10th International Workshop on Charm Physics – CHARM 2020

Radiative and rare charm decays

<u>Isabella Garzia</u>

University of Ferrara and INFN On behalf of the BESIII Collaboration

Università degli Studi di Ferrara May 30 – June 4, 2021 Mexico City, Mexico

CHARM2020 Vírtual Conference

Beijing Electron Positron Collider II

http://english.ihep.cas.cn

Beijing Electron Positron Collider II

http://english.ihep.cas.cn

BESIII Dataset

Unique dataset for open charm studies (used for the results in this talk):

$\sqrt{ extsf{s}}$ (GeV)	L (fb ⁻¹)		
3.773	2.93	DD	quantum
4.178	3.19	D _s D [*] s	state

Isabella Garzía - CHARM2020/2021 - *June 4, 2021*

- Lepton Number (LN) is conserved in Standard Model (SM)
 - v massless LH particle
- Experimental evidence that $m_v \neq 0$
 - New Physics scenario
- v nature: Dirac or Majorana particle?
- Majorana neutrino can be manifested through the processes violating LN by two units: $\Delta L = 2$

- Lepton Number (LN) is conserved in Standard Model (SM)
 - v massless LH particle
- Experimental evidence that $m_v \neq 0$
 - New Physics scenario
- v nature: Dirac or Majorana particle?
- Majorana neutrino can be manifested through the processes violating LN by two units: $\Delta L = 2$

> **a** BESIII, using 2.93 fb⁻¹ at $\sqrt{s}=3.773$ GeV:

PRD 99, 112002 (2019)

Single tag method

$$\Delta E = E_D - E_{beam}$$
$$M_{BC} = \sqrt{E_{beam}^2 - |\vec{p_d}|^2}$$

90% Confidence level

PRD 99, 112002 (2019)

Channels	Upper limits	
$D^0 \to K^- \pi^- e^+ e^+$	$< 2.8 \times 10^{-6}$	(*)
$D^+ \to K^0_S \pi^- e^+ e^+$	$< 3.3 \times 10^{-6}$	
$D^+ \to K^- \pi^0 e^+ e^+$	$< 8.5 \times 10^{-6}$	(*)

best limits on these channels up to now!!!

(*) from E791 Collaboration [PRL86, 3969 (2001) BR^{UL} ~ $10^{-4} - 10^{-5}$]

PRD 99, 112002 (2019)

10

Single tag method

Search for Majorana neutrino in the decay chains $D^0 \to K^- e^+ \nu_m(\pi^- e^+), D^+ \to K^0_S e^+ \nu_m(\pi^- e^+)$ \geq

- The excess of baryons over antibaryons in the Universe suggests the existence of baryon number violating (BNV) processes
- BNV described in SM extensions and GUTs
- ▶ Prediction of BR of D⁺ $\rightarrow \overline{\Lambda} \ell^{+}$ no more than 10⁻²⁹ (PRD 72,095001)

These decays amplitudes may be comparable (PRD 72,095001)

- 2.93 fb⁻¹ at √s=3.773 GeV
- Single tag

 $> D^+ \to \bar{\Lambda}e^+, \ D^+ \to \bar{\Sigma}^0e^+ \quad (\Delta(B-L)=0) \qquad D^+ \to \Lambda e^+, \ D^+ \to \Sigma^0e^+ \quad (\Delta(B-L)=2)$

Search for $D_{s}^{+} \rightarrow \gamma e^{+} v_{e}$ radiative decays PRD 99, 072002 (2019)

- ▶ $P \rightarrow l^+ v_1$ decays are helicity suppressed
- Radiative decays avoid helicity suppression
 - → B(D⁺→γe⁺ν_e) < 3.0 ×10⁻⁵ (Cabibbo suppressed): PRD 95, 071102 (2017)
- \succ D_s⁺→γe⁺ν_e is Cabibbo favored process
- ➢ BF is predicted to be of the order of 10⁻⁴ 10⁻⁵ in the light front quark model (MPL A15, 2087, PLB 562, 75)

Tree-level Feynman diagrams contribution

Long distance contribution described by the VDM model (MPL A27,1250120)

BF of the order of 10⁻³

 $\mathcal{B}(D_{s}^{+} \rightarrow \gamma e^{+} \nu_{e}) < 1.3 \times 10^{-4} @ 90\% \text{ C.L.}$

Singly CS decays $D \rightarrow \omega \pi \pi$

- Multibody hadronic decays important to understand the decay dynamics of both strong and weak interaction
- Important input to the beauty sector for SM predictions
- 2.93 fb⁻¹ at √s=3.773 GeV

Double tag

ST:

- $D^0 \rightarrow K^+ \pi^-, K^+ \pi^- \pi^0, K^+ \pi^- \pi^- \pi^+$
- $D^- \to K^- \pi^+ \pi^-, K^+ \pi^- \pi^- \pi^0, K_S \pi^-, K_S \pi^- \pi^0, K_S \pi^- \pi^- \pi^+, K^+ \pi^- \pi^-$ **DT**:
- $D^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^- \pi^+, \pi^+ \pi^- \pi^0 \pi^0 \pi^0$
- $D^+ \rightarrow \pi^+ \pi^- \pi^0 \pi^+ \pi^0$

