Charm Physics at BESIII/BEPCII Experiment

Xiaoyan SHEN Institute of High Energy Physics, Beijing

(on behalf of BESIII Collaboration)

CHARM 2021 May 31-June 3, 2021

Outline

- Introduction on charm physics
 - Charm is charming and charm is challenging
 - Charm samples
- Introduction on BESIII/BEPCII
- Selected charm physics results at BESIII/BEPCII
 - Pure and semi-leptonic decays
 - Hadronic decays
- Summary

- 3X3 unitary complex matrix
- 4 parameters
- 3 mixing angles and 1 phase

CKM matrix $A\lambda^{3}(\rho-i\eta)$ $1-\lambda^2/2$ 2 $\bar{ ho} + i\bar{\eta}$

 $A\lambda^{3} \left[1 - (\rho - i\eta) \right]$

|V_{cb}**|~2%**

ρ

Charm is charming

- Over-constrain the SM, probe for new physics
 - ✓ Precision CKM physics in B sector needs input from charm
- CPV and mixing
 - ✓ The only up-type quark to form weakly decaying hadrons, complementary to K and B systems
- Unique to test QCD in low energy

Theory

Charm is challenging

- Intermediate mass, compared to $\Lambda_{\rm QCD}\,$ -- not heavy, not light
- Do methods like Heavy Quark Expansion and Factorization work?
- CKM and GIM suppression can be strong low rates → Large data sample

Charm physics contributors

B physics experiments are well suited for charm physics

- LHCb/hadron machine: huge production X-section, excellent lifetime resolution due to the boost; large combinatorial BG, difficult with neutral and missing particles
- B factories: clean environment, good to detect neutral particles; lower boost, poorer lifetime resolution

BESIII @ Beijing Electron Positron Collider (BEPC) – charm facility

MDC: spatial reso. 115μm dE/dx reso: 5% EMC: energy reso.: 2.4% BTOF: time reso.: 70 ps ETOF: time reso.: 60 ps

CΩ**Π** Unique data sets at open charm thresholds

- No boost, no lifetime measurement
- Almost free of background
- $\psi(3770) \rightarrow D\overline{D}$, quantum correlation \rightarrow strong phase measurement

Double tag method (DT)

Signal side: μ^+ is reconstructed, v is reconstructed by MM² $E_{\text{miss}} = E_{\text{beam}} - E_{\mu^+}, \quad \vec{p}_{\text{miss}} = -\vec{p}_{D^-} - \vec{p}_{\mu^+}$ $M_{\text{miss}}^2 = E_{\text{miss}}^2 - |\vec{p}_{\text{miss}}|^2, U_{\text{miss}} = E_{\text{miss}} - |\vec{p}_{\text{miss}}|$

Tag side: $K^+K^-\pi^-$ +...., very clean decay modes

Non- $D_s^{*+}D_s^-$ events can be suppressed by beam-constrained mass cut $M_{BC} \equiv$

$$\sqrt{\left(\frac{E_{CM}}{2}\right)^2 - \left|\vec{p}_{D_s^-}\right|^2}$$

ST yield: $N_{\text{ST}}^{i} = 2 \times N_{\text{DD}} \times B_{\text{ST}}^{i} \times \varepsilon_{\text{ST}}^{i}$ DT yield: $N_{\text{DT}}^{i} = 2 \times N_{\text{DD}} \times B_{\text{ST}}^{i} \times B_{\text{sig}} \times \varepsilon_{\text{ST vs.sig}}^{i}$ Average eff.: $\bar{\varepsilon}_{\text{sig}} = \sum_{i=1}^{N} (N_{\text{ST}}^{i} \times \varepsilon_{\text{ST vs.sig}}^{i} / \varepsilon_{\text{ST}}^{i}) / \sum_{i=1}^{N} N_{\text{ST}}^{i}$ Br. $B_{\text{sig}} = \frac{N_{\text{DT}}^{\text{tot}}}{N_{\text{ST}}^{\text{tot}} \times \varepsilon_{\text{ST sig}}^{i}}$

Advantages: almost background free, absolute Brs.

