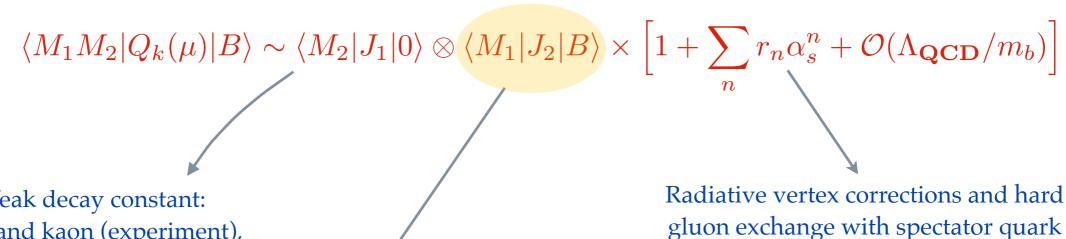


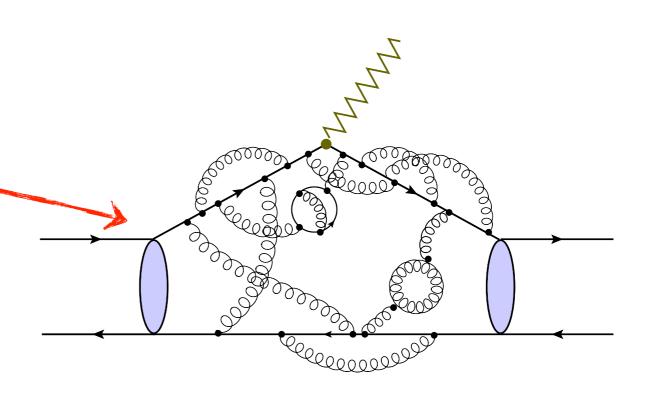
Motivations from Flavor Physics for a Hadron Physicist ...

Heavy-Meson Decays

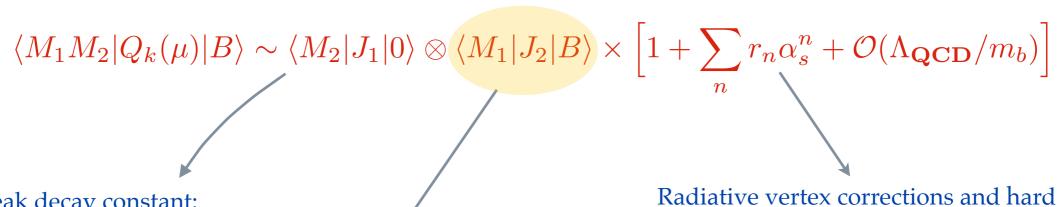


Weak decay constant: pion and kaon (experiment), heavy flavors rely on lattice QCD, QCD sum rules, DSE/BSE ...

Hadronic transition form factor; estimated with QCD sum rules, lattice QCD, quark models, DSE/BSE ...



Heavy-Meson Decays



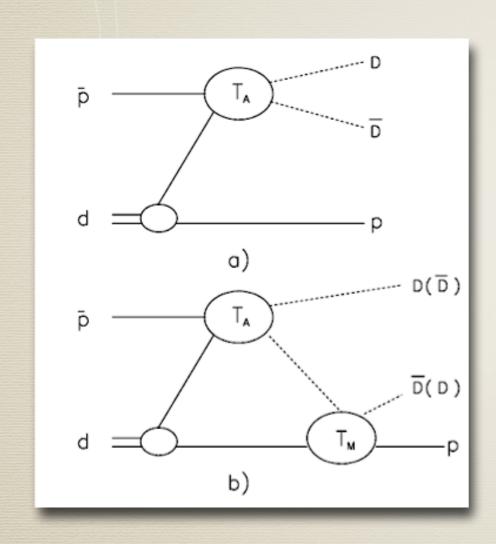
Weak decay constant: pion and kaon (experiment), heavy flavors rely on lattice QCD, QCD sum rules, DSE/BSE ...

Hadronic transition form factor; estimated with QCD sum rules, lattice QCD, quark models, DSE/BSE ...