Clear ω and η signal

PRD 102, 052003 (2020)

Singly CS decays $D \rightarrow \omega \pi \pi$ PRD 102, 052003 (2020)

2D unbinned maximum likelihood fit is performed to M_{BC}^{sig} and M_{BC}^{tag} in the signal region $N_{DT}^{sig} = N_{SG}^{\omega/\eta} - f \cdot N_{SB}^{\omega/\eta} - N_{peak}^{BKGV}$

- BKGI: only one of the two D mesons are incorrectly reconstructed
- BKGII: $e^+e^- \rightarrow qqbar$
- BKGIII: PHSP

Isabella Garzía - CHARM2020/2021 - *June 4, 2021*

Singly CS decays $D \rightarrow \omega \pi \pi$ PRD 102, 052003 (2020)

Isabella Garzía - CHARM2020/2021 - *June 4, 2021*

Singly CS decays $D \rightarrow \omega \pi \pi$

PRD 102, 052003 (2020)

Doubly CS decays $D^+ \rightarrow K^+ \pi^- \pi^0$

<mark>= PRL 125, 141802 (2020)</mark>

Doubly Cabibbo-Suppressed (DCS) decays of charmed hadrons relatively unexplored
 DCS/CF is of the order of tan⁴θ_C ~ 0.29%

DCS decays	BF(×10 ⁻⁴)	CF decays	BF(×10 ⁻²)	Ratio $(\times 10^{-3})$
$D^0 \rightarrow K^+ \pi^-$	1.50±0.07	$D^0 \rightarrow K^- \pi^+$	3.95±0.03	3.8±0.18
$D^0 \rightarrow K^+ \pi^- \pi^0$	3.06±0.15	$D^0 \rightarrow K^- \pi^+ \pi^0$	14.4±0.5	2.12±0.13
$D^0 \rightarrow K^+ \pi^- \pi^- \pi^+$	2.65±0.06	$D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$	8.23±0.14	3.19±0.10
$D^+ {\longrightarrow} K^+ \pi^- \pi^+$	4.91±0.09	$D^+\!\!\rightarrow\! K^-\pi^+\pi^+$	8.38±0.16	5.84±0.34

*https://pdg.lbl.gov/2020/tables/rpp2020-sum-mesons.pdf

- Study of $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$ offers unique opportunity to search for $D^+ \rightarrow K^+ \omega$ and to determine its BR
- Search for CP violation in DCS decays: even if it is expected to be very tiny it offers complementary information about CP violation in the charm sector

> 2.93 fb⁻¹ at √s=3.773 GeV > Double tag

Doubly CS decays $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$

$$\Delta E = E_D - E_{beam}$$
$$M_{BC} = \sqrt{E_{beam}^2 - |\vec{p_d}|^2}$$

Double TAG:

- D⁻ in the tag side and D⁺ \rightarrow K⁺ $\pi^+\pi^-\pi^0$ in the signal side
- 2D unbinned maximum likelihood fit to M^{tag}_{BC} and M^{sig}_{BC}
- $D^+ \rightarrow K^+ \omega$ 2D fit in the ω signal and sideband regions

Isabella Garzía - CHARM2020/2021 - June 4, 2021

Doubly CS decays $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$

Decay mode	$\mathcal{B}^*_{\mathrm{sig}}(imes 10^{-3})$
$D^{\pm} ightarrow K^{\pm} \pi^{\pm} \pi^{\mp} \pi^{0}$	1.13 ± 0.08
$D^{\pm} \to K^{\pm} \omega$	
$D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$	1.17 ± 0.11
$D^- \rightarrow K^- \pi^- \pi^+ \pi^0$	1.08 ± 0.11

PRL 125, 141802 (2020)

* without contributions from $D^+ \rightarrow K^+ \omega$, $K^+ \eta$, $K^+ \phi$

- Evidence of $D^+ \rightarrow K^+ \omega$
 - BF(D⁺ \rightarrow K⁺ ω) = (5.7^{+2.5}_{-2.1}±0.2)×10⁻⁵ (3.3 σ of statistical significance)

• $\frac{\mathcal{B}(D^+ \to K^+ \pi^- \pi^+ \pi^0)}{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+ \pi^0)} = (1.81 \pm 0.15)\% = (6.28 \pm 0.52) \tan^4 \theta_c \text{ significantly}$ larger than the values (0.21-0.58)% measured from the other DCS decays