- Charm leptonic decays involve both weak and strong interactions.
- The weak part is easy to be described as the annihilation of the quark-antiquark pair via the standard model W⁺ boson.
- The strong interactions arise due to gluon exchanges between the charm quark and the light quark. These are parameterized in terms of the 'decay constant'.

Exp. decay rate + |V_{cs(d)}|^{CKMfitter} → calibrate LQCD @charm & extrapolate to Beauty
 Exp. decay rate + LQCD → CKM matrix elements

- The effects of the strong and weak interactions can be separated in semi-leptonic decays
- Good place to measure CKM matrix elements and study the weak decay mechanism of charm mesons; calibrate LQCD

- Analyze exp. partial decay rates $\rightarrow q^2$ dependence of $f_+^{K(\pi)}(q^2)$, extract $f_+^{K(\pi)}(0)$ with $|V_{cs(d)}|^{CKMfitter}$ as input calibrate QCD
- Exp. + LQCD calculation of $f_{+}^{\kappa}(0)$ and $f_{+}^{\pi}(0) \rightarrow V_{cs(d)}$ constrain CKM

Test of lepton universality (LU)

- BaBar, LHCb and Belle found evidence of lepton universality violation in semileptonic B decays, either via the Cabibbo-suppressed (CS) transition b → c or flavor-changing-neutral-current (FCNC) transitions.
- Study the analogous decays in charm quark sector:

In Standard Model, (for decays rate: Phys. Rev. D 38, 214 (1988))

EPJC, 78 (2018) 501, Z. Phys. C46 (1990)93, PRD69 (2004)074025, PLB633(2006)61

BESI $D^+ \to \tau^+ (\to \pi^+ \bar{\nu}_{\tau}) \nu_{\tau}$: first evidence (4 σ)

 π -like

$$2.93 f b^{-1} @E_{cm} = 3.773 GeV$$

- 6 tagging modes
 - Signal: $D^+ \rightarrow \tau^+ v_\tau$ extracted from MM².
- $D^+ \rightarrow \mu^+ \nu_{\mu}$ peaks at MM²=0
- $D^+ \rightarrow \tau^+ (\rightarrow \pi^+ \overline{\nu}_{\tau}) \nu_{\tau}$ peaks near MM²=0, as M_D ~ M_{\tau}
- Fit two MM² distributions simultaneously, MC based shape ⊕ G
- Fix $D \rightarrow \mu \nu$ component to the world average

$$\mathcal{B}(D^+ \to \tau^+ \nu_\tau) = (1.20 \pm 0.24 \pm 0.12) \times 10^{-3}$$

$$R_{\tau/\mu} = \frac{\Gamma(D^+ \to \tau^+ \nu_{\tau})}{\Gamma(D^+ \to \mu^+ \nu_{\mu})} = 3.21 \pm 0.64 \pm 0.43$$

Consistent with SM prediction, $R = 2.65 \pm 0.01$, within ~0.9 σ

Split data into two:

μ-like

- μ -like: $E_{EMC} \leq 300 \text{ MeV}$ (mixture of $D^+ \rightarrow \tau^+(\rightarrow \pi^+ \overline{\nu}_{\tau})\nu_{\tau}$ and $D^+ \rightarrow \mu^+ \nu_{\mu}$)
- π -like: $E_{EMC} > 300 \text{ MeV}$ (mostly $D^+ \rightarrow \tau^+ (\rightarrow \pi^+ \overline{\nu}_{\tau}) \nu_{\tau}$).

