Theoretical interpretation of the $D_s^+ \to \pi^+ \pi^0 \eta$ decay and the nature of $a_0(980)$

Raquel Molina, Ju-Jun Xie, Wei-Hong Liang, Lisheng Geng and E. Oset

Table of contents

1. Introduction

2. The $D_s^+ o \pi^+ \pi^0 \eta$ decay and the nature of the $a_0(980)$

3. Conclusions

Introduction

Hadrons

Standard Hadrons

Exotic Hadrons

Meson

• 'Regular' hadrons: $q\bar{q}$, qqq

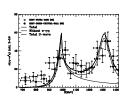


• Exotics: qqqqq, qqqq,...

Not
$$q\bar{q}$$
: $J^{PC} = 0^{+-}$, 1^{-+} , 2^{+-} ,

Dynamically Generated Resonances

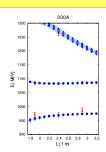
Examples

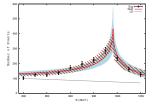

- σ , $a_0(980)$, $f_0(980)$... Oller, Oset, Pelaez, PRL80(1998)
- N(1440) Krehl, Hanhart, Krewald and Speth, PRC62(2000)
- $\Lambda(1405)$ Ramos, Oset, NPA635(1998); Jido, Meissner, Oller NPA725(2003); Hyodo, Weise PRC77(2008)
- \bullet $P_c(4450)$ Wu, Molina, Zou, Oset, PRL105(2010)
- New state $X_0(2900)$ Molina, Branz, Oset PRD82(2010)

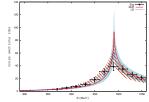
How to test the nature of a ... **Dynamically Generated Resonance?**

- Production $B_0 \to D_0 \sigma(a_0(980))$ Liang, Xie, Oset PRD92(2015) Triangle singularity $D^{*0} \bar{D}^{*0} \to \gamma X(3872)$ F.K. Guo, PRL122(2019)
- ullet Decays $Y o \gamma \gamma$ Branz, Gutsche, Lyubovitskij PRD82(2010)
- Study of N_c behavior Pelaez, Phys. Rep. 658(2016)
- Nuclear medium X(3872) Nieves et al., 2102.08589(2020)
- Weinberg compositeness condition and generalizations Weinberg PR137(1965), Hyodo, Oset, Oller
- Chiral trajectories (EFT) + LatticeQCD data,
 Molina, Ruiz de Elvira JHEP2011(2020)

The $D_s^+ \to \pi^+ \pi^0 \eta$ decay and the nature of the $a_0(980)$


Is the $a_0(980)$ a threshold effect or a true resonance?

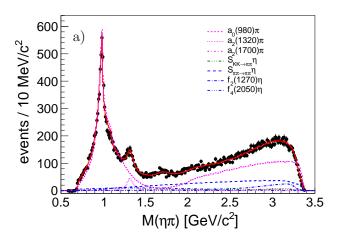

Figure 1: Integrated cross section for $\gamma\gamma\to\pi^0\eta$. Data: Oest(1990), Antreasyan(1986).


UChPT predictions

Channels: $K\bar{K}$, $\pi\eta$ Oller, Oset, NPA629(1998) Guo, Liu, Oller, Rusetski, Meissner PRD95(2017)

Figure 2: Fit to HadSpec data.

Figure 3: Left: $\pi\eta$ distribution. Data: WA76(1991). Right. Cross section $\gamma\gamma \to \pi\eta$. Data: Belle(2009).


Is the $a_0(980)$ a threshold effect or a true resonance?

Large N_c behaviour

"In particular, we have shown that the QCD large N_c scaling of the unitarized meson-meson amplitudes of chiral perturbation theory is in conflict with a $\bar{q}q$ nature for the lightest scalars [not so conclusively for the $a_0(980)$. The $a_0(980)$ behavior is more complicated. We cannot rule out a possible $\bar{q}q$ nature, or a sizable mixing], and strongly suggests a $\bar{q}\bar{q}qq$ or two-meson main component, maybe with some mixing with glue- balls, when possible."

Pelaez, PRL92(2004)

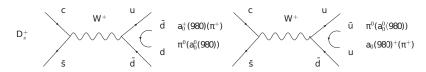
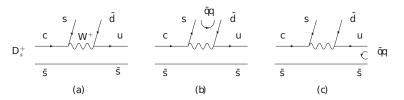

Amplitude analysis of $\chi_{c1} \to \eta \pi^+ \pi^-$

Figure 4: Projections in the (a) $\eta\pi$ -invariant mass from data, compared with a base-line fit (solid curve) and corresponding amplitudes (various dashed and dotted lines) from PRD95(2017), BESIII.

