^0$
- > $\Delta A_{CP} \sim 10^{-3}$ for KK and $\pi\pi$ channels

Precision Study of Charm Baryon

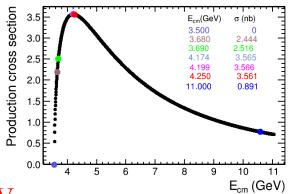
Era of precision study of the charmed baryon (Λ_c , Ξ_c and Ω_c) decays to help developing more reliable QCD-derived models in charm sector

□ Hadronic decays:

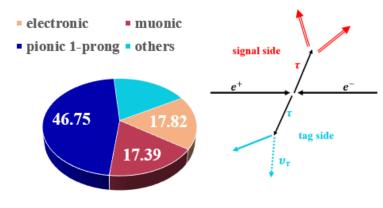
to explore as-yet-unmeasured channels and understand full picture of intermediate structures in B_c decays, esp., those with neutron/ Σ/Ξ particles

Given Semi-leptonic decays:

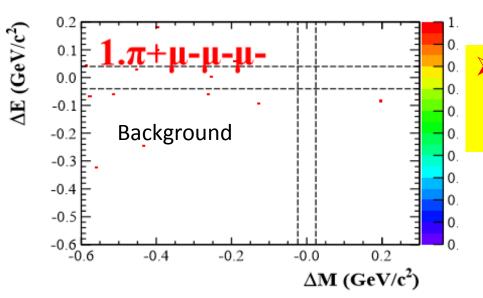
to test LQCD calculations and LFU


- CPV in charmed baryon: BP and BV two-body decay asymmetry, chargedependent rate of SCS
- Charmed Baryons Spectroscopy : (63 P-wave states from QM, less than 20 are observed!)

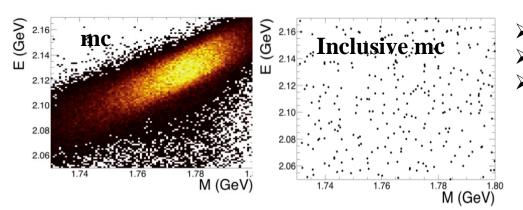
□ Rare decays: LFV, BNV, FCNC


STCF will provide very precise measurements of their overall decays, up to the unprecedented level of 10⁻⁶ ~10⁻⁷

τ Lepton Physics


- □ X sec grows from 0.1nb near threshold to 3.5 nb at 4.25 GeV
 - 1×10^8 tau pairs/year at threshold (0.1 nb)
 - 3.5×10⁹ tau pairs/year at 4.25 GeV (3.5 nb)
 - $10^{10} \tau$ pairs per year for Belle II (1 nb)
- Highlighted Physics program
 - τ properties : m_{τ} , $(g-2)_{\tau}/2$
 - SM properties : universality test, Michel parameters, α_{s} , V_{us}
 - CPV test : $\tau^- \rightarrow K_S^0 \pi^- v_{\tau}$, T-odd triple product in polarization beam
 - LFV : $\tau \rightarrow \ell \gamma$, $\ell \ell \ell$, ℓh
- **Comparison to Belle II**
 - Threshold effect is important for controlling and understanding background
 - Relatively high efficiency
 - Longitudinal polarization of the initial beams will significantly increase sensitivity in searches for CPV in lepton decays.

LFV decay of $\tau \rightarrow lll$ at STCF



- > Signal side: τ → 3leptons
 > Tag side: τ → evv, μvv, πv + nπ⁰ (Br = 82%)
- ➤ Almost background free, the sensitivity : \mathcal{B}_{UL}^{90} ($\tau \rightarrow \mu \mu \mu$)~1/L
- **>** Best efficiency ($\tau \rightarrow \mu \mu \mu$): 22.5% (including tag branching fraction)

$$\mathbf{F} \quad \mathbf{STCF with 1ab^{-1}:} \\ \mathcal{B}_{UL}^{90}(\tau \to \mu \mu \mu) < \frac{N_{UL}^{90}}{2\varepsilon N_{\tau\tau}} \sim 1.5 \times 10^{-9}$$