Take |V_{cd}|^{CKMfitter} as input:

f_{D+}=(203.2±5.3±1.8) MeV (μ⁺ν mode)

Take f_D^{LQCD} as input:

|V_{cd}|=(0.2210±0.0058±0.0047) (μ⁺ν mode)

Besi $D_s^+ \to l^+ \nu_l$

$D_s^+ \to \mu^+ \nu + \tau^+ (\pi^+ \nu) \nu$ 6.3 fb⁻¹@4.18-4.23GeV

arXiv:2105.07178

 $D_s^+ \to \tau^+(\rho^+ v)v$ 6.3 fb⁻¹@4.18-4.23GeV

arXiv:2105.07178

 $B[D_s^+ \to \tau^+ \nu] = (5.29 \pm 0.25 \pm 0.20)\%$ $f_{D_s^+}|V_{cs}| = 244.8 \pm 5.8 \pm 4.8 \text{ MeV}$

Take BESIII results and world average: $\frac{B(D_s^+ \rightarrow \tau^+ \nu)}{B(D_s^+ \rightarrow \mu^+ \nu)} = (9.67 \pm 0.34)$
(SM: 9.75)

 $D_s^+ \to \tau^+ (e^+ v v) v$ 6.3 fb⁻¹@4.18-4.23GeV

BESIII Preliminary

 $f_{D_s^+}|V_{cs}| = 244.4 \pm 2.3 \pm 2.9 \text{ MeV}$

Most precise measurement

Take f_{Ds}^{LQCD} as input:

Take |V_{cs}|^{CKMfitter} as input:

16

Besime Form factor in D⁰ \rightarrow K⁻ $\mu^+\nu_{\mu}$

BESIII: PRL 122 (2019) 011804

 $D^0 \rightarrow K^- \mu^+ \nu_{\mu}$ is studied in the recoiling system of three tag modes:

- Signal shape: MC simulated shape convoluted with Gaussian.
- BG shape in tag side: ARGUS func.
- BG in signal side:
 - $D^0 \rightarrow K^- \pi^+ \pi^0$ MC simulated shape convoluted with Gaussian
 - Continuum background shape : MC simulated shape

No. of single tags: (2241.4 \pm 2.1)X10³ No. of double tags: 47100 \pm 259

$$\mathcal{B}_{D^0 \to K^- \mu^+ \nu_\mu} = (3.429 \pm 0.019_{\text{stat.}} \pm 0.035_{\text{syst.}})\%$$

Besime $D^0 \rightarrow K^- \mu^+ \nu_{\mu}$ Fit to partial decay rates

BESIII: PRL 122 (2019) 011804

Series expansion parameterization for form factor (2nd order):

 $f_{+}^{D \to K}(0)$ and $f_{+}^{D \to \pi}$

Inputs from 2018 PDG CKMFitter

Inputs: $|V_{cs}| = 0.97359^{+0.00010}_{-0.00011}$ Inputs: $|V_{cd}| = 0.22438 \pm 0.00044$

BESIII: 20 fb⁻¹ @ 3770 MeV

First extractions of FFs of $D_s^+ \rightarrow \eta^{(\prime)} e^+ \nu$

 $d\Gamma/dq^2(ns^{?1}\!/GeV^2/c^4)$

PRL122(2019)121801 LCSR JHEP1511,138 0.495±0.030 LQCD^b PRD91,014503,m_#=470MeV 0.542±0.013 $D_s^+ \rightarrow \eta \ e^+ \nu$ **40** $D_s^+ \rightarrow \eta' e^+ \nu$ LQCD^a PRD91,014503,m₊=370MeV 0.564±0.011 LCSR PRD88.034023 0.432±0.033 20 LCSR JPG38,095001 0.45±0.15 PLB520,78 0.50 ± 0.04 3PSR CCQM PRD98,114031 0.78±0.12 --- Simple pole + η'_{η x*π}, θ*ν_e CQM PRD62,014006 0.78 Modified pole +_ η'__e'v_ Series 2 Par. **CLFQM JPG39,025005** 0.76 LCSR calculation 0.8 BESIII PRL122,121801 0.458±0.007 LCSR uncertaintie f₊(q²) 0.2 -0.8 -0.6 -0.4 -0.2 0 0.4 0.6 0.8 0.6 $\mathbf{f}_{\pm}^{\mathbf{D}_{s}\to\eta}(\mathbf{0})$ 0.4 1.5 0.2 0.4 0.6 0.8 0.5 0 LCSR JHEP1511.138 0.558±0.047 $q^2(GeV^2/c^4)$ LQCD^b PRD91,014503,m₂=470MeV 0.404±0.025 👄 PRD88, 034023 LQCD^a PRD91,014503,m₂=370MeV 0.437±0.018 PRD88,034023 LCSR 0.520±0.088 $f_{+}^{D_{S} \to \eta}(0) |V_{cS}| = 0.446 \pm 0.005 \pm 0.004$ LCSR JPG38,095001 0.55±0.18 PRD98,114031 0.73±0.11 CCQM $f_{+}^{D_{S} \to \eta'}(0)|V_{cs}| = 0.477 \pm 0.049 \pm 0.011$ CQM PRD62,014006 0.78 PRL122,121801 BESIII 0.490±0.051 Statistical errors dominate -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 0