BESIII: $D_{\epsilon}^+ \rightarrow \pi^+ \pi^0 \eta$

2019. BESIII has reported the so-called first observation of a pure W-annihilation decays $D_{\epsilon}^+ \to a_0^+(980)\pi^0$ and $D_{\epsilon}^+ \to a_0^0(980)\pi^+$

Figure 5: Annihilation mechanisms assumed in Ref.for the $D_s^+ \to \pi^0 a_0^+ (980)$, $\pi^+ a_0^0(980)$. $\mathcal{B}[D_s^+ \to a_0(980)^+ \pi^0, a_0(980)^+ \to \pi^+ \eta] = (1.46 \pm 0.15 \pm 0.23)\%$


Topological classification of Weak decays

- 1. W-external emission 3. W-exchange

- 5. Horizontal W-loop
- 2. W-internal emission 4. W-annhilation

- 6. Vertical W-loop
- L.L.Chau. PR(1983), PRD36(1987), PRD39(1989)
- (Cabibbo favored) W-external emission? $D_s^+ \to \pi^+ \bar{s}s$, but $\bar{s}s$ has I = 0. Requires $f_0(980)$ upon hadronization. Not good

$D_s^+ o \pi^+ \pi^0 \eta$: W-internal emission PLB803(2020)

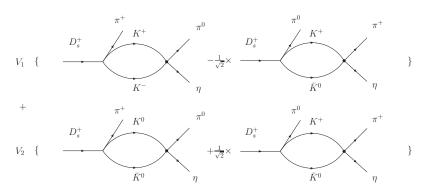


Figure 6: $D_s^+ \to \pi^0 a_0^+(980)$, $\pi^+ a_0^0(980)$: W internal emission mechanisms, (a) Primary step; (b) hadronization of the $s\bar{d}$ pair; (c) hadronization of the $u\bar{s}$ pair.

Hadronization

$$\begin{split} M &= \begin{pmatrix} u\bar{u} & u\bar{d} & u\bar{s} \\ d\bar{u} & d\bar{d} & d\bar{s} \\ s\bar{u} & s\bar{d} & s\bar{s} \end{pmatrix}, \qquad \sum_{i} s\bar{q}_{i}q_{i}\bar{d} = \sum_{i} M_{3i} \qquad M_{i2} = (M^{2})_{32}, \\ \sum_{i} u\bar{q}_{i}q_{i}\bar{s} &= \sum_{i} M_{1i} \qquad M_{i3} = (M^{2})_{13}, \\ (M^{2})_{32} &= \pi^{+}K^{-} - \frac{1}{\sqrt{2}}\pi^{0}\bar{K}^{0}, \qquad \qquad H_{1} = (\pi^{+}K^{-} - \frac{1}{\sqrt{2}}\pi^{0}\bar{K}^{0})K^{+}, \\ (M^{2})_{13} &= \frac{1}{\sqrt{2}}\pi^{0}K^{+} + \pi^{+}K^{0}, \qquad \qquad H_{2} &= (\frac{1}{\sqrt{2}}\pi^{0}K^{+} + \pi^{+}K^{0})\bar{K}^{0}. \end{split}$$

$D_s^+ \to \pi^0 a_0^+(980), \; \pi^+ a_0^0(980)$

Figure 7: Diagrammatic representation of the $K\bar{K}$ final state interaction of the states H_1 and H_2 leading to $\pi^+\pi^0\eta$ in the final states.

$$\begin{split} t = & V_1[G_{K\bar{K}}(M_{\pi^0\eta})t_{K^+K^-\to\pi^0\eta}(M_{\pi^0\eta}) - \frac{1}{\sqrt{2}}G_{K\bar{K}}(M_{\pi^+\eta})t_{K^+\bar{K}^0\to\pi^+\eta}(M_{\pi^+\eta})] \\ & + V_2[G_{K\bar{K}}(M_{\pi^0\eta})t_{K^0\bar{K}^0\to\pi^0\eta}(M_{\pi^0\eta}) + \frac{1}{\sqrt{2}}G_{K\bar{K}}(M_{\pi^+\eta})t_{K^+\bar{K}^0\to\pi^+\eta}(M_{\pi^+\eta})] \;, \end{split}$$

$D_s^+ o \pi^0 a_0^+ (980), \ \pi^+ a_0^0 (980)$

Chiral Unitary approach

Isospin

$$T = [1 - VG]^{-1}V$$

$$t_{K^+K^- \to \pi^0 \eta} = -\frac{1}{\sqrt{2}} t_{K\bar{K} \to \pi \eta}^{I=1},$$

Oller, Oset, Pelaez, PRL80(1998) Xie, Dai, Oset, PLB742(2015)

 $t_{K^+\bar{K}^0\to\pi^+\eta}=-t_{K\bar{K}\to\pi\eta}^{I=1},$

 $t_{K^0\bar{K}^0 \to \pi^0\eta} = \frac{1}{\sqrt{2}} t_{K\bar{K} \to \pi\eta}^{I=1},$

We obtain,

 $q_{\mathrm{max}} = 600 \; \mathrm{MeV}$

$$t = \bar{V} \left[G_{K\bar{K}}(M_{\pi^0\eta}) t_{K\bar{K} \to \pi\eta}^{I=1}(M_{\pi^0\eta}) - G_{K\bar{K}}(M_{\pi^+\eta}) t_{K\bar{K} \to \pi\eta}^{I=1}(M_{\pi^+\eta}) \right]$$

with
$$\bar{V}=(V_2-V_1)/\sqrt{2}$$
 .