LFV decay of $\tau \rightarrow \gamma \mu$ at STCF

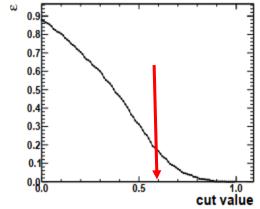
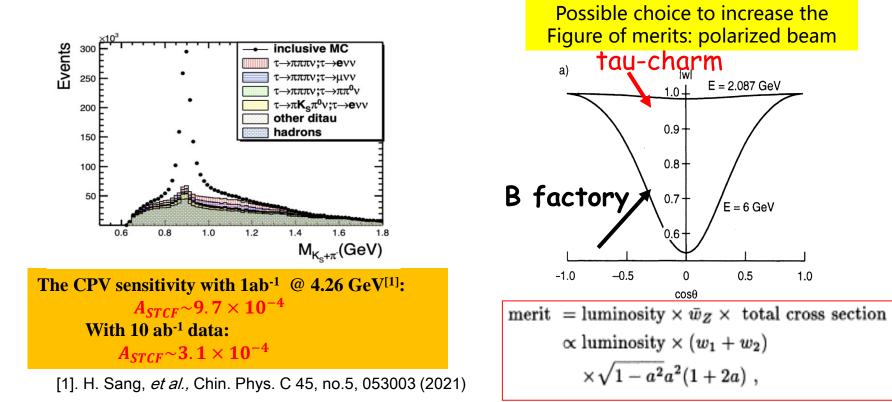

- Signal side τ → γμ
 Tag side: τ → evv̄, πυ, ππ⁰υ(Br = 54%)
- **Dominant background**: $e^+e^- \rightarrow \mu^+\mu^-$ and $e^+e^- \rightarrow \tau^+\tau^-, \tau^+ \rightarrow \pi\pi^0 \upsilon, \tau^- \rightarrow \mu \upsilon \overline{\upsilon}$

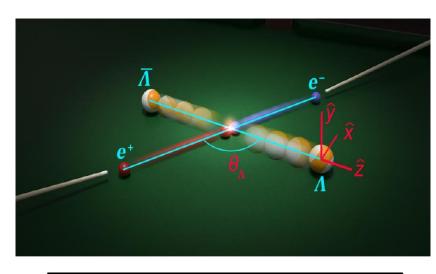
TABLE II. Optimization for pion/muon separation.

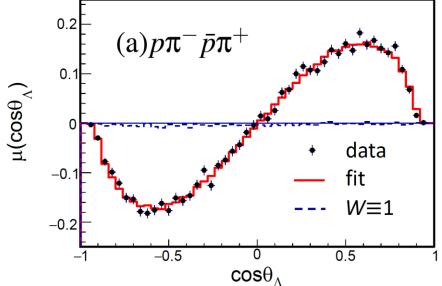
	μ eff. at 1 GeV	$UL(\mathcal{B}(\tau \to \gamma \mu))/10^{-8}$
3%	96.7%	1.2
1.7%	92.6%	1.5
1%	87.3%	1.8

IVA overtraining check for classifier: BDT


$$> STCF with 1ab-1: $\mathcal{B}_{UL}^{90}(\tau \to \gamma \mu) < \frac{N_{UL}^{90}}{2\varepsilon N_{\tau\tau}} \sim 1.2 \times 10^{-8}$$$

CPV in τ decay

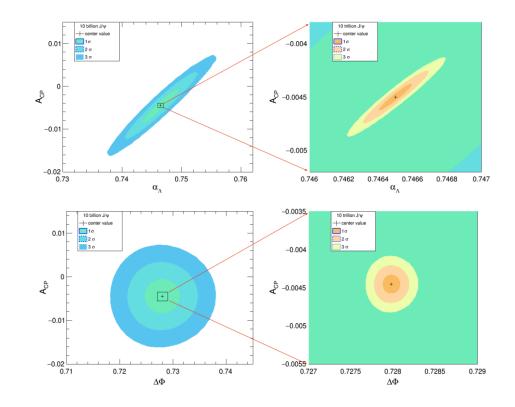

➤ The CPV source in K⁰ - K̄⁰ mixing produces a difference in tau decay rate In Theory : $A_Q = \frac{B(\tau^+ \to K_S^0 \pi^+ \bar{\nu}_\tau) - B(\tau^- \to K_S^0 \pi^- \nu_\tau)}{B(\tau^+ \to K_S^0 \pi^+ \bar{\nu}_\tau) + B(\tau^- \to K_S^0 \pi^- \nu_\tau)} = (+0.36 \pm 0.01)\%$ BaBar experiments : $A_{CP}(\tau^- \to K_S \pi^- \nu \geq 0\pi^0) = (-0.36 \pm 0.23 \pm 0.11)\%$


