Null test searches for BSM physics with rare charm decays

Marcel Golz

 Eur.Phys.J. C80 (2020) no.1 65; [arxiv:1909.11108]
 R. Bause, MG, G. Hiller, A. Tayduganov

 Phys.Rev.D 101 (2020) 11, 115006; [arxiv:2004.01206]
 R. Bause, H. Gisbert, MG, G. Hiller

 [arxiv:2007.05001]
 R. Bause, H. Gisbert, MG, G. Hiller

 [PhysR.Rev.D 103 (2021) 1, 015033; [arxiv:2010.02225]
 R. Bause, H. Gisbert, MG, G. Hiller

 DO-TH 21/13 (in preparation)
 MG, G. Hiller, T. Magorsch

10th International Workshop on Charm Physics

June, 2021

technische universität dortmund

Outline

- Introduction rare charm decays
- Overview null test strategies
- ▶ Part I $\Lambda_c \rightarrow p \ell^+ \ell^-$
 - Angular observables
 - CP-violation
 - Lepton universality tests
- Part II Dineutrino modes

Outlook

EFT at the charm scale de Boer, (2017), PhD thesis, TU Dortmund

What is the difference between $b \rightarrow s$ and $c \rightarrow u$ penguins?

EFT at the charm scale de Boer, (2017), PhD thesis, TU Dortmund

What is the difference between $b \rightarrow s$ and $c \rightarrow u$ penguins?

EFT at the charm scale de Boer, (2017), PhD thesis, TU Dortmund

What is the difference between $b \rightarrow s$ and $c \rightarrow u$ penguins?

- Light quark masses need to be set to zero at µ_W
- Effective GIM-mechanism kills C_{7,9,10} at µ_W
- $C_{7,9}^{\mathrm{eff}}$ are induced by RG running to μ_c
- $C_{10}(\mu_c) = 0$

$$\begin{split} \mathcal{H}_{\mathrm{eff}} &\supset -\frac{4G_F}{\sqrt{2}} \frac{\alpha_e}{4\pi} \left[\sum_{i=7,9,10,S,P} (C_i O_i + C_i' O_i') + \sum_{i=T,T5} C_i O_i \right] \\ \mathcal{O}_7 &= \frac{m_c}{e} (\overline{u}_L \sigma_{\mu\nu} c_R) F^{\mu\nu} , \\ \mathcal{O}_9 &= (\overline{u}_L \gamma_\mu c_L) (\overline{\ell} \gamma^\mu \ell) , \quad \mathcal{O}_{10} = (\overline{u}_L \gamma_\mu c_L) (\overline{\ell} \gamma^\mu \gamma_5 \ell) , \\ \mathcal{O}_S &= (\overline{u}_L c_R) (\overline{\ell} \ell) , \quad \mathcal{O}_P = (\overline{u}_L c_R) (\overline{\ell} \gamma_5 \ell) , \\ \mathcal{O}_T &= \frac{1}{2} (\overline{u} \sigma_{\mu\nu} c) (\overline{\ell} \sigma^{\mu\nu} \ell) , \mathcal{O}_{T5} = \frac{1}{2} (\overline{u} \sigma_{\mu\nu} c) (\overline{\ell} \sigma^{\mu\nu} \gamma_5 \ell) . \end{split}$$

- Primed operators obtained with L ↔ R
- $C_{7,9}^{\text{eff}}$ remain tiny in the SM
- All other Wilson coefficients are zero in the SM

SM contributions dominated by long range dynamics $\mathcal{B}^{SM}(h_c \to h_u \ell^+ \ell^-) \approx \mathcal{B}(h_c \to h_u \mathcal{M}(\to \ell^+ \ell^-))$

•
$$M = \rho(770), \, \omega(782), \, \phi(1020), \, \dots$$

► Parametrized by a sum of Breit-Wigner contributions (fit from data) $C_9^R(q^2) = a_\omega e^{i\delta_\omega} \left(\frac{1}{q^2 - m_\omega^2 + im_\omega\Gamma_\omega} - \frac{3}{q^2 - m_\rho^2 + im_\rho\Gamma_\rho}\right) + \frac{a_\phi e^{i\delta_\phi}}{q^2 - m_\phi^2 + im_\phi\Gamma_\phi}.$