 $p^{2} \sim \Lambda^{2}$ $p^{2} \sim \Lambda^{2}$

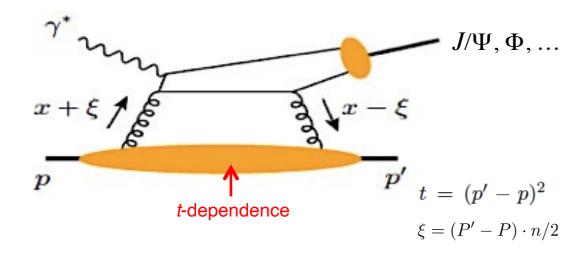
gluon exchange with spectator quark

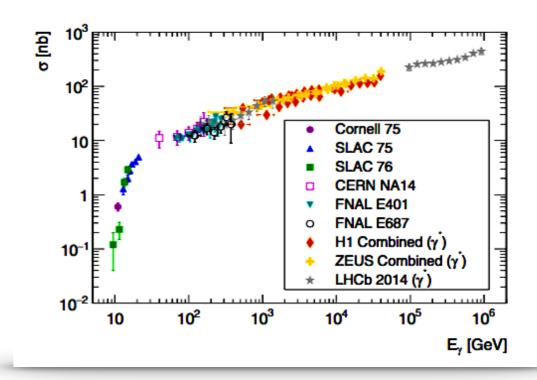
Antiproton annihilation on the deuteron PANDA @ Facility for Antiproton and Ion Research (FAIR)



Spatial imaging of glue in a nucleon/nucleus Jefferson Lab and Electron-Ion Collider

Exclusive photoproduction: hard-scattering mechanism $E_{\gamma} > 10 \text{ GeV}$ S.J. Brodsky, E. Chudakov, P. Hoyer, J.M. Laget, Phys. Lett. B (2001)





Fourier transform of *t*-dependence:

- Exclusive J/ψ production where the narrow quarkonium interacts by exchanging gluons with the nucleon's light quarks.
- Scattering amplitude allows for probing the energy-momentum tensor of the proton (nuclei) and can yield the spatial imaging of the glue density in proton.

HEAVY QUARK EFFECTIVE THEORY AND EFFECTIVE LAGRANGIANS

Heavy Quark Effective Theory

$$h_{\rm v}(x) = e^{im_{\mathcal{Q}}{\rm v}\cdot x} \frac{1+v}{2} Q(x) \; , \qquad H_{\rm v}(x) = e^{im_{\mathcal{Q}}{\rm v}\cdot x} \frac{1-v}{2} Q(x)$$

$$p_{\mu} = m_Q v_{\mu} + k_{\mu}$$
$$k \sim \Lambda_{\text{QCD}}; \ v^2 = 1$$

$$\mathcal{L}_{Q} = \bar{Q}(\not\!\!D - m_{Q})Q = \underbrace{\bar{h}_{v} i v \cdot D h_{v}}_{\text{massless mode}} + \underbrace{\bar{H}_{v} \left(-i v \cdot D - 2 m_{Q}\right) H_{v}}_{\text{massive mode}} + \underbrace{\bar{h}_{v} i \not\!\!D H_{v} + \bar{H}_{v} i \not\!\!D h_{v}}_{\text{interaction terms}}$$

Heavy Quark Effective Theory

$$p_{\mu} = m_Q v_{\mu} + k_{\mu}$$
$$k \sim \Lambda_{\text{QCD}}; \ v^2 = 1$$

$$h_{\rm v}(x) = e^{im_{\cal Q}{\rm v}\cdot x}\, \frac{1+v}{2}\, {\cal Q}(x) \;, \qquad H_{\rm v}(x) = e^{im_{\cal Q}{\rm v}\cdot x}\, \frac{1-v}{2}\, {\cal Q}(x)$$

$$\mathcal{L}_{Q} = \bar{Q}(D - m_{Q})Q = \underbrace{\bar{h}_{v} i v \cdot D h_{v}}_{\text{massless mode}} + \underbrace{\bar{H}_{v} \left(-i v \cdot D - 2 m_{Q}\right) H_{v}}_{\text{massive mode}} + \underbrace{\bar{h}_{v} i \not D H_{v} + \bar{H}_{v} i \not D h_{v}}_{\text{interaction terms}}$$

$$H_{\rm v} = \frac{1}{i\,\mathbf{v}\cdot\boldsymbol{D} + 2m_{Q}}\,i\,\vec{D}\,h_{\rm v} = \frac{1}{2m_{Q}}\sum_{n=0}^{\infty}\left(-\frac{i\,\mathbf{v}\cdot\boldsymbol{D}}{2m_{Q}}\right)^{n}\,i\,\vec{D}\,h_{\rm v}$$