 2.8σ away from the SM prediction

Theorist try to reconcile the deviation, but not coverage even NP included

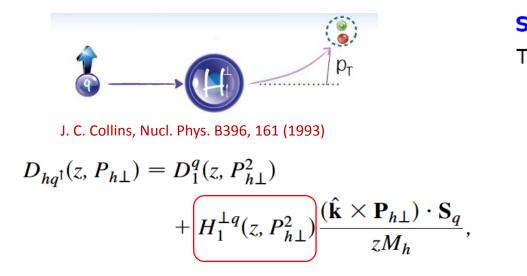
Polarization of Λ hyperons and CPV

Nature Phys. 15, 631–634 (2019)



1.31 B J/ ψ events Quantum correlation in Λ pair

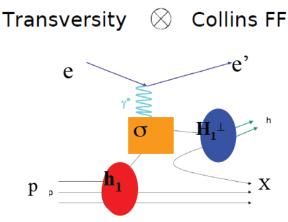
Parameters	This work	Previous results
$lpha_{\psi}$	$0.461 \pm 0.006 \pm 0.006$	007 0.469 ± 0.027 ¹⁴
$\Delta \Phi$	$(42.4 \pm 0.6 \pm 0.5)^{\circ}$	—
α_	$0.750 \pm 0.009 \pm 0.009$	004 0.642 ± 0.013^{-16}
$lpha_+$	$-0.758 \pm 0.010 \pm 0.010$	$007 - 0.71 \pm 0.08$ ¹⁶
$\bar{\alpha}_0$	$-0.692 \pm 0.016 \pm 0.016$	006 –
A_{CP}	$-0.006 \pm 0.012 \pm 0.012$	007 0.006 ± 0.021 ¹⁶
$\bar{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.028$	012 -
	CPV t	vel sensitivity for est rediction:10 ⁻⁴ ~10 ⁻⁵
	CP test A_{CP} =	$=\frac{\alpha+\alpha_+}{\alpha\alpha_+}$


CPV in Hyperon Decays at STCF

- 4 trillion J/ ψ events $\Rightarrow A_{CP} \sim 10^{-4}$
 - Luminosity optimized at J/ ψ resonance
 - Luminosity of STCF: \times 100
 - 2 3 years data taking
 - No polarization beams are needed

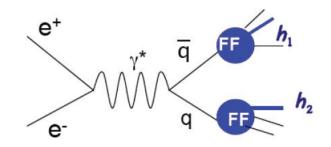
- Beam energy trick
 - \Rightarrow small beam energy spread
 - \Rightarrow J/ ψ cross-section: \times 10 \Rightarrow $A_{CP} \sim 10^{-5}$?
- □ Challenge: Systematics control, spin procession effect in magnet

Collins Fragmentation Function (FF)


 D_1 : the un-polarized FF H_1 : Collins FF

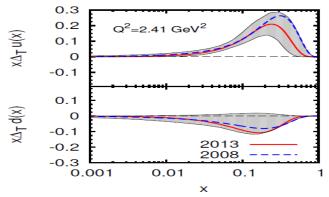
 \rightarrow describes the fragmentation of a transversely polarized quark into a spin-less hadron *h*.

 \rightarrow depends on $z = 2E_h/\sqrt{s}$,


 \rightarrow leads to an azimuthal modulation of hadrons around the quark momentum.