Rare charm decays observed only at the resonances, for the rest of the signal region U.L. are available at 90 % C.L. (see 2011.09478)
 B(D⁰ → μ⁺μ⁻) < 6.2 × 10⁻⁹
 B(D⁺ → π⁺μ⁺μ⁻) < 6.7 × 10⁻⁸

•
$$\mathcal{B}(D_s^+ \to K^+ \mu^+ \mu^-) < 1.4 imes 10^{-7}$$

•
$$\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) < 5.5 \times 10^{-7}$$

•
$$\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) < 3.3 imes 10^{-5}$$

$$\blacktriangleright~ {\cal B}(\Lambda_c o p \mu^+ \mu^-) < 7.7 imes 10^{-8}$$

Direct bounds on WC's from $\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-)$, $\mathcal{B}(D^0 \to \mu^+ \mu^-)$ imply $\succ C_{S,P} \lesssim \mathcal{O}(0.1) \quad C_{7,9,10,T,T5} \lesssim \mathcal{O}(1)$

NP searches in branching ratios are difficult. Instead define null test observables where $signal\leftrightarrow NP$

 Angular observables, CP–asymmetries, LU ratios, LFV and dineutrino modes

NP searches in branching ratios are difficult. Instead define null test observables where $signal\leftrightarrow NP$

 Angular observables, CP–asymmetries, LU ratios, LFV and dineutrino modes

Why study different modes? Why baryons?

- Complementarity:
 - $D \rightarrow P\ell^+\ell^-$ sensitive to $|C_i + C'_i|^2$
 - $\Lambda_c \rightarrow p \ell^+ \ell^-$ sensitive to both $|C_i \pm C'_i|^2$
- Possibilities:
 - # of angular observables increases with spin structure and # of hadrons in the final state
 - (Future) global fits help to disentangle QCD and NP

Branching ratios

LHCb upper limit at 90 % C.L. with \pm 40 MeV cuts around known resonance masses, then extrapolated to full q^2 region

$$\mathcal{B}_{
m LHCb}(\Lambda_c
ightarrow p \mu^+ \mu^-) < 7.7 imes 10^{-8}$$

Including form factor and resonance uncertainties and integrating the LHCb search region

$$\begin{split} \mathcal{B}^{\mathrm{SM}}(\Lambda_c \to \rho \mu^+ \mu^-) &= (1.9^{+1.8}_{-1.5}) \times 10^{-8} \\ \mathcal{B}^{\mathrm{SM}}(\Xi_c^+ \to \Sigma^+ \mu^+ \mu^-) &\sim 1.8 \times \mathcal{B}^{\mathrm{SM}}(\Lambda_c \to \rho \mu^+ \mu^-) \\ \mathcal{B}^{\mathrm{SM}}(\Xi_c^0 \to \Sigma^0 \mu^+ \mu^-) &\sim 0.4 \times \mathcal{B}^{\mathrm{SM}}(\Lambda_c \to \rho \mu^+ \mu^-) \\ \mathcal{B}^{\mathrm{SM}}(\Omega_c^0 \to \Xi^0 \mu^+ \mu^-) &\sim 1.3 \times \mathcal{B}^{\mathrm{SM}}(\Lambda_c \to \rho \mu^+ \mu^-) \end{split}$$

technische universität dortmund

Angular observables

From twofold $\Lambda_c \rightarrow p\mu^+\mu^-$ decay distribution: $\frac{d\Gamma}{dq^2d\cos\theta_\ell} = \frac{3}{2} \left(K_{1ss} \sin^2\theta_\ell + K_{1cc} \cos^2\theta_\ell + K_{1c} \cos\theta_\ell \right)$, we define

the lepton forward-backward asymmetry

$$A_{\mathsf{FB}} = \frac{1}{\mathsf{d} \Gamma/\mathsf{d} q^2} \left[\int_0^1 - \int_{-1}^0 \right] \frac{\mathsf{d} \Gamma}{\mathsf{d} q^2 \mathsf{d} \cos \theta_\ell} \,\mathsf{d} \cos \theta_\ell = \frac{3}{2} \frac{K_{1c}}{2 \,K_{1ss} + K_{1cc}}$$