Note that, with the isospin multiplets (u,d), $(-\bar{d},\bar{u})$,

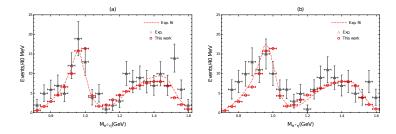
$$|s\bar{d}> = -|1/2, 1/2> \qquad |s\bar{d}, u\bar{s}> = -|1, 1> \ |u\bar{s}> = |1/2, 1/2> \qquad |\pi a_0; I=1, I_3=1> = \frac{1}{\sqrt{2}}|\pi^0 a_0^+ - \pi^+ a_0^0>$$

$$D_s^+ o \pi^0 a_0^+(980), \; \pi^+ a_0^0(980)$$

Invariant mass distribution

$$\frac{d^{2}\Gamma}{dM_{\pi^{0}\eta}dM_{\pi^{+}\eta}} = \frac{1}{(2\pi)^{3}} \frac{M_{\pi^{0}\eta}M_{\pi^{+}\eta}}{8M_{D_{s}^{+}}^{2}} |t|^{2}$$

$$\frac{1}{(2\pi)^{3}} \frac{M_{\pi^{0}\eta}M_{\pi^{0}\eta}}{8M_{D_{s}^{+}}^{2}} |t|^{2}$$

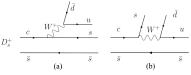

$$\frac{1}{(2\pi)^{3}} \frac{M_{\pi^{0}\eta}M_{\pi^{0}\eta}}{8M_{D_{s}^{+}}^{2}} |t|^{2}$$

$$\frac{1}{(2\pi)^{3}} \frac{M_{\pi^{0}\eta}M_{\pi^{0}\eta}}{8M_{D_{s}^{+}}^{2}} |t|^{2}$$

 M_{π^0} n(GeV)

Figure 8: $d\Gamma/dM_{\pi^0\eta}$ as a function of $M_{\pi^0\eta}$. Dashed line with no $M_{\pi^+\pi^0}$ restriction. Solid line with the restriction of $M_{\pi^+\pi^0} > 1$ GeV.

 $D_s^+ o \pi^0 a_0^+ (980)$, $\pi^+ a_0^0 (980)$


Figure 9: Event distribution in 40 MeV bins of $d\Gamma/dM_{\pi\eta}$ compared with experiment with $M_{\pi^+\pi^0}>1$ GeV. (a) for $\pi^0\eta$ distribution; (b) for $\pi^+\eta$ distribution. The dashed lines are taken from [1] after the non πa_0 events are removed. Molina, Xie, Liang, Geng and Oset, PLB803(2020)

[1] BESIII Collaboration, PRL123(2019) **But...this is not the end of the story!**

$D_s^+ o \pi^0 a_0^+(980)$, $\pi^+ a_0^0(980)$

Arxiv: 2102.0534, Ling, Liu, Lu, Geng and Xie

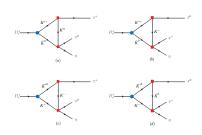

Inspired in the work of Hsiao et al., EPJC80(895), the authors find that both mechanisms, internal and external-W emission through triangle diagrams are relevant.

Figure 10: a) External *W*-emission mechanism for $D_s^+ \to \rho^+ \eta$ and b) internal *W*-conversion mechanisms.

Figure 11: $D_s^+ \rightarrow (\rho^+ \eta \rightarrow) \pi^+ \pi^0 \eta$.

Figure 12: Triangle rescattering diagrams for $D_s^+ \to (K^{*0}\bar{K}^0 \to)\pi^+\pi^0\eta$ and $D_s^+ \to (K^+\bar{K}^{*0} \to)\pi^+\pi^0\eta$.

$D_s^+ o \pi^0 a_0^+ (980)$, $\pi^+ a_0^0 (980)$

Arxiv: 2102.0534, Ling, Liu, Lu, Geng and Xie

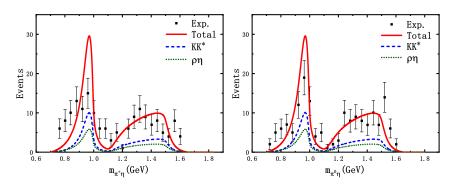


Figure 13: Invariant mass distributions of $\pi\eta$ with the cut of $m_{\pi^+\pi^0}>1$ GeV for the decay $D_s^+\to\pi(a_0(980)\to)\pi^0\pi^+\eta$, in comparison with the BESIII data.

Conclusions

Conclusions

- The $D_s^+ \to \pi^+\pi^-\eta$ through the $a_0(980)$ proceeds via W-internal/external emission and not W-annhilation.
- The new BESIII data and the analysis shown here supports the $a_0(980)$ as a dynamically generated resonance from the $\pi\eta$ and $K\bar{K}$ channels.