$V_{c s}$ determination from $D \rightarrow K \ell \nu$

William Parrott
2399654p@student.gla.ac.uk

University of Glasgow

HPQCD

B. Chakraborty, C. Bouchard, C.T.H. Davies, J. Koponen, G.P. Lepage

Overview

I will summarise the results in arXiv:2104.09883

- Motivation.
- Calculation of hadronic form factors.
- $D \rightarrow K$ form factor results.
- Sub 1% accurate determination of $V_{c s}$.

Motivation

- Flavour changing weak decays of heavy mesons can test the SM.
- $D \rightarrow K \ell \nu$ depends on CKM element: $V_{c s}$. We calculate hadronic part of decay.
- CKM unitarity is a good place to look for new physics.
- We need very precise CKM element determinations to test SM.

$$
\frac{d \Gamma^{D \rightarrow K}}{d q^{2}}=\frac{G_{F}^{2}\left|V_{c s}\right|^{2}}{24 \pi^{3}}\left|\vec{p}_{K}\right|^{3}\left|f_{+}\left(\underset{q^{2}}{\leftarrow}\right)\right|^{2}
$$

- Parameterise the 'QCD bit' in the differential decay rate.
- Interested in $f_{+}\left(q^{2}\right)$ and $f_{0}\left(q^{2}\right)$ form factors for $D \rightarrow K$.
- Encode meson structure.
- Describe the shape in $q^{2}=\left(p_{\text {mother }}-p_{\text {daughter }}\right)^{2}$ space.

$D \rightarrow K$ form factors

- Want meson form factors over the full range of q^{2} values.
- Require three-point correlators with scalar and vector current insertions for f_{0} and f_{+}.
- Calculate these using lattice QCD - averaging over gluon fields.

$D \rightarrow K$ form factors

- MILC HISQ $2+1+1$ ensembles. All valence quarks HISQ.
- 5 lattice spacings in range $0.15-0.045 \mathrm{fm}$. Three with physical light quark masses - others with heavier light quarks as they are very expensive.
- Charm mass easy to reach on all ensembles.
- Cover whole physical q^{2} range.

$D \rightarrow K$ form factors

Convert to z space to perform standard continuum-chiral extrapolation, guided by effective
 theories:

$$
\begin{align*}
f_{0}\left(q^{2}\right)= & \frac{\log s}{1-\frac{q^{2}}{M_{D_{s}^{0}}^{2}}} \sum_{n=0}^{N-1} a_{n}^{0} z^{n} \\
f_{+}\left(q^{2}\right)= & \frac{\log s}{1-\frac{q^{2}}{M_{D_{s}^{*}}^{2}}} \sum_{n=0}^{N-1} a_{n}^{+}\left(z^{n}-\frac{n}{N}(-1)^{n-N} z^{N}\right) \tag{1}
\end{align*}
$$

$D \rightarrow K$ form factor results

- We obtain the full q^{2} range \Longrightarrow can compare bin by bin with exp. partial decay rate data to extract $V_{c s}$.
- Experiments also use z expansion, so we can compare coefficients to test SM using shape in z.

$D \rightarrow K$ form factor results

Ratios of $f_{+} z$ expansion coefficients a_{n}, directly compare form factor shape with experiment. 68% confidence ellipses show good agreement

$D \rightarrow K$ form factor results

Full expression includes previously neglected electroweak and EM corrections, as well as terms in $\epsilon=\frac{m_{\ell}^{2}}{q^{2}}$,

$$
\begin{align*}
& \frac{d \Gamma^{D \rightarrow K}}{d q^{2}}=\frac{G_{F}^{2}\left(\eta_{\mathrm{EW}}\left|V_{c s}\right|\right)^{2}}{24 \pi^{3}}(1-\epsilon)^{2}\left(1+\delta_{\mathrm{EM}}\right) \times \\
& \quad\left[\left|\vec{p}_{K}\right|^{3}\left(1+\frac{\epsilon}{2}\right)\left|f_{+}\left(q^{2}\right)\right|^{2}+\left|\vec{p}_{K}\right| M_{D}^{2}\left(1-\frac{M_{K}^{2}}{M_{D}^{2}}\right)^{2} \frac{3 \epsilon}{8}\left|f_{0}\left(q^{2}\right)\right|^{2}\right], \tag{2}
\end{align*}
$$

where $\eta_{\mathrm{EW}}=1.009(2)$. We take δ_{EM} as a $0.5 \%(1 \%)$ error for K^{0} $\left(K^{ \pm}\right)$. Final state interactions dominate $\delta_{\text {EM }}$ - hence K^{0} smaller. We can use this to extract $V_{c s}$ in three different ways:

Method 1: Using q^{2} binned differential decay rates,

- Experimental error dominates each bin, theory dominates final result.

$$
\Delta_{i} \Gamma=\int_{q_{i}^{2}}^{q_{i+1}^{2}} \frac{d \Gamma}{d q^{2}} d q^{2}
$$

$V_{\text {cs }}$ results

- Preferred method using whole q^{2} range and multiple experiments.
- Theory still (just) dominates error, but can also be improved withe future binned experimental data (with correlations).