SIDIS

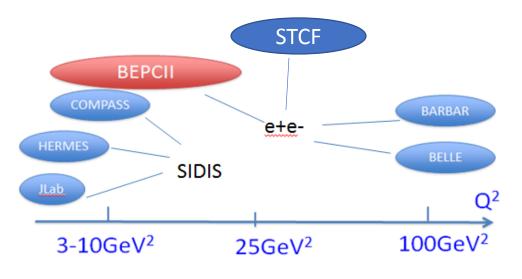
e+ e-

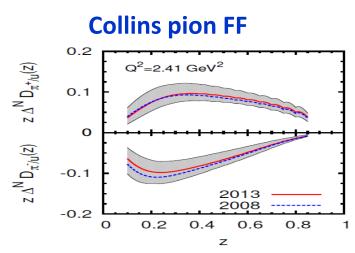

Collins FF 🛞 Collins FF

Collins Fragmentation Function (FF)

Anselmino et al., PRD 87, 094019 (2013) Using data from HERMES, COMPASS, Belle

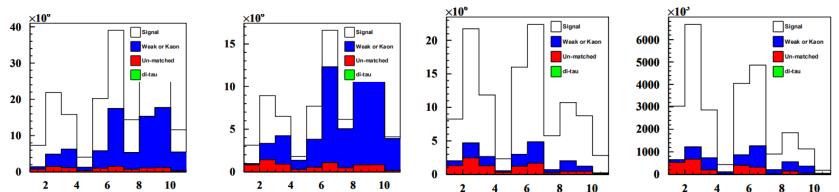
Transversity




 The Q² evolution of Collins FFs was assumed following the extrapolation in the unpolarized FF, and this has not been validated.

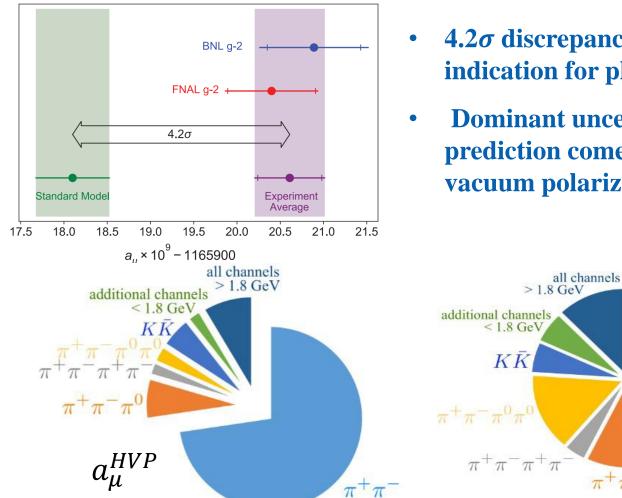
\Box Low Q² data from e⁺e⁻ collider is useful.

BEPCII / STCF


• Similar Q² coverage with SIDIS in EicC

Collins FF at STCF

- ➢ STCF is a perfect machine for studying Collins effect
- > Poor performance for the traditional dE/dx & TOF PID system for tracks > 0.8GeV
- > This measurement suffer from systematic uncertain from $K \pi$ mis-PID.
- ➤ The mis-PID is even worse in the case of *KK* Collins measurement.
- → With 2.5 fb⁻¹ 7GeV $q\bar{q}$ MC ($\sigma \approx 5$ nb LundArlw), we study Collins effect at STCF.



Blue: π/K mis-PID in KK Collins measurement. Left) de/dx&TOF. Right) a 1% mis-PID set in FastSim

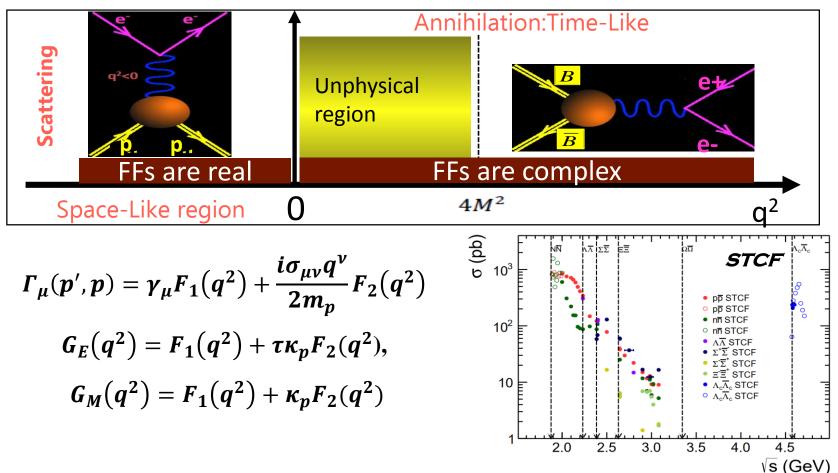
- > By setting the K/π mis-PID at 1%, we obtain^[1]:
 - The statistical uncertainty for 25fb^{-1} MC is $\sim 10^{-3}$ to 10^{-2}
 - The statistical uncertainty for $1ab^{-1}$ MC is $\sim 10^{-4}$ to 10^{-3}