$$\mathscr{L}_{\text{HQET}} = \bar{h}_{\text{v}} i \text{v} \cdot D h_{\text{v}} + \frac{1}{2m_Q} \left[\bar{h}_{\text{v}} (i\vec{D})^2 h_{\text{v}} + c(\zeta) \frac{g}{2} \bar{h}_{\text{v}} \sigma_{\mu\nu} g^{\mu\nu} h_{\text{v}} \right] + \dots$$

$$S(p) = i \frac{p + m_Q}{p^2 - m_Q^2} \xrightarrow{m_Q \to \infty} i \frac{1 + y}{2 \mathbf{v} \cdot k} + \mathcal{O}\left(\frac{k}{m_Q}\right)$$

Heavy Quark Effective Theory

$$p_{\mu} = m_Q v_{\mu} + k_{\mu}$$
$$k \sim \Lambda_{\text{QCD}}; \ v^2 = 1$$

$$h_{\rm v}(x) = e^{im_{\mathcal{Q}}{\rm v}\cdot x} \frac{1+v}{2} Q(x) , \qquad H_{\rm v}(x) = e^{im_{\mathcal{Q}}{\rm v}\cdot x} \frac{1-v}{2} Q(x)$$

HQET Lagrangian:

Expansion in α_s and m_Q^{-1} !

$$\mathcal{L}_{\text{HQET}} = \mathcal{L}_0 + \frac{1}{m_Q} \mathcal{L}_1 + \frac{1}{m_Q^2} \mathcal{L}_2 + \dots$$

 \mathcal{L}_0 has spin-flavor symmetry,

 $1/m_Q$ terms are symmetry breaking corrections.

$$S(p) = i \frac{p + m_Q}{p^2 - m_Q^2} \xrightarrow{m_Q \to \infty} i \frac{1 + \sqrt{2} + \mathcal{O}\left(\frac{k}{m_Q}\right)$$

Heavy-Meson Chiral Perturbation Theory

R. Casalbuoni et al., Phys. Rept. 281, 145 (1997)

$$\mathcal{L}_{\text{heavy}} = -\text{tr}_a \text{Tr}[\bar{H}_a i v \cdot D_{ba} H_b] + \hat{g} \, \text{tr}_a \text{Tr}[\bar{H}_a H_b \gamma_\mu \mathbf{A}_{ba}^\mu \gamma_5]$$

$$D_{ba}^{\mu}H_{b} = \partial_{\mu}H_{a} - H_{b}\frac{1}{2}[\xi^{\dagger}\partial_{\mu}\xi + \xi\partial_{\mu}\xi^{\dagger}]_{ba};$$

$$\mathbf{A}_{\mu}^{ab} = \frac{i}{2}[\xi^{\dagger}\partial_{\mu}\xi - \xi\partial_{\mu}\xi^{\dagger}]_{ab};$$

$$H_{a}(v) = \frac{1+\psi}{2}[P_{\mu}^{*a}(v)\gamma_{\mu} - P^{a}(v)\gamma_{5}];$$

$$\xi=\exp(i\Phi/f_\pi^0)$$
 ;
$$\Phi \text{ is matrix of } N_f^2-1 \text{ pseudo-Goldstone boson}.$$

- Dynamics is constrained by heavy quark symmetry.
- Blind to the heavy quark flavor and spin.
- Heavy pseudoscalar and vector mesons are mass degenerate.
- Can be improved upon take into account light degrees of freedom, chiral symmetry breaking ⇒ HMChPT.

Heavy-Meson Chiral Perturbation Theory

R. Casalbuoni et al., Phys. Rept. 281, 145 (1997)

$$\mathcal{L}_{\text{heavy}} = -\text{tr}_a \text{Tr}[\bar{H}_a i v \cdot D_{ba} H_b] + \hat{g} \, \text{tr}_a \text{Tr}[\bar{H}_a H_b \gamma_\mu \mathbf{A}_{ba}^\mu \gamma_5]$$

$$D_{ba}^{\mu}H_{b} = \partial_{\mu}H_{a} - H_{b}\frac{1}{2}[\xi^{\dagger}\partial_{\mu}\xi + \xi\partial_{\mu}\xi^{\dagger}]_{ba};$$

$$\mathbf{A}_{\mu}^{ab} = \frac{i}{2}[\xi^{\dagger}\partial_{\mu}\xi - \xi\partial_{\mu}\xi^{\dagger}]_{ab};$$

$$H_{a}(v) = \frac{1+\psi}{2}[P_{\mu}^{*a}(v)\gamma_{\mu} - P^{a}(v)\gamma_{5}];$$

$$\xi = \exp(i\Phi/f_{\pi}^{0}) ;$$

 Φ is matrix of $N_f^2 - 1$ pseudo-Goldstone boson.