 K_{1c} contains C_9C_{10} , $C'_9C'_{10}$ and $C_7^{(\prime)}C_{10}^{(\prime)}$ interference terms \Rightarrow no SM. Complementary results in $D \rightarrow P\mu^+\mu^-$

technische universität dortmund

Angular observables

From twofold $\Lambda_c \rightarrow p\mu^+\mu^-$ decay distribution: $\frac{d\Gamma}{dq^2d\cos\theta_\ell} = \frac{3}{2} \left(K_{1ss} \sin^2\theta_\ell + K_{1cc} \cos^2\theta_\ell + K_{1c} \cos\theta_\ell \right)$, we define

the lepton forward-backward asymmetry

$$A_{\mathsf{FB}} = \frac{1}{\mathsf{d} \Gamma/\mathsf{d} q^2} \left[\int_0^1 - \int_{-1}^0 \right] \frac{\mathsf{d} \Gamma}{\mathsf{d} q^2 \mathsf{d} \cos \theta_\ell} \,\mathsf{d} \cos \theta_\ell = \frac{3}{2} \frac{K_{1c}}{2 \,K_{1ss} + K_{1cc}}$$

 K_{1c} contains C_9C_{10} , $C'_9C'_{10}$ and $C_7^{(\prime)}C_{10}^{(\prime)}$ interference terms \Rightarrow no SM. Complementary results in $D \rightarrow P\mu^+\mu^-$ (Normalized to integrated rate)

Angular observables

Fraction of longitudinally polarized dimuons

$$F_L = \frac{2\,K_{1ss} - K_{1cc}}{2\,K_{1ss} + K_{1cc}}$$

No null test, but cancellation of hadronic uncertainties in the SM and highly sensitive to $C_7^{(\prime)}$.

Angular observables

Fraction of longitudinally polarized dimuons

$$F_L = \frac{2\,K_{1ss} - K_{1cc}}{2\,K_{1ss} + K_{1cc}}$$

No null test, but cancellation of hadronic uncertainties in the SM and highly sensitive to $C_7^{(\prime)}$.

CP-asymmetries

$$\tilde{A}_{CP}(q^2) = \frac{1}{\Gamma + \overline{\Gamma}} \left(\frac{d\Gamma}{dq^2} - \frac{d\overline{\Gamma}}{dq^2} \right) \quad \text{with} \quad \Gamma = \int_{q_{\min}^2}^{q_{\max}^2} \frac{d\Gamma}{dq^2} dq^2 \quad \textbf{Or} \quad A_{CP}(q^2) = \frac{\frac{dI}{dq^2} - \frac{dI}{dq^2}}{\frac{d\Gamma}{dq^2} + \frac{d\overline{\Gamma}}{dq^2}}$$

- Strong phase from resonances needed → measurement around the φ resonance. S. Fajfer et al. PRD 87 (2013), 5, 054026
- ▶ NP weak phase needed. → benchmark $C_9 = 0.5 \exp(i\pi/4)$.
- Binning necessary.

- Increasing hints for LUV in rare b-decays motivate further LU tests
- Similar *R* ratios can be defined in rare charm decays
- ▶ Huge effects $\mathcal{O}(100)$ are still possible at high q^2

$$R_{\rho}^{\Lambda_{c}} = \int_{q_{\text{max}}^{2}}^{q_{\text{max}}^{2}} \frac{d\mathcal{B}(\Lambda_{c} \to \rho\mu^{+}\mu^{-})}{dq^{2}} dq^{2} / \int_{q_{\text{max}}^{2}}^{q_{\text{max}}^{2}} \frac{d\mathcal{B}(\Lambda_{c} \to \rhoe^{+}e^{-})}{dq^{2}} dq^{2}$$

$R_p^{\Lambda_c}$	SM	$ C_9 = 0.5$	$ C_{10} = 0.5$	$ C_9 = C_{10} = 0.5$
full q^2	$1.00 \pm O(\%)$	SM-like	SM-like	SM-like
low q^2	$0.94\pm \mathcal{O}(\%)$	7.520	4.413	11 32
high q ²	$1.00 \pm O(\%)$	$\mathcal{O}(100)$	$\mathcal{O}(100)$	$\mathcal{O}(100)$
low q ² high q ²	$0.94 \pm O(\%) \\ 1.00 \pm O(\%)$	7.520 <i>O</i> (100)	4.413 O(100)	1132 O(100)