[1]. Wang B L, Lv X R, Zheng Y H. Journal of University of Chinese Academy of Sciences, 2021, 38(4):433-441

HVP Contribution to $(g-2)_{\mu}$

- 4.2σ discrepancy => Strong indication for physics beyond the SM?
- **Dominant uncertainty of SM** prediction comes from Hadronic vacuum polarization (HVP)

High Luminosity of STCF will largely improve the SM precisions !

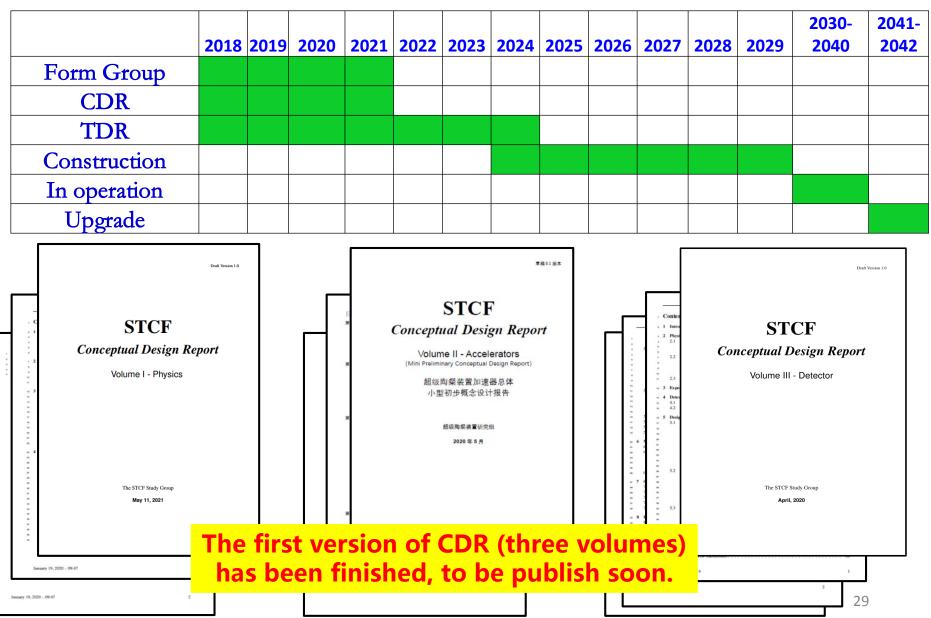

 $\pi^+\pi^-$

 δa_{μ}^{HVP}

Electromagnetic Form Factors

• Fundamental properties of the nucleon

- Connected to charge, magnetization distribution
- > Crucial testing ground for models of the nucleon internal structure

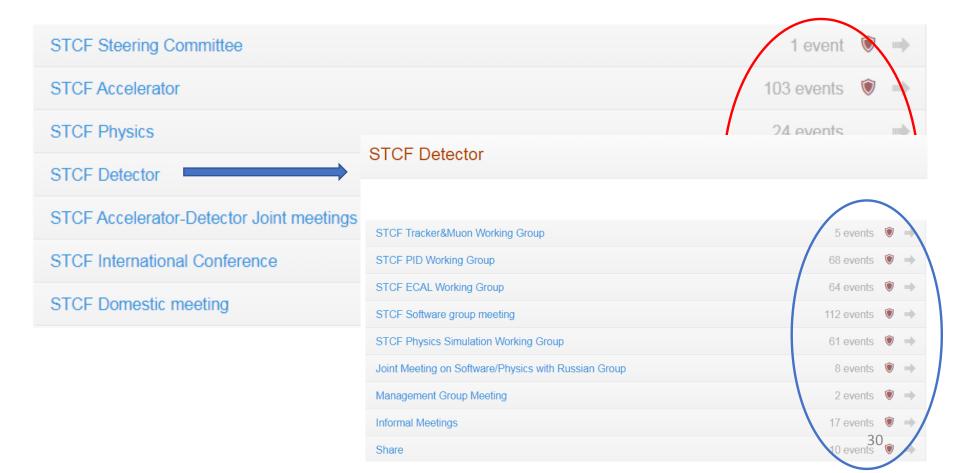


Strategy & Activities

CDR \rightarrow **TDR** \rightarrow project application \rightarrow construction \rightarrow commissioning