- Dynamics is constrained by heavy quark symmetry.
- Blind to the heavy quark flavor and spin.
- Heavy pseudoscalar and vector mesons are mass degenerate.
- Can be improved upon take into account light degrees of freedom, chiral symmetry breaking ⇒ HMChPT.

Strong $H^* \to H\pi$ to extract effective heavy quark coupling

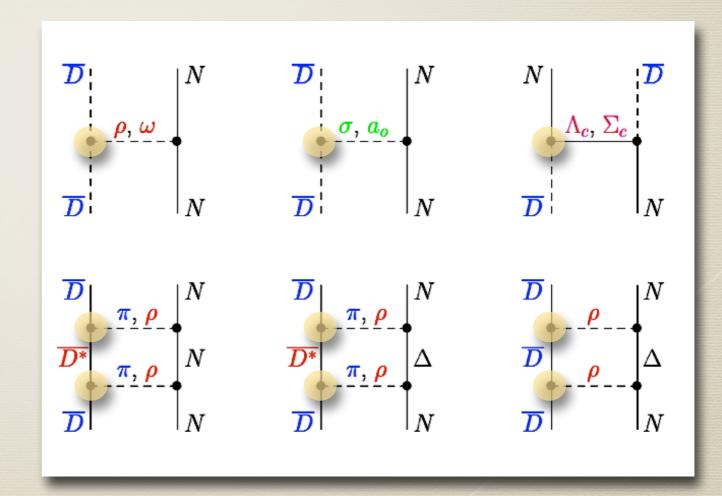
Phenomenological Heavy-Meson Lagrangians

D-meson interactions with nucleons

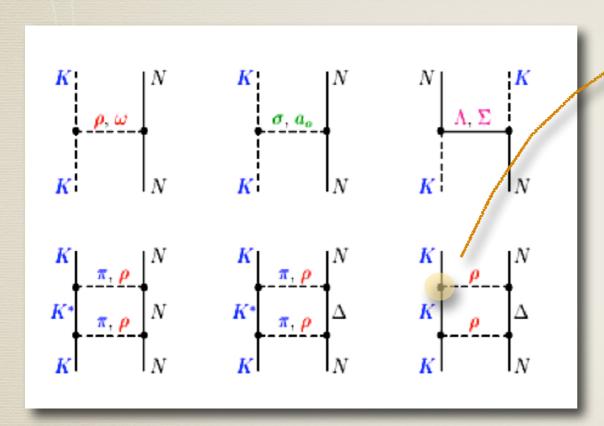
Antiproton annihilation on the deuteron (PANDA @ FAIR)

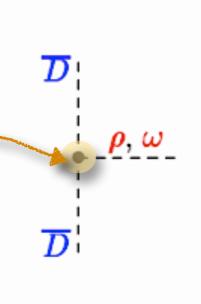
 $\bar{p} \qquad T_{A} \qquad \bar{D}$ $d \qquad p$ $\bar{p} \qquad T_{A} \qquad D(\bar{D})$ $\bar{p} \qquad T_{A} \qquad \bar{D}(D)$ $d \qquad D(\bar{D})$

Meson exchange — effective Lagrangians



SU(4) symmetry used





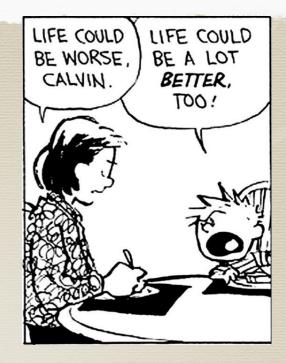
Jülich model:

- A. Müller-Groeling et al. NPA 513, 557 (1990)
- M. Hoffmann et al. NPA 593, 341 (1995)
- D. Hadjimichef, J. Haidenbauer and G. Krein, PRC 66 (2002)

$$SU(4)$$
 symmetry: $g_{D\rho D} = g_{D\omega D} = g_{KK\rho} = \frac{1}{2}g_{\pi\pi\rho}$

CALCULATION OF THE EFFECTIVE THEORY COUPLINGS

Caveat



- No assumption of heavy-quark symmetry is made.
- In particular, pseudoscalar and vector meson masses are not degenerate.
- We solve the gap equations (Dyson-Schwinger equations) for light and heavy quarks \implies dressed quark propagators with running mass M(p).
- Solving the Bethe-Salpeter equation for flavored pseudoscalar and vector mesons and quarkonia, we obtain their wave functions in an improved ladder truncation (see Fernando Serna's talk on Friday) \Longrightarrow input for effective couplings and form factors.
- Although impulse approximation and truncations are employed, $\Lambda_{\rm QCD}/m_c$ contributions are systematically included.