- Increasing hints for LUV in rare b-decays motivate further LU tests
- Similar *R* ratios can be defined in rare charm decays
- ▶ Huge effects $\mathcal{O}(100)$ are still possible at high q^2

$$R_{\rho}^{\Lambda_{c}} = \int_{q_{\perp,i}^{2}}^{q_{\max}^{2}} \frac{\mathrm{d}\mathcal{B}(\Lambda_{c} \to \rho\mu^{+}\mu^{-})}{\mathrm{d}q^{2}} \mathrm{d}q^{2} / \int_{q_{\perp,i}^{2}}^{q_{\max}^{2}} \frac{\mathrm{d}\mathcal{B}(\Lambda_{c} \to \rhoe^{+}e^{-})}{\mathrm{d}q^{2}} \mathrm{d}q^{2}$$

$R_p^{\Lambda_c}$	SM	$ C_9 = 0.5$	$ C_{10} = 0.5$	$ C_9 = C_{10} = 0.5$
full q^2	$1.00 \pm O(\%)$	SM-like	SM-like	SM-like
low q^2	$0.94\pm \mathcal{O}(\%)$	7.520	4.413	11 32
high q ²	$1.00\pm \mathcal{O}(\%)$	$\mathcal{O}(100)$	$\mathcal{O}(100)$	$\mathcal{O}(100)$

Similar results are obtained in R_{π}^{D} , $R_{K}^{D_{s}}$, $R_{\pi\pi}^{D}$, R_{KK}^{D}

Link dineutrino to charged dilepton modes via $SU(2)_L$ in SMEFT 2007.05001, 2010.02225

$$\mathcal{B} \propto \sum_{\nu=i,j} \left(|\mathcal{C}_{L}^{\boldsymbol{U}ij}|^{2} + |\mathcal{C}_{R}^{\boldsymbol{U}ij}|^{2} \right) = \operatorname{Tr} \left[\mathcal{C}_{L}^{\boldsymbol{U}} \, \mathcal{C}_{L}^{\boldsymbol{U}\dagger} + \mathcal{C}_{R}^{\boldsymbol{U}} \, \mathcal{C}_{R}^{\boldsymbol{U}\dagger} \right]$$
$$= \operatorname{Tr} \left[\mathcal{K}_{L}^{\boldsymbol{D}} \mathcal{K}_{L}^{\boldsymbol{D}\dagger} + \mathcal{K}_{R}^{\boldsymbol{U}} \mathcal{K}_{R}^{\boldsymbol{U}\dagger} \right] + \mathcal{O}(\lambda) = \sum_{\ell=i,j} \left(|\mathcal{K}_{L}^{\boldsymbol{D}ij}|^{2} + |\mathcal{K}_{R}^{\boldsymbol{U}ij}|^{2} \right) + \mathcal{O}(\lambda)$$

► SU(2) relates up, down, neutrinos and charged leptons. $c \rightarrow u \, \ell^+ \ell^- \longrightarrow c \rightarrow u \, \nu \bar{\nu} \longleftarrow s \rightarrow d \, \ell^+ \ell^-$

* Independent of PMNS matrix and subleading $\mathcal{O}(\lambda)$ corrections! * Prediction of dineutrino rates for different leptonic flavor structures $\mathcal{K}_{L,R}^{ij}$ can be probed with lepton-specific measurements!

Marcel Golz

Possible leptonic flavor structures for $\mathcal{K}_{L,R}^{ij}$ *i)* Lepton-universality (LU).

$$\left(\begin{array}{ccc} {\bf k} & 0 & 0 \\ 0 & {\bf k} & 0 \\ 0 & 0 & {\bf k} \end{array}\right)$$

ii) Charged lepton flavor conservation (cLFC).

$$\left(\begin{array}{ccc} \mathbf{k}_{11} & 0 & 0 \\ 0 & \mathbf{k}_{22} & 0 \\ 0 & 0 & \mathbf{k}_{33} \end{array}\right)$$

iii) $\mathcal{K}_{L,R}^{ij}$ arbitrary.