- Amplitude analysis with more data are needed
- No evidence for CP violation:

$$\mathcal{A}_{CP}^{D^{\pm} \to K^{\pm} \pi^{\pm} \pi^{\mp} \pi^{0}} = \frac{\mathcal{B}(D^{+} \to K^{+} \pi^{+} \pi^{-} \pi^{0}) - \mathcal{B}(D^{-} \to K^{-} \pi^{-} \pi^{+} \pi^{0})}{\mathcal{B}(D^{+} \to K^{+} \pi^{+} \pi^{-} \pi^{0}) + \mathcal{B}(D^{-} \to K^{-} \pi^{-} \pi^{+} \pi^{0})} = -0.04 \pm 0.06 \pm 0.01$$

Conclusions

- The world largest datasets collected by the BESIII experiment provide unique opportunity to study and search for rare and radiative charm decays
 - Single Tag and Double Tag techniques
 - Low backgrounds
- Covered in this talk:
 - Search for LN violation in D decays PRD **99**, 112002 (2019)
 - Search for BN Violation in D decays PRD **101**, 031102(2019)
 - Search for $D_s^+ \rightarrow \gamma e^+ \nu_e$ radiative decays PRD **99**,072002 (2019)
 - $D \rightarrow \omega \pi \pi$ singly CS decay PRD **102**,052003 (2020)
 - $D^+ \rightarrow K^+ \pi^- \pi^0$ singly CS decay PRL **125**,141802 (2020)
 - many other results shown in this Conference
- New data @ $\psi(3770)$ (~20 fb⁻¹) will be available
 - New interesting results expected

Back-up slídes

The BESIII Detector

Nucl. Instr. Meth. A614, 345 (2010)

 $\sigma_{xy} \sim (6 \text{ mm})/E^{1/2} @ 1 \text{ GeV}$

Isabella Garzía - University of Ferrara and INFN

 $\sigma_{pt}/p_t \sim 0.5 \%$ @ 1 GeV

BESIII physics programme

Light hadron physics

- Meson and baryon spectroscopy
- Multiquark states
- Threshold effects
- Glueballs and hybrids
- two-photon physics
- Form factors

QCD and τ

- Precision R measurement
- τ decay

Charmonium physics

- Precision spectroscopy
- Transitions and decays

XYZ meson physics

- Y(4260), Y(4360) properties
- Z_c(3900)⁺, ...

Charm physics

- Semi-leptonic form factors
- Decay constants f_{D} and f_{Ds}
- CKM matrix: $|V_{cd}|$ and $|V_{cs}|$
- $D^0 \overline{D}^0$ mixing, CPV
- Strong phases

Precision mass measurements

- τ mass
- D, D^{*} mass

Isabella Garzía - University of Ferrara and INFN

Single CS

Double CS

Singly CS decays $D \rightarrow \eta \pi \pi$

PRD 102, 052003 (2020)

Rare semí-leptonic D decays

- > Transition between charm meson and baryon pairs is still unexplored
- > D_s^+ →pn observed by CLEO (PRL 100, 181802) and confirmed by BESIII (PRD 99, 031101)
 - > Observed BR of the order of 10^{-3} ,
 - > Predicted to be of the order of 10^{-2} (PRL 45, 1663)
- ▶ Promising candidate to study is $D_s^+ \rightarrow p\bar{p}e^+\nu_e$
 - > BR prediction ~ 10^{-8} - 10^{-9} (PLB 780, 100)
 - Important to study the near-threshold enhancement phenomena

Differential rate:

$$\frac{d\Gamma(D_s^+ \to Xe^+\nu_e)}{dq^2} = \frac{G_F^2 |V_{cs}|^2}{24\pi^3} p_X^3 |f_+(q^2)|^2,$$

 e^+

- ➤ a BESIII: 3.19 fb⁻¹ at √s=4.178 GeV
- Double tag

 $\mathcal{D}_{x}^{+} \rightarrow p p e^{+} v_{e}$

Observation of $\mathcal{D}^+ \rightarrow \omega \mu^+ \nu_{\mu}$

PRD 101, 072005 (2020)

Test for Lepton Flavor Universality

$$\begin{array}{l} \succ \quad \mathcal{R}^{+} \equiv \mathcal{B}_{D^{+} \to \pi^{0} \mu^{+} \nu_{\mu}} / \mathcal{B}_{D^{+} \to \pi^{0} e^{+} \nu_{e}} = 0.964 \pm 0.037_{\text{stat}} \pm 0.026_{\text{syst}} \\ \mathcal{R}^{0} \equiv \mathcal{B}_{D^{0} \to \pi^{-} \mu^{+} \nu_{\mu}} / \mathcal{B}_{D^{0} \to \pi^{-} e^{+} \nu_{e}} = 0.922 \pm 0.030_{\text{stat}} \pm 0.022_{\text{syst}} \end{array} \right] \qquad \begin{array}{l} PRL \ 121, \ 171803 \\ (BESIII \ Coll.) \end{array}$$

- > 0.5 σ and 1.7 σ compatibility with expectations, respectively
- > D⁺ $\rightarrow \omega \mu^+ \nu_{\mu}$ **>** *a* BESIII: 2.93 fb⁻¹ at \sqrt{s} =3.773 GeV for the first time