$V_{c s}$ results

Method 2: Using total branching fraction for all 4 decay modes,

$$
R_{\mu / e}=\mathcal{B}_{\mu} / \mathcal{B}_{e} \quad \mathcal{B}=\tau_{D} \int_{0}^{q_{\max }^{2}} \frac{d \Gamma}{d q^{2}} d q^{2}
$$

Can also look at

$V_{c s}$ results

Method 3: Using $\left|V_{c s}\right| f_{+}(0)$

$f_{+}(0) \eta_{\mathrm{EW}} \sqrt{\left(1+\delta_{\mathrm{EM}}\right)}\left|V_{C S}\right|=0.7180(33)$ (HFLAV, arXiv:1612.07233)

$V_{c s}$ results

HPQCD '21 results:

$$
\begin{aligned}
\left|V_{c s}\right|^{\Gamma} & =0.9663(53)_{\text {latt }}(39)_{\exp }(19)_{\eta_{\mathrm{EW}}}(40)_{\delta_{\mathrm{EM}}} \\
\left|V_{c s}\right|^{\mathcal{B}} & =0.9680(54)_{\mathrm{latt}}(42)_{\exp }(19)_{\eta_{\mathrm{EW}}}(30)_{\delta_{\mathrm{EM}}} \\
\left|V_{c s}\right|^{f_{+}(0)} & =0.9643(57)_{\mathrm{latt}}(44)_{\exp }(19)_{\eta_{\mathrm{EW}}}(48)_{\delta_{\mathrm{EM}}}
\end{aligned}
$$

$\left|V_{c s}\right|=0.9663(80)$, big improvement on current PDG sl value of 0.939(38)

Additional constraint from leptonic D_{s} and D^{+}decays, combined with lattice decay constants.

Conclusions

$$
\begin{aligned}
& \left|V_{c d}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{c b}\right|^{2}=0.9826(22)_{V_{c d}}(155)_{V_{c s}}(1)_{V_{c b}} \\
& \left|V_{u s}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{t s}\right|^{2}=0.9859(2)_{V_{u s}}(155)_{V_{c s}}(1)_{V_{t s}}
\end{aligned}
$$

- $\left|V_{c s}\right|=0.9663(80)$ determination from $D \rightarrow K \ell \nu$ using bin by bin comparisons with experimental differential decay rate.
- First determination showing $V_{c s}$ to be significantly lower than 1 and first sub 1% uncertainty.
- Agrees well with determinations from 2 other methods.
- Theory and experimental error similar. EM error also a large contribution.
- New generation of lattice calculation, more stats, or EM work needed for theory improvement.
- Can also look for BSM physics in $R_{\mu / e}$.

Thanks for listening. Any questions?

Extra Slides

$$
\begin{gathered}
R_{\mu / e}=\frac{\mathcal{B}_{\mu}}{\mathcal{B}_{e}} . \zeta \text { allows for NP scalar coupling in } \mu \text { which modifies the } f_{0} \\
\text { coefficient (see arXiv:1502.07488). }
\end{gathered}
$$

Extra Slides

$$
\begin{align*}
& Z_{V}\langle K| V^{0}|\hat{H}\rangle= \\
& f_{+}\left(q^{2}\right)\left(p_{H}^{0}+p_{K}^{0}-\frac{M_{H}^{2}-M_{K}^{2}}{q^{2}} q^{0}\right) \tag{5}\\
& +f_{0}\left(q^{2}\right) \frac{M_{H}^{2}-M_{K}^{2}}{q^{2}} q^{0} \\
& \quad\langle K| S|H\rangle=\frac{M_{H}^{2}-M_{K}^{2}}{m_{h}-m_{s}} f_{0}\left(q^{2}\right) \tag{6}\\
& Z_{T}\langle\hat{K}| T^{i 0}|\hat{H}\rangle=\frac{2 i M_{H} p_{K}^{i}}{M_{H}+M_{K}} f_{T}\left(q^{2}\right) \tag{7}
\end{align*}
$$

$$
\begin{gather*}
z\left(q^{2}\right)=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}} \tag{8}\\
\frac{m_{l}}{m_{s}} \approx \frac{M_{\pi}^{2}}{M_{\eta_{s}}^{2}} \tag{9}
\end{gather*}
$$