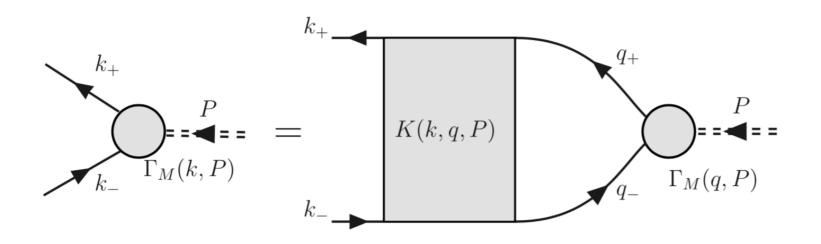
Bethe-Salpeter Equations for QCD Bound States

$$-C^{-1} = -C^{-1} + \frac{C^{-1}}{p} + \frac{C^{-1}}{p} = K + K$$

Rainbow-ladder truncation (leading symmetry-preserving approximation)

Bethe-Salpeter Equations for QCD Bound States

$$\left[\Gamma_{M}^{f\bar{g}}(k;P)\right]_{AB} = \int \frac{d^{4}q}{(2\pi)^{4}} \left[K^{f\bar{g}}(k,q;P)\right]_{AC,DB} \left[S_{f}(q_{+})\Gamma_{M}^{f\bar{g}}(q;P)S_{\bar{g}}(q_{-})\right]_{CD}$$

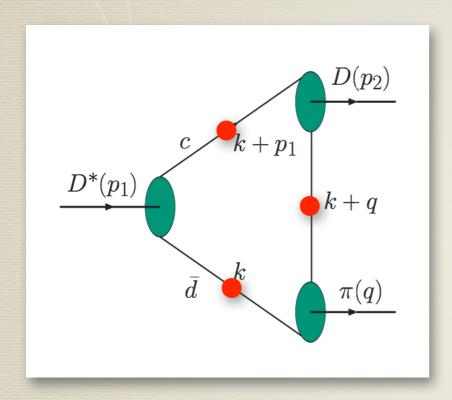


Meson Spectrum

Mesons/Observables	m_M	$m_M^{ m exp.}$	$\epsilon_r^m \ [\%]$	f_M	$f_M^{ m exp./lQCD}$	$\epsilon_r^f \ [\%]$
$\pi(uar{d})$	0.136	0.140	2.90	$0.094^{+0.001}_{-0.001}$	0.092(1)	2.17
$K(sar{u})$	0.494	0.494	0.0	$0.110^{+0.001}_{-0.001}$	0.110(2)	0.0
$D_u(car u)$	$1.867^{+0.008}_{-0.004}$	1.870	0.11	$0.144^{+0.001}_{-0.001}$	0.150(0.5)	4.00
$D_s(car{s})$	$2.015^{+0.021}_{-0.018}$	1.968	2.39	$0.179^{+0.004}_{-0.003}$	0.177(0.4)	1.13
$\eta_c(car{c})$	$3.012^{+0.003}_{-0.039}$	2.984	0.94	$0.270^{+0.002}_{-0.005}$	0.279(17)	3.23
$\eta_b(bar{b})$	$9.392^{+0.005}_{-0.004}$	9.398	0.06	$0.491^{+0.009}_{-0.009}$	0.472(4)	4.03

Mesons/Observables	m_M	$m_M^{ m exp.}$	$\epsilon_r^m \ [\%]$	f_M	$f_M^{ m lQCD}$	$\epsilon_r^f \ [\%]$
$B_u(bar{u})$	$5.277^{+0.008}_{-0.005}$	5.279	0.04	$0.132^{+0.004}_{-0.002}$	0.134(1)	4.35
$B_s(bar{s})$	$5.383^{+0.037}_{-0.039}$	5.367	0.30	$0.128^{+0.002}_{-0.003}$	0.162(1)	20.50
$B_c(bar{c})$	$6.282^{+0.020}_{-0.024}$	6.274	0.13	$0.280^{+0.005}_{-0.002}$	0.302(2)	7.28
$\eta_b(bar{b})$	$9.383^{+0.005}_{-0.004}$	9.398	0.16	$0.520^{+0.009}_{-0.009}$	0.472(4)	10.17

