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Overview

I will summarise the results
in arXiv:2104.09883

I Motivation.

I Calculation of hadronic form factors.

I D → K form factor results.

I Sub 1% accurate determination of Vcs.
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Motivation
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I Flavour changing weak decays of heavy mesons can test the SM.

I D → K`ν depends on CKM element: Vcs. We calculate hadronic
part of decay.

I CKM unitarity is a good place to look for new physics.

I We need very precise CKM element determinations to test SM.
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Form factors
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dΓD→K
dq2

=
G2
F |Vcs|

2

24π3 |~pK |3 |f+(q2)|2

I Parameterise the ‘QCD bit’ in the differential decay rate.

I Interested in f+(q2) and f0(q2) form factors for D → K.

I Encode meson structure.

I Describe the shape in q2 = (pmother − pdaughter)
2 space.



D → K form factors

I Want meson form factors over the full range of q2 values.

I Require three-point correlators with scalar and vector current
insertions for f0 and f+.

I Calculate these using lattice QCD - averaging over gluon fields.
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D → K form factors

I MILC HISQ 2+1+1 ensembles. All valence quarks HISQ.

I 5 lattice spacings in range 0.15-0.045fm. Three with physical light
quark masses - others with heavier light quarks as they are very
expensive.

I Charm mass easy to reach on all ensembles.

I Cover whole physical q2 range.
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D → K form factors
2 Flavor Physics and CP Violation Conference, Vancouver, 2006

Table I Maximum |z(t, t0)| throughout semileptonic

range with symmetrizing choice t0 = t+(1−
√

1 − t−/t+).

Process CKM element |z|max

π+ → π0 Vud 3.5 × 10−5

B → D Vcb 0.032

K → π Vus 0.047

D → K Vcs 0.051

D → π Vcd 0.17

B → π Vub 0.28

have about the form factors, following just from kine-
matics without dynamics. Pseudoscalar-pseudoscalar
transitions between “heavy-light”, nonsinglet mesons
are particularly simple and are the main focus. 3

Rigorous power-counting arguments provide the basis
for a powerful expansion based on analyticity. Sec-
tion 3 illustrates how the experimental data is simpli-
fied by making use of this expansion. In particular,
we find the remarkable conclusion that in terms of
standard variables, no semileptonic meson form fac-
tor has ever been observed to deviate from a straight
line. Given that the form factors are indistinguishable
from straight lines, if the shape of the semileptonic
spectrum is to provide insight on QCD, it must be
through the slope of the form factor; in fact, a clear
but unsolved question in QCD translates directly into
the numerical value of this slope in an appropriate
limit, as described in Section 4. Phenomenological
implications in the B → π system are considered in
Section 5. The methodology described here provides
a convenient framework in which to understand pre-
cisely what measurements in the charm system can,
and cannot, say that is relevant to the bottom sys-
tem, as discussed in Section 6. Section 7 outlines the
extension to pseudoscalar-vector transitions.

2. Analyticity and crossing symmetry

An oft-cited downside of old and well-known
dispersion-relation arguments is that the results are
too general, and do not make specific predictions for
detailed dynamics. In fact, precisely these properties
make them useful to the problem at hand—it is essen-
tial to make some statement on the possible functional
form of the form factors, yet we do not want to make
assumptions, explicit or implicit, on the dynamics.

The analytic structure of the form factors can be

3The nonsinglet restriction ensures that only a single topol-
ogy is relevant as in Figure 1.

zt

Figure 2: Mapping (3) of the cut t plane onto the unit
circle. The semileptonic region is represented by the blue
line.

investigated by standard means. 4 Let us focus on
the form factors for pseudoscalar-pseudoscalar transi-
tions, defined by the matrix element of the relevant
weak vector current, (q ≡ p − p′)

〈L(p′)|V µ|H(p)〉
= F+(q2) (pµ + p′µ) + F−(q2)qµ

= F+(q2)

(
pµ + p′µ − m2

H − m2
L

q2
qµ

)

+F0(q
2)

m2
H − m2

L

q2
qµ . (1)

To ensure that there is no singularity at q2 = 0, the
form factors obey the constraint

F+(0) = F0(0) . (2)

Ignoring possible complications from anomalous
thresholds or subthreshold resonances, to be discussed
below, the form factors F (t = q2) can be extended
to analytic functions throughout the complex t plane,
except for a branch cut along the positive real axis,
starting at the point t = t+ [t± ≡ (mH ±mL)2] corre-
sponding to the threshold for production of real H̄L
pairs in the crossed channel. By a standard transfor-
mation, as illustrated in Figure 2, the cut t plane is
mapped onto the unit circle |z| ≤ 1,

z(t, t0) ≡
√

t+ − t − √
t+ − t0√

t+ − t +
√

t+ − t0
, (3)

where t0 is the point mapping onto z = 0. The iso-
lation of the semileptonic region from singularities in
the t plane implies that |z| < 1 throughout this re-

gion. Choosing t0 = t+(1 −
√

1 − t−/t+) minimizes
the maximum value of |z|; for typical decays these
maximum values are given in Table I.