20

(0)

BESIII: 3.19 fb⁻¹ @ 4180 MeV

Here S First observation of $D^+ \rightarrow \eta \mu v_{\mu}$

2.93f $b^{-1}@E_{cm} = 3.773$ GeV $e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$

No. of double tags: 234 ± 22

BESIII: PRL 124, 231801 (2020)

$$B[D^+ \rightarrow \eta \mu^+ v] = (0.104 \pm 0.010 \pm 0.005)\%$$

$$R_{D\eta}=\frac{\Gamma[D^+\to\eta\mu^+v]}{\Gamma[D^+\to\eta e^+v]}=0.\,91\pm0.\,13$$

(SM prediction: 0.93-0.96)

 $f_{+}^{D \to \eta}(0) |\mathbf{V}_{cd}| = 0.087(08)(02)$

BESII Study of $D^{0+} \rightarrow \pi \pi e^+ v_e$

PRL122(2019)062001

This analysis $(\times 10^{-3})$
$1.445 \pm 0.058 \pm 0.039$
$1.445 \pm 0.058 \pm 0.039$
$2.449 \pm 0.074 \pm 0.073$
$1.860 \pm 0.070 \pm 0.061$
$2.05 \pm 0.66 \pm 0.30$
$0.630 \pm 0.043 \pm 0.032$
< 0.028

First observation of $D^+ \rightarrow f_0(500)e^+\nu_e$

$$R = [B_{D^+ \to f_0 (980)^0 e^+ v} + B_{D^+ \to f_0 (500)^0 e^+ v}] / B_{D^+ \to a_0 (980)^0 e^+ v} > 2.7$$

BESIII: PRL 121 (2018) 081802

favors tetraquark assumption for the light scalar mesons

Observation of $D \rightarrow K_1(1270)e^+\nu_e$

 $B_{D^+ \to \overline{K}_1^0(1270)e^+\nu} = (2.30 \pm 0.26 \pm 0.18 \pm 0.25) \times 10^{-3}$

PRL125,051802

Combined analysis of $D \rightarrow \overline{K}_1 e^+ v$ and $B \rightarrow \gamma K_1$ helps better access photon polarization in $b \rightarrow s \gamma$ arXiv:2102.10850

 $B_{D^0 \to K_1(1270)^- e^+ v} = (1.09 \pm 0.13 \pm 0.13 \pm 0.12) \times 10^{-3}$

 $\frac{\Gamma_{D^0 \to K_1(1270)} - e^+ v}{\Gamma_{D^+ \to \overline{K}_1^0(1270)} e^+ v} = 1.20 \pm 0.20 \pm 0.15$

- First observation after it was predicted in 1989
- Semileptonic D decays offer ideal environment to study light mesons
- Benefit the understanding of K₁ mixing angle which is controversial.

Hadronic decays of charm mesons

> Strong phase measurement with quantum correlated $\psi(3770) \rightarrow D^0 \overline{D}^0$ is crucial in the model-independent determinations of γ and charm mixing/direct CPV.