Strong decays: $D^* \to D\pi$



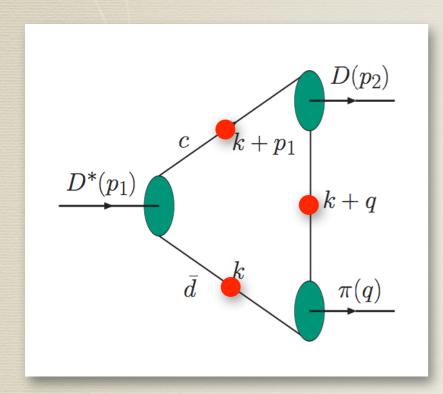
B. E., M.A. Ivanov and C.D. Roberts (2012)

Coupling yields D* width

$$A(D^* \to D\pi) = \epsilon_{\mu}^{\lambda_{D^*}}(p_{D^*})M^{\mu}(p_D^2, p_{D^*}^2) := \epsilon_{\mu}^{\lambda_{D^*}}(p_{D^*})p_D^{\mu}g_{D^*D\pi}$$

$$M^{\mu}(p_D^2, p_{D^*}^2) = N_c \operatorname{tr} \int_{-\infty}^{\Lambda} \frac{d^4k}{(2\pi)^4} \bar{\Gamma}_D(k; -P_D)S_c(k + P_{D^*})i\Gamma_{D^*}^{\mu}(k; P_{D^*})S_u(k)\bar{\Gamma}_{\pi}(k; -Q_{\pi})S_u(k + Q_{\pi})$$

Strong decays: $D^* \to D\pi$



B. E., M.A. Ivanov and C.D. Roberts (2012)

$$A(D^* \to D\pi) = \epsilon_{\mu}^{\lambda_{D^*}}(p_{D^*})M^{\mu}(p_D^2, p_D^2, M^{\mu}(p_D^2, p_D^2, p_D^2, q_D^2, p_D^2, q_D^2, q_D^2,$$

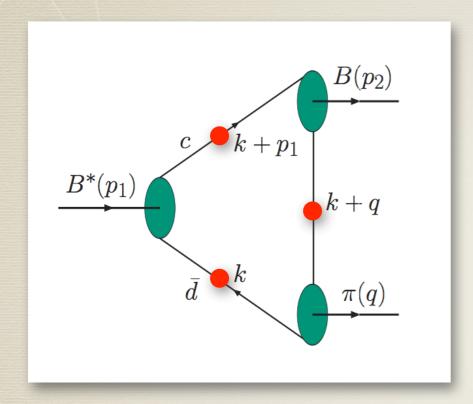
Similarly:
$$D_s^* \to DK$$

$$g_{D_s^*DK} = 20_{-1.7}^{+2.5}$$

B. E., M.A. Ivanov and C.D. Roberts (2012)

 Q_{π}

Strong decays: $B^* \to B\pi$ (analogy)



This amplitude can be used for $m_{\pi}^2 \to 0$ to extract \hat{g} at leading order in HMChPT:

$$\hat{g} = \frac{g_{B^*B\pi}}{2\sqrt{m_B m_{B^*}}} f_{\pi}$$

DSE model Lattice in static limit
$$(n_f = 2)$$
 $\hat{g} = 0.37 \pm 0.04$
 $0.44 \pm 0.03^{+0.07}_{-0.0}$

DSE-BSE: B. E., M.A. Ivanov and C.D. Roberts (2011)

LQCD: D. Bećirević, B. Blossier, E. Chang and B. Haas (2009)

$$\mathcal{L}_{\text{heavy}} = -\text{tr}_a \text{Tr}[\bar{H}_a i v \cdot D_{ba} H_b] + \hat{g} \, \text{tr}_a \text{Tr}[\bar{H}_a H_b \gamma_\mu \mathbf{A}_{ba}^\mu \gamma_5]$$

The value obtained from D^* decay is: $\hat{g}_c = 0.56^{+0.07}_{-0.03} \longrightarrow \Lambda_{\rm QCD}/m_c$ corrections are important!