$$\left(\begin{array}{cccc} \mathbf{k}_{11} & \mathbf{k}_{12} & \mathbf{k}_{13} \\ \mathbf{k}_{21} & \mathbf{k}_{22} & \mathbf{k}_{23} \\ \mathbf{k}_{31} & \mathbf{k}_{32} & \mathbf{k}_{33} \end{array}\right)$$

Upper limits on dineutrino modes can probe lepton unversality!

b Bounds on lepton specific WCs for $\ell, \ell' = e, \mu, \tau$.2003.12421, 2002.05684

	$ \mathcal{K}_A^{P\ell\ell'} $	ee	$\mu\mu$	au au	$e\mu$	e au	μau
s ightarrow d	$ \mathcal{K}_L^{D\ell\ell'} $	3.5	1.9	6.7	2.0	6.1	6.6
c ightarrow u	$ \mathcal{K}_R^{U\ell\ell'} $	2.9	1.6	5.6	1.6	4.7	5.1

$$\mathcal{B} \propto x = \sum_{\ell,\ell'} \left(|\mathcal{K}_L^{D\ell\ell'}|^2 + |\mathcal{K}_R^{U\ell\ell'}|^2 \right) + \mathcal{O}(\lambda) = \sum_{\ell,\ell'} R^{\ell\ell'} + \mathcal{O}(\lambda)$$

$$x = 3 R^{\mu\mu} \lesssim 34 , \quad \text{(Lepton Universality)}$$

$$x = R^{ee} + R^{\mu\mu} + R^{\tau\tau} \lesssim 196 , \text{ (charged Lepton Flavor Conservation)}$$

$$x = R^{ee} + R^{\mu\mu} + R^{\tau\tau} + 2 \left(R^{e\mu} + R^{e\tau} + R^{\mu\tau} \right) \lesssim 716.$$

LU is fixed by the most stringent bound (muons) and the $\mathcal{O}(\lambda)$ corrections are included

technische universität dortmund

Dineutrino modes

 $\mathcal{B}(h_c \to F \nu \bar{\nu}) = A_+^{h_c F} x_+ + A_-^{h_c F} x_-, \quad x_{\pm} = \sum_{i,i} |\mathcal{C}_L^{Uij} \pm \mathcal{C}_R^{Uij}|^2 < 2 x.$

 $N_i = \eta_{\text{eff}} \mathcal{B}_i N(h_c), N(c\bar{c})_{\text{Belle II}} = 65 \cdot 10^9 \text{ for } 50 \text{ ab}^{-1}, N(c\bar{c})_{\text{FCC-ee}} = 550 \cdot 10^9.$

$h_c \rightarrow F$	\mathcal{B}_{III}^{max}	\mathcal{B}_{cLFC}^{max}	\mathcal{B}^{max}	$N_{\rm LU}^{\rm max}/\eta_{\rm eff}$	$N_{clFC}^{max}/\eta_{eff}$	$N^{ m max}/\eta_{ m eff}$
	$[10^{-7}]$	$[10^{-6}]$	$[10^{-6}]$			
$D^0 ightarrow \pi^0$	6.1	3.5	13	47 k (395 k)	270 k (2.3 M)	980 k (8.3 M)
$D^+ ightarrow \pi^+$	25	14	52	77 k (650 k)	440 k (3.7 M)	1.6 M (14 M)
$D_s^+ \to K^+$	4.6	2.6	9.6	6 k (50 k)	34 k (290 k)	120 k (1.1 M)
$D^0 ightarrow \pi^0 \pi^0$	1.5	0.8	3.1	11 k (95 k)	64 k (540 k)	230 k (2.0 M)
$D^0 ightarrow \pi^+\pi^-$	2.8	1.6	5.9	22 k (180 k)	120 k (1.0 M)	450 k (3.8 M)
$D^0 ightarrow K^+ K^-$	0.03	0.02	0.06	0.2 k (1.9 k)	1.3 k (11 k)	4.8 k (40 k)
$\Lambda_c^+ ightarrow p^+$	18	11	39	14 k (120 k)	82 k (700 k)	300 k (2.6 M)
$\Xi_c^+ \rightarrow \Sigma^+$	36	21	76	28 k (240 k)	160 k (1.4 M)	590 k (5.0 M)
$D^0 o X$	12	6.8	25	91 k (770 k)	520 k (4.4 M)	1.9 M (16 M)
$D^+ \to X$	30	17	63	94 k (800 k)	540 k (4.6 M)	2.0 M (17 M)
$D_s^+ \to X$	13	7.3	27	17 k (140 k)	95 k (810 k)	350 k (2.9 M)