- In SM, CP violation is studied by measuring CKM matrix, represented by the unitarity triangle in complex plane. The angle γ is the only one that can be extracted from tree-level processes, for which the contribution of non-SM effects is small.
- Measurement of γ provides a benchmark for the SM with minimal theoretical uncertainty. Precision measurement of γ provide tests of SM CP violation and probe for new physics.
- γ is the least well known CKM constraint
- γ status:

Direct measurement $\gamma = (73.5^{+4.2}_{-5.1})^{\circ}$, indirect measurement $\gamma = (65.8^{+1.0}_{-1.7})^{\circ}$

Probe non-perturbative QCD

- Help to understand hadron spectroscopy
- Study SU(3) flavor symmetry
- Study short and long distance effects

Short-distance

Pre-LHCb: $\gamma = (73^{+22}_{-25})^{\circ}$

Long-distance effect ²⁴

BESIII data @3770 MeV (2.93 fb⁻¹ → 20 fb⁻¹)

 $\psi(3770) \rightarrow D^0 \overline{D^0}$ quantum correlation \rightarrow strong phase parameters between D⁰ and D⁰ decays

 \rightarrow inputs to LHCb measurement of γ

Belle II (arXiv:1808.10567): 1.5^o with 50 ab⁻¹ LHCb (arXiv:1808.08865v2): < 1^o, 50 fb⁻¹, phase-1 upgrade (2030), < 0.4^o, 300 fb⁻¹, phase-2 upgrade (> 2035)

BESIII White Paper, Chinese Phys. C 44 (2020) 040001

The correlated state

For a physical process producing $D^0 \overline{D}^0$ such as

Strong phase measurements at **BES**III

 $\bullet D \to K^0_{S/L} K^+ K^-$

 $D \rightarrow K^- \pi^+ \pi^+ \pi^-$ and $K^- \pi^+ \pi^0$

JHEP 2021 (5) (2021) 164

Constraint on γ measurement ~ 6⁰

PRD102(2020)052008

Besi $D_s^+ \to p\overline{n}$

PRD 99 (2019) 031101 (R)

- The only kinematic allowed baryonic charm decay mode
- For the weak annihilation processes, Brs. expected to be ~10⁻⁶(chiral suppression by the factor (m_π/m_{Ds})⁴)
- Long distance effect may enhance Br: ~10⁻³
- First evidence by CLEO-c: $(1.30 \pm 0.36^{+0.12}_{-0.16}) \times 10^{-3}$ (PRL 100. 181802(2008))

Weak annihilation (~10⁻⁶)

[PLB 663, 326(2008)]

Long-distance effect

 $Br(D_s^+ \to p\overline{n}) = (1.21\pm0.10\pm0.05) \times 10^{-3}$

- Weak annihilation process is not the driving mechanism
- The hadronization process driven by non-perturbative dynamics determines underlying physics

BESII Amplitudes of $D_s^+ \rightarrow \eta \pi^+ \pi^0$

PRL123(2020)112001

Observation of abnormally large branching fraction for annihilation process. It is larger than those of known W-annihilation decays by one order of magnitude.

BESIT Observation of DCS decay $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$