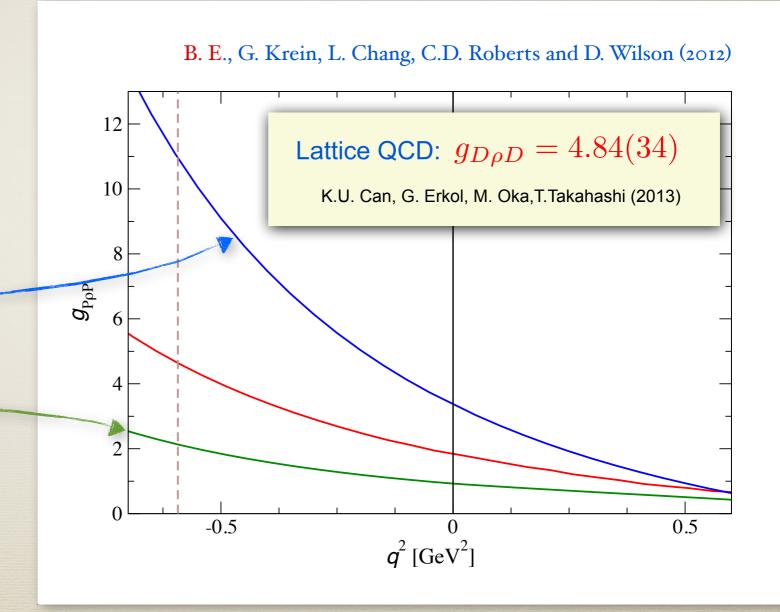
Flavor SU(3), SU(4), sensible symmetries?

$$g_{D\rho D} \neq g_{K\rho K} \neq \frac{1}{2} g_{\pi\rho\pi}$$

Define
$$\zeta_{\rho} := \frac{g_{D\rho D}(q^2)}{g_{K\rho K}(q^2)}$$

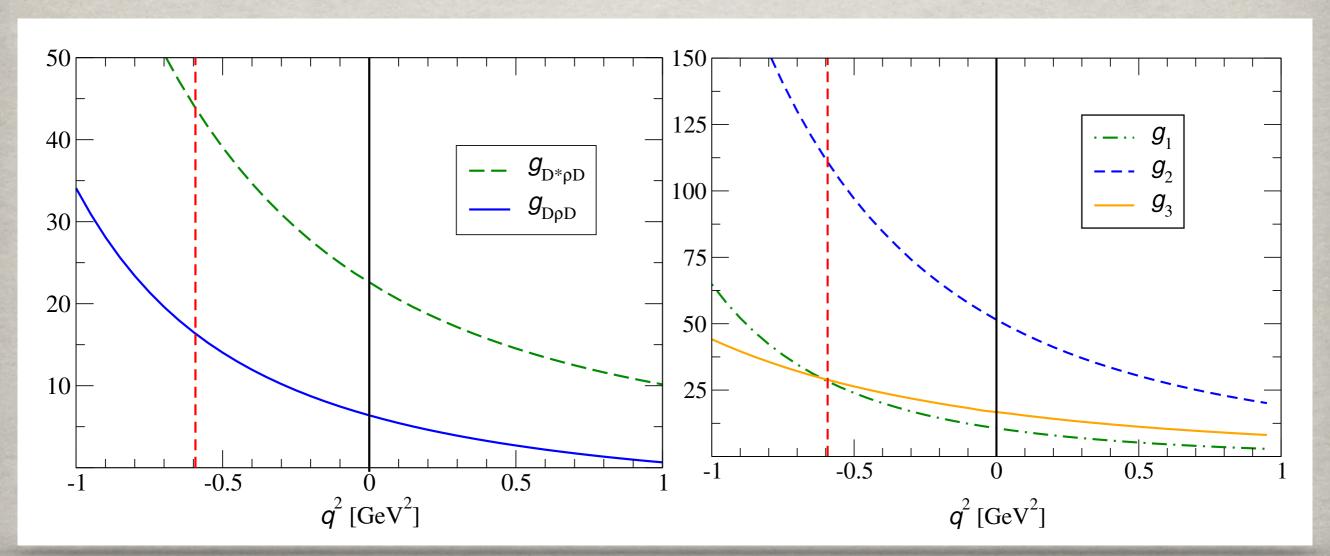
Ratio measures the effect of SU(4) breaking ≈ 300%

SU(3) breaking ≈ 20-30%



A single universal coupling of the D to the ρ mesons?