- Strategy: focus on CDR (4 years) and TDR (7 years) depend on the available resources. the construction site open.
- Domestic Workshops (2011, 12, 13, 14, 16, 20)
- International Workshops (2015, 18, 19, 20)
- 2015 Fragrance Hill-Science Conference (No. 533)
- Report to USTC Scientific Committee and USTC presidents
- Report to local government
- Form the Organization (including project manager, physics/detector/accelerator work groups)
- Regular weekly meetings for Accelerator/Detector/Physics !

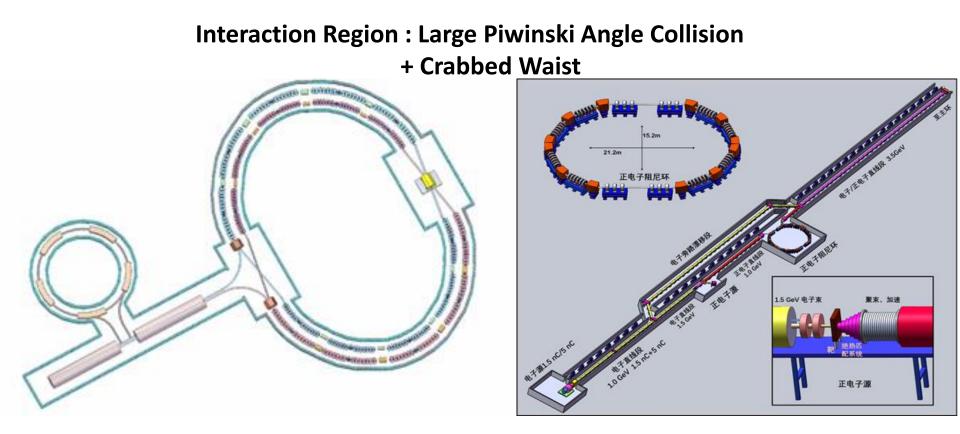
Tentative Plan



Activities

Website: http://cicpi.ustc.edu.cn/indico/categoryDisplay.py?categId=2

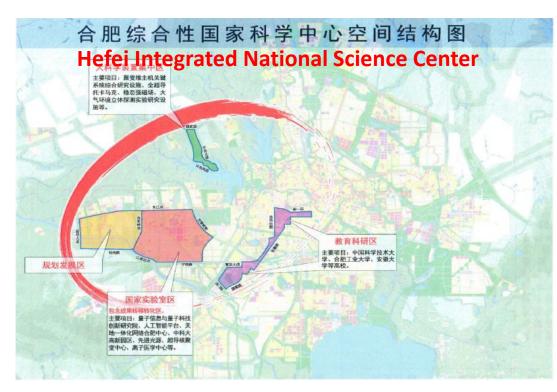
High Luminosity Tau Charm Physics


Indico for High Luminorcity Tau Charm Physics R&D

Spectrometer

Accelerator

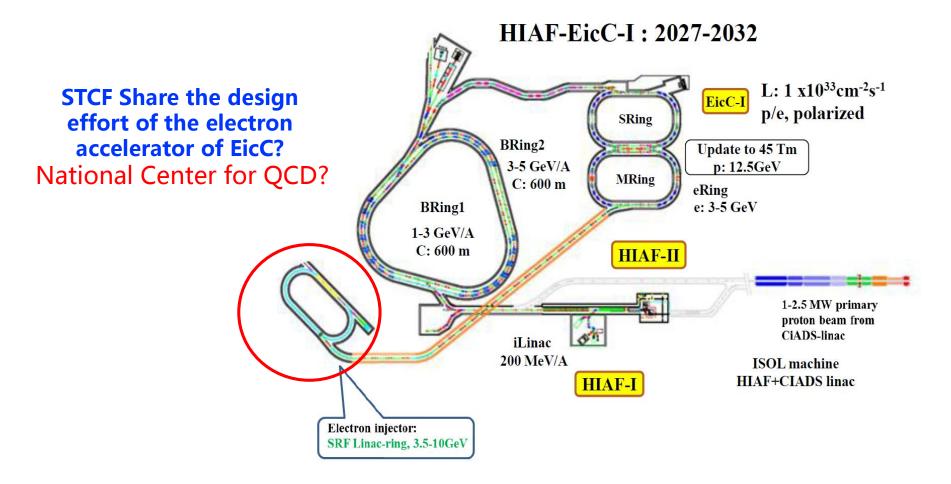
Injector:

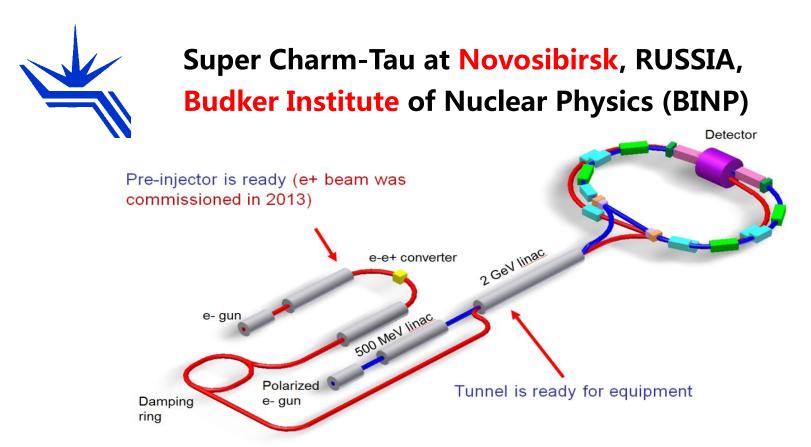

- No booster, 0.5 GeV \rightarrow 1~3.5 GeV
- e+, a convertor, a linac and a damping ring, 0.5 GeV
- e-, a polarized e- source, accelerated to 0.5 GeV

Machine Parameters

Parameters	Phase1	Phase2
Circumference/m	600~800	600~800
Optimized Beam Energy/GeV	2.0	2.0
Beam Energy Range/GeV	1-3.5	1-3.5
Current/A	2.0	2.0
Emittance $(\varepsilon_x/\varepsilon_y)/\text{nm}\cdot\text{rad}$	6/0.06	5/0.05
β Function @ IP $(\beta_x^*/\beta_y^*)/mm$	90/0.9	50/0.5
Full Collision Angle 2θ /mrad	60	60
Tune Shift ξ_y	0.06	0.08
Hourglass Factor	0.8	0.8
Aperture and Lifetime	15σ, 1000s	15 <i>σ</i> , 1000s
Luminosity @ Optimized Energy / $\times 10^{35}$ cm ⁻² s ⁻¹	~0.5	~1.0

Candidate Site : Hefei


One of three integrated national science centers, which will play important role in 'Megascience' of China in near future


- University of Science and Technology of China (USTC)
- National Synchrotron Radiation Lab and Hefei Light Source, operated by USTC
- The only National Lab operated by University in China. (Totally Four officially approved National Labs in China)
- Pay a lot of attention on accelerator facilities
- Hefei Advanced light source is under design
- STCF is listed in future plan

Candidate Site : Huizhou

Institute of Modern Physics, CAS, proposed building HIAF-EicC in Huizhou, Canton

International Collaboration

- Pre-Agreement of Joint effort on R&D, details are under negotiation
- Joint workshop between China, Russia, and Europe
 - 2018 UCAS (March), Novosibirsk (May), Orsay (December)
 - 2019 Moscow(September), 2020 Online (November)

Summary

- Super τ-c Facility (STCF):
 - e^+e^- collision with $E_{cm} = 2 7$ GeV, L > 0.5 × 10³⁵ cm⁻²s⁻¹
- STCF is one of the crucial precision frontier
 - rich of physics program
 - unique for physics with c quark and τ leptons,
 - important playground for study of QCD, exotic hadrons and search for new physics.
- Complementary to Belle-II and LHCb in understanding the QCD/EW models and searching for new physics
- Project organization is setup and a working group is toward for CDR/TDR
- An International collaboration is essential for promoting the project.

Thank you!