PRL 125 (2020) 141802

The single tag D- yield: (1150.3 \pm 1.5)X10^3

$$B_{D^+ \to K^+ \pi^+ \pi^- \pi^0} = (0.113 \pm 0.008)\%$$

after remove $\eta/\omega/\phi$ K⁺ components

 $B_{DCS}/B_{CF} = (1.81 \pm 0.15)\%$ tan⁴ $\theta_{C} = 2.88 \times 10^{-3}$

$\begin{matrix} 1.88 \\ 1.86 \\ 1.84 $	eband 1.86 1.88 BC (GeV/c ²)	Events / (2.5 MeV/ c^2) Events / (1 MeV/ c^2)	150 100 50 0 10 5 0 10 5 0 10 5	ω signal region ω sideband .84 tag BC (GeV/c				
DCS mode	$BF(\times 10^{-4})$		CF	mode	BF(>	<10 ⁻²)	Ratio(×10)-3
$D^0 \to K^+ \pi^-$	1.48 ± 0.07		D^{0} -	$\rightarrow K^{-}\pi^{+}$	3.89	±0.04	3.80±0.	18
$D^0 \rightarrow K^+ \pi^- \pi^0$	3.01±0.15	D	$0^{0} \rightarrow$	$K^{-}\pi^{+}\pi^{0}$	14.2	2±0.5	2.12±0.	13
$D^0 \to K^+ \pi^- \pi^- \pi^+$	2.45 ± 0.07	$D^0 \to K^- \pi^+ \pi^+ \pi^-$		8.11	±0.15	3.02±0.	10	
$D^+ \rightarrow K^+ \pi^+ \pi^-$	5.19±0.26	D	+	$K^{-}\pi^{+}\pi^{+}$	8.98	±0.28	5.78±0.	34
$D^+ \to K^+ \pi^+ \pi^- \pi^0$	11.3±0.8	D^+	\rightarrow	$K^{-}\pi^{+}\pi^{+}\pi^{0}$	6.25	±0.18	18.10±1	.5

- The BF and B_{DCS}/B_{CF} of $D^+ \rightarrow K^+\pi^+\pi^-\pi^0$ are significantly larger than those of known DCS charm decays
- May indicate massive isospin asymmetry between $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$ and $D^0 \rightarrow K^+ \pi^- \pi^- \pi^+$ due to final state interaction and different resonances

BESIII new analysis: arXiv: 2105.1431 confirms above results.

Absolute BFs of D⁰⁽⁺⁾→ηX decays

PRL124(2020)241803

Decay	$\Delta E_{\rm sig}$	$N_{ m DT}$	$\epsilon_{ m sig}$	$\mathcal{B}_{ m sig}$	
	(MeV)		(%)	$(\times 10^{-4})$	
$D^0 \to K^- \pi^+ \eta$	(-37, 36)	6116.2 ± 81.8	14.22	185.3(25)(31)	
$D^0 ightarrow K^0_S \pi^0 \eta$	(-57, 45)	1092.7 ± 35.2	4.66	100.6(34)(30)	
$D^0 \to K^+ K^- \eta$	(-27, 27)	$13.1\pm~4.0$	9.53	0.59(18)(05)	
$D^0 ightarrow K^0_S K^0_S \eta$	(-29, 28)	7.3 ± 3.2	2.36	1.33(59)(18)	
$D^0 \to K^- \pi^+ \pi^0 \eta$	(-44, 36)	576.5 ± 28.8	5.53	44.9(22)(15)	
$D^0 ightarrow K^0_S \pi^+ \pi^- \eta$	(-33, 32)	248.2 ± 18.0	3.80	28.0(19)(10)	
$D^0 ightarrow K^{ m 0}_S \pi^0 \pi^0 \eta$	(-56, 41)	64.7 ± 9.2	1.58	17.6(23)(13)	
$D^0 \to \pi^+ \pi^- \pi^0 \eta$	(-57, 45)	508.6 ± 26.0	6.76	32.3(17)(14)	
$D^+ \to K^0_S \pi^+ \eta$	(-36, 36)	1328.2 ± 37.8	6.51	130.9(37)(31)	
$D^+ \to K_S^0 K^+ \eta$	(-27, 27)	$13.6\pm~3.9$	4.72	1.85(52)(08)	
$D^+ \to K^- \pi^+ \pi^+ \pi^+ \pi^-$	η (-33, 33)	188.0 ± 15.3	8.94	13.5(11)(04)	
$D^+ \to K^0_S \pi^+ \pi^0 \eta$	(-49, 41)	48.7 ± 9.7	2.57	12.2(24)(06)	
$D^+ \rightarrow \pi^+ \pi^+ \pi^- \eta$	(-40, 38)	514.6 ± 25.7	9.67	34.1(17)(10)	
$D^+ \to \pi^+ \pi^0 \pi^0 \eta$	(-70, 49)	192.5 ± 17.1	3.86	32.0(28)(17)	
Decay	$\mathcal{B}^+_{\mathrm{sig}}$ (×10 ⁻⁴) $\mathcal{B}_{\frac{-}{\text{sig}}}(\times 10^{-4})$) .	$\mathcal{A}_{CP}^{\mathrm{sig}}$ (%)	
$D^0 \rightarrow K^- \pi^+ \eta$	182.1 ± 3.5	5189.1 ± 3.6	-1.9	$0 \pm 1.3 \pm 1.0$	
$D^0 \rightarrow K^0_S \pi^0 \eta$	98.4 ± 4.8	106.3 ± 5.1	-3.9	$0 \pm 3.2 \pm 0.8$	
$D^0 \rightarrow K^- \pi^+ \pi^0 \eta$	41.7 ± 2.7	48.8 ± 3.2	-7.9	$0\pm4.8\pm2.5$	
$D^0 ightarrow \pi^+ \pi^- \pi^0 \eta$	29.8 ± 2.2	33.3 ± 2.5	-5.5	$5\pm5.2\pm2.4$	
$D^+ \rightarrow K^0_S \pi^+ \eta$	129.9 ± 5.3	132.3 ± 5.4	-0.9	$9 \pm 2.9 \pm 1.0$	
$D^+ o \pi^+ \pi^+ \pi^- \eta$	35.4 ± 2.4	33.7 ± 2.4	+2.5	$5 \pm 5.0 \pm 1.6$	