B.E., M.A. Paracha, E. Rojas, C.D. Roberts, PRD 95 (2017)



Lattice QCD: $g_{D^*\rho D^*} = 5.94(56)$

K.U. Can, G. Erkol, M. Oka, T. Takahashi (2013)

DSE-BSE: $g_{D^*\rho D^*}^1(0) = 10.5$

Consequences for DN cross sections?

The integrated $D\rho D$ interaction is enhanced by about 40% compared with an SU(4) prediction for the coupling/form factor.

Large value value for the interaction strength entails an enhanced cross section in DN scattering (I = 1 cross section inflated by a factor 4-5).

Possible novel charmed resonances or bound states in nuclei?

Light-Front Distribution Amplitudes

QCD factorization involves matrix elements which are convolution integrals:

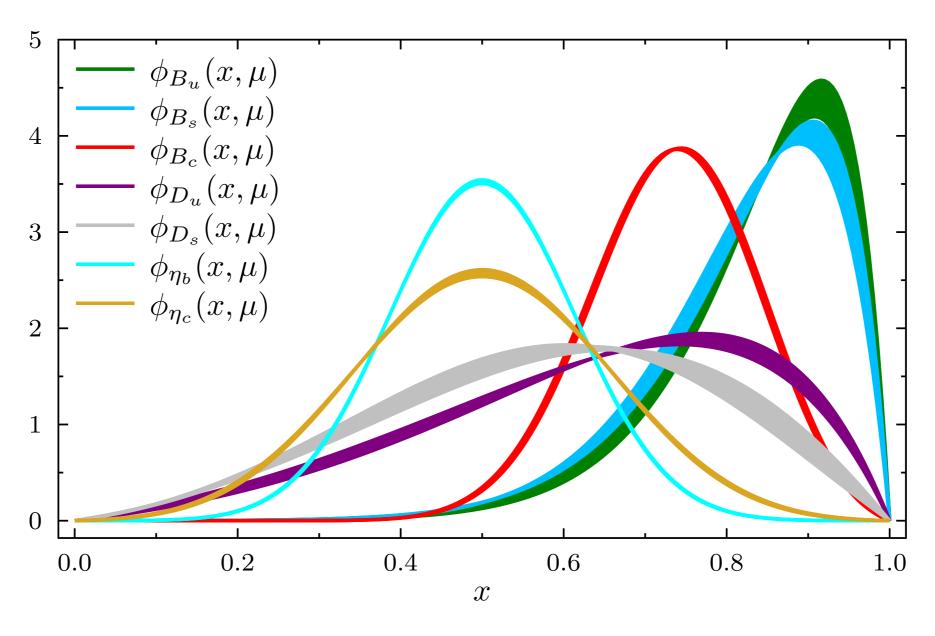
$$\langle \pi^+ \pi^- | (\bar{u}b)_{V-A} (\bar{d}u)_{V-A} | \bar{B}_d \rangle \to \int_0^1 d\xi du dv \, \Phi_B(\xi) \, \Phi_\pi(u) \, \Phi_\pi(v) \, T(\xi, u, v; m_b).$$

The integrals are over a (hard) scattering kernel $T(\xi,u,v,m)$ and light-cone distribution amplitudes (LCDA) expanded in Gegenbauer polynomials:

$$arphi_{\pi}(x; au) = arphi_{\pi}^{
m asy}(x) igg[1 + \sum_{j=2,4,...}^{\infty} a_j^{3/2}(au) \, C_j^{(3/2)}(2x-1) igg] \ arphi_{\pi}^{
m asy}(x) = 6x(1-x)$$

- LCDA until recently poorly known for light mesons, in recent years improved determinations of the first two Gegenbauer moments of the pion and kaon, RQCD Collaboration, Bali et al. (2019).
- Next to nothing was known about heavy-light mesons, mostly models and asymptotic LCDA used.
- Recent results using DSE-BSE calculations projected on light front: Serna et al. (2020).

Light-Front Distribution Amplitudes



F. Serna et al. Eur. Phys. J. C 80 (2020)

Conclusions

- * Over the years, many steps from QCD based modeling toward nonperturbative numerical solutions of quark propagators and quark-antiquark bound states for flavored mesons respecting *chiral symmetry* and *Poincaré covariance*.
- * Good reproduction of charmonium and bottonium as well as *D* and *B* meson mass spectrum and their weak decay constants. Scalar and axialvector channels and excited states are more complicated and underway.
- Couplings and form factors between heavy and light mesons employed in effective field theories can be calculated in impulse approximation as a function of the exchanged momentum.