 $(\mathsf{EFT} \ \mathsf{breakdown}) > \mathcal{B}^{\max} \ (\mathsf{LFV}) \!\!> \!\mathcal{B}^{\max}_{\mathrm{cLFC}} \ (\mathsf{LU} \ \mathsf{violation}) \!\!> \!\mathcal{B}^{\max}_{\mathrm{LU}}$

Outlook

- Sizable hadronic uncertainties in rare charm decays overcome in null test observables
- \blacktriangleright Plenty of opportunities \rightarrow we are only at the very beginning
- More null tests with charm baryons not covered in this talk
 A^{CP}_{FB} sensitive to ImC₁₀
 - Lepton flavor violating decays
- More possibilities
 - ► Radiative decays → Nico Adolph's talk in parallel
 - Four-body baryon decays
 - Decays of polarized Baryons

BACKUP

C.S.

IF

LQ's ($K'_9 = K'_{10} = 0.5$), SUSY + R-parity violation ($K_9 = -K_{10} = 0.009$), SUSY no R-parity violation ($K_9 = -K_{10} = 0.001$), Z' 1 ($K_9 = K'_9 = -K_{10} = -K'_{10} = 1.4 \cdot 10^{-4}$), Z' 2 ($K_9 = K'_9 = -K_{10} = -K'_{10} = 2.3 \cdot 10^{-4}$).

June, 2021 21 / 19

technische universität dortmund

$$R_{\pi}^{D} = \int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{\mathrm{d}\mathcal{B}(D \to \pi \mu^{+} \mu^{-})}{\mathrm{d}q^{2}} \mathrm{d}q^{2} / \int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{\mathrm{d}\mathcal{B}(D \to \pi e^{+}e^{-})}{\mathrm{d}q^{2}} \mathrm{d}q^{2}$$

$$\frac{R_{\pi}^{D}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}}} \frac{\mathrm{SM}}{\mathrm{log}^{2}} \frac{|C_{9}| = 0.5}{|C_{10}| = 0.5} \frac{|C_{10}| = 0.5}{|C_{10}| = 0.5} \frac{|C_{10}| = 0.5}{\mathrm{SM-like}}$$

$$\frac{\mathrm{SM-like}}{\int_{q_{\min}^{2}}^{\mathrm{SM-like}} \frac{\mathrm{SM-like}}{0.95 \pm \mathcal{O}(\%)} \frac{\mathcal{O}(100)}{\mathcal{O}(100)} \frac{\mathcal{O}(100)}{\mathcal{O}(100)}$$

Marcel Golz

10th International Workshop on Charm Physics

June, 2021 24 / 19

SU(2)-link relating dineutrino and dilepton modes

► $SU(2)_L \times U(1)_Y$ -invariant effective theory (1008.4884)

$$\mathcal{L}_{\mathsf{SMEFT}}^{\mathsf{LO}} \supset \frac{C_{\ell q}^{(1)}}{v^2} \bar{Q} \gamma_\mu Q \, \bar{L} \gamma^\mu L + \frac{C_{\ell q}^{(3)}}{v^2} \bar{Q} \gamma_\mu \tau^a Q \, \bar{L} \gamma^\mu \tau^a L + \frac{C_{\ell u}}{v^2} \bar{U} \gamma_\mu U \, \bar{L} \gamma^\mu L + \frac{C_{\ell d}}{v^2} \bar{D} \gamma_\mu D \, \bar{L} \gamma^\mu L$$