Since the form factor is analytic, it may be ex-
panded,

F (t) =
1

P (t)φ(t, t0)

∞∑

k=0

ak(t0)z(t, t0)
k , (4)

4For a general discussion, see e.g. [3]. For early work on
applications to semileptonic form factors, see [4, 5, 6, 7, 8, 9, 10].

fpcp06 324

f0(q2) =
logs

1− q2

M2
D0
s

N−1∑

n=0

a0
nz

n,

f+(q2) =
logs

1− q2

M2
D∗s

N−1∑

n=0

a+
n

(
zn − n

N
(−1)n−NzN

)
.

(1)
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Convert to z space to perform
standard continuum-chiral

extrapolation, guided by effective
theories:

N = 3



D → K form factor results
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I We obtain the full q2 range =⇒ can compare bin by bin with
exp. partial decay rate data to extract Vcs.

I Experiments also use z expansion, so we can compare coefficients
to test SM using shape in z.
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D → K form factor results
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Ratios of f+ z expansion coefficients an, directly compare form factor
shape with experiment. 68% confidence ellipses show good agreement.
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D → K form factor results

Full expression includes previously neglected electroweak and EM

corrections, as well as terms in ε =
m2
`

q2
,

dΓD→K

dq2
=
G2
F (ηEW|Vcs|)2

24π3
(1− ε)2(1 + δEM)×

[
|~pK |3(1 +

ε

2
)|f+(q2)|2 + |~pK |M2

D

(
1− M2

K

M2
D

)2 3ε

8
|f0(q2)|2

]
,

(2)

where ηEW = 1.009(2). We take δEM as a 0.5% (1%) error for K0

(K±). Final state interactions dominate δEM - hence K0 smaller.
We can use this to extract Vcs in three different ways:
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Vcs results

Method 1: Using q2 binned differential decay rates,
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I Experimental error dominates each bin, theory dominates final
result.

∆iΓ =

∫ q2i+1

q2i

dΓ

dq2
dq2 (3)
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Vcs results
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dq2

I Preferred method using whole q2 range and multiple experiments.

I Theory still (just) dominates error, but can also be improved with
future binned experimental data (with correlations).
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Vcs results

Method 2: Using total branching fraction for all 4 decay modes,
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D0→ K−e+νe

D0→ K−µ+νµ

D+→ K̄0e+νe

D+→ K̄0µ+νµ B

B = τD

∫ q2max

0

dΓ

dq2
dq2 (4)
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Can also look at
Rµ/e = Bµ/Be



Vcs results

Method 3: Using |Vcs|f+(0)
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f+(0)

f+(0)ηEW

√
(1 + δEM)|Vcs| = 0.7180(33) (HFLAV, arXiv:1612.07233)
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Vcs results
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Nf = 2 + 1

Nf = 2 + 1 + 1

dΓ/dq2

f+(0)

B

HPQCD ’21 results:
|Vcs|Γ = 0.9663(53)latt(39)exp(19)ηEW(40)δEM

|Vcs|B = 0.9680(54)latt(42)exp(19)ηEW(30)δEM

|Vcs|f+(0) = 0.9643(57)latt(44)exp(19)ηEW(48)δEM
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Vcs results

|Vcs| = 0.9663(80), big improvement on current PDG sl value of
0.939(38)
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Vcs results
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Additional constraint from leptonic Ds and D+ decays, combined with
lattice decay constants.
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Conclusions

|Vcd|2 + |Vcs|2 + |Vcb|2 = 0.9826(22)Vcd(155)Vcs(1)Vcb
|Vus|2 + |Vcs|2 + |Vts|2 = 0.9859(2)Vus(155)Vcs(1)Vts

I |Vcs| = 0.9663(80) determination from D → K`ν using bin by bin
comparisons with experimental differential decay rate.

I First determination showing Vcs to be significantly lower than 1
and first sub 1% uncertainty.

I Agrees well with determinations from 2 other methods.

I Theory and experimental error similar. EM error also a large
contribution.

I New generation of lattice calculation, more stats, or EM work
needed for theory improvement.

I Can also look for BSM physics in Rµ/e.

Thanks for listening. Any questions?
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Extra Slides

Rµ/e =
Bµ
Be . ζ allows for NP scalar coupling in µ which modifies the f0

coefficient (see arXiv:1502.07488).
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Extra Slides
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Extra Slides

ZV 〈K|V 0 |Ĥ〉 =

f+(q2)
(
p0
H + p0

K −
M2
H −M2

K

q2
q0
)

+ f0(q2)
M2
H −M2

K

q2
q0,

(5)

〈K|S |H〉 =
M2
H −M2

K

mh −ms
f0(q2), (6)

ZT 〈K̂|T i0 |Ĥ〉 =
2iMHp

i
K

MH +MK
fT (q2), (7)
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Extra Slides

z(q2) =

√
t+ − q2 −√t+ − t0√
t+ − q2 +

√
t+ − t0

(8)

ml

ms
≈ M2

π

M2
ηs

(9)
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