- Direct measurements of absolute BFs of 14 exclusive hadronic D⁰⁽⁺⁾→ηX decays
- Comprehensive information about CP violation in D decays
- Combining PWA results gives 2-body decay BFs, benefiting the understanding of quark SU(3)-flavor symmetry and its breaking effect

Summary

- Charm (semi-)leptonic decays provide precision calibration of LQCD; precision measurements of CKM matrix elements
- Charm hadronic decays are key labs to understand non-perturbative QCD; provide important inputs to model-independent determination of γ and charm mixing/CPV
- BESIII will collect 20 fb⁻¹ data (17+3) at ψ (3773) in next two years time.

 \rightarrow a new era of precision charm physics

Thank you!

γ/ϕ_3 extraction

 $K_{s}^{0}hh$; $K\pi$; $K\pi\pi\pi$; $K\pi\pi^{0}$

- Comparison of B⁻ and B⁺ rates allow γ to be extracted
- But other parameters to be considered

in particular δ_D – accessed in quantum-correlated D-decays

r_D & δ_D analogous to B-decay quantities. For multibody decays, these vary over Dalitz space

Besim $D_s^+ \to \omega \pi^+$ and ωK^+

PRD 99 (2019) 091101(R)

- $D_s^+ \rightarrow \omega \pi^+$: pure W-annihilation process, first evidence by CLEO: $(2.1 \pm 0.9 \pm 0.1) \times 10^{-3}$ with 6. 0 ± 2.4 events
- Q. Qin et al. [PRD 89, 054006] predicts, with $Br(D_s^+ \to \omega \pi^+)$ as one input: $\mathcal{B}(D_s^+ \to \omega K^+) = 0.6 \times 10^{-3}, A_{CP}(D_s^+ \to \omega K^+) = -0.6 \times 10^{-3}$ (without $\rho - \omega$ mixing) $\mathcal{B}(D_s^+ \to \omega K^+) = 0.07 \times 10^{-3}, A_{CP}(D_s^+ \to \omega K^+) = -2.3 \times 10^{-3}$ (with $\rho - \omega$ mixing)
- $D_s^+ \rightarrow \omega K^+$ (SCS): CLEO set UL: $< 2.4 \times 10^{-3}@90\%$ C. L.

 $Br(D_s^+ \to \omega \pi^+)$ = (1.77±0.32±0.13)×10⁻³

 $Br(D_s^+ \to \omega K^+)$ = (0.87±0.24±0.08)×10⁻³