▶ C_A^P and K_A^P matched via SU(2)_L-components in gauge basis

$$\begin{split} C_{L}^{U} &= K_{L}^{D} = C_{\ell q}^{(1)} + C_{\ell q}^{(3)} \quad C_{R}^{U} = K_{R}^{U} = C_{\ell u} \\ C_{L}^{D} &= K_{L}^{U} = C_{\ell q}^{(1)} - C_{\ell q}^{(3)} \quad C_{R}^{D} = K_{R}^{D} = C_{\ell d} \end{split}$$

• going to mass basis: $Q_{\alpha} = (u_{L\alpha}, V_{\alpha\beta}d_{L\beta}), \quad L_i = (\nu_{Li}, W_{ki}^*\ell_{Lk})$ (V: CKM, W: PMNS)

$$\mathcal{C}_{L}^{U} = W^{\dagger} \mathcal{K}_{L}^{D} W + \mathcal{O}(\lambda), \quad \mathcal{C}_{R}^{U} = W^{\dagger} \mathcal{K}_{R}^{U} W$$

Upper limits on x from high- p_T

 $\mathcal{C}_L^{U_{12}} = W^{\dagger} \mathcal{K}_L^{D_{12}} W + \lambda W^{\dagger} (\mathcal{K}_L^{D_{22}} - \mathcal{K}_L^{D_{11}}) W + \mathcal{O}(\lambda^2) , \qquad \mathcal{C}_R^{U_{12}} = W^{\dagger} \mathcal{K}_R^{U_{12}} W$

	$ \bar{\mathcal{K}}^{P\ell\ell'}_A $	ee	$\mu\mu$	$\tau \tau$	$e\mu$	$e\tau$	$\mu\tau$
$d \rightarrow d$	$ \mathcal{K}_{L,R}^{D_{11}\ell\ell'} $	2.8	1.5	5.5	1.1	3.3	3.6
$s \rightarrow s$	$\left \mathcal{K}_{L,R}^{D_{22}\ell\ell'}\right $	9.0	4.9	17	5.2	17	18
$s \rightarrow d$	$ \bar{\mathcal{K}}_{L,R}^{D_{12}\ell\ell'} $	3.5	1.9	6.7	2.0	6.1	6.6
$c \rightarrow u$	$ \bar{\mathcal{K}}_{L,R}^{U_{12}\ell\ell'} $	2.9	1.6	5.6	1.6	4.7	5.1

(2003.12421), (2002.05684)

	ee	$\mu\mu$	$\tau\tau$	$e\mu$	еτ	$\mu\tau$
$R^{\ell\ell'}$	21	6.0	77	6.6	59	70
$\delta R^{\ell\ell'}$	19	5.4	69	5.7	55	63
r ^{ℓℓ′}	39	11	145	12	115	133

with
$$r^{\ell\ell'} = R^{\ell\ell'} + \delta R^{\ell\ell'}$$

$$\begin{aligned} R^{\ell\ell'} &= |\mathcal{K}_{L}^{D_{12}\ell\ell'}|^{2} + |\mathcal{K}_{R}^{U_{12}\ell\ell'}|^{2}, \\ R^{\ell\ell'}_{\pm} &= |\mathcal{K}_{L}^{D_{12}\ell\ell'} \pm \mathcal{K}_{R}^{U_{12}\ell\ell'}|^{2}, \\ \delta R^{\ell\ell'} &= 2\,\lambda\,\Re\mathcal{K}_{L}^{D_{12}\ell\ell'}\,\mathcal{K}_{L}^{D_{22}\ell\ell'*} - \mathcal{K}_{L}^{D_{12}\ell\ell'}\mathcal{K}_{L}^{D_{11}\ell\ell'*} \end{aligned}$$

$$x = \sum_{\ell,\,\ell'} \left(R^{\ell\ell'} + \delta R^{\ell\ell'} \right) \,, \quad x_{\pm} = \sum_{\ell,\,\ell'} R_{\pm}^{\ell\ell}$$

construct bounds on $x = \frac{x_+ + x_-}{2}$, with $x^{\pm} \le 2x$, $x = 3 r^{\mu\mu} \le 34$, (LU) $x = r^{ee} + r^{\mu\mu} + r^{\tau\tau} \le 196$, (cLFC) $x = r^{ee} + r^{\mu\mu} + r^{\tau\tau} + 2(r^{e\mu} + r^{e\tau} + r^{\mu\tau}) \le 716$.