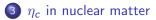
Charmonium in nuclear matter and nuclei

Javier Cobos

Departamento de Física, Universidad de Sonora, México

10th International Workshop on Charm Physics México City, México, May 31–June 4, 2021



This presentation is mainly based on

"η_c-nucleus bound states"
 Physics Letters B 811 (2020) 135882 (arXiv:2007.04476)

In collaboration with

- Kazuo Tsushima-Laboratório de Física Teórica e Computacional, Universidade Cruzeiro do Sul, São Paulo, Brazil.
- Gastão Krein–Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil.
- Anthony Thomas–Special Research Centre for the Subatomic Structure of Matter University of Adelaide, Adelaide, Australia.

Motivation

- The study of the interactions of charmonium states, such as η_c and J/Ψ , with atomic nuclei offers opportunities to gain new insight into the properties of the strong force and strongly interacting matter
- Because charmonia and nucleons do not share light quarks, the Zweig rule suppresses interactions mediated by the exchange of mesons made of light quarks
- It is therefore important to explore other potential sources of attraction which could potentially lead to binding of charmonia to atomic nuclei
- Mesic nuclei are a new exotic state of matter involving the meson being bound inside the nucleus purely by the strong interaction
- The discovery of such bound states would represent an important step forward in our understanding of the nature of strongly interacting systems

η_c self-energy

Javier Cobos (Departamento de Física, Unive Charmonium in nuclear matter and nuclei 10th International Workshop on Charm Physi

A (1) × A (2) × A (2) ×

э

- For the computation of the η_c self-energy Σ_{η_c} we use an effective Lagrangian approach at the hadronic level— which is an SU(4)-flavor extension of light-flavor chiral-symmetric Lagrangians of pseudoscalar and vector mesons
- The interaction Lagrangian for the $\eta_c DD^*$ vertex is given by

$$\begin{aligned} \mathcal{L}_{\eta_{c}DD^{*}} &= \mathrm{i}g_{\eta_{c}}(\partial_{\mu}\eta_{c})\left[\overline{D}^{*\mu}\cdot D-\overline{D}\cdot D^{*\mu}\right] \\ &- \mathrm{i}g_{\eta_{c}}\eta_{c}\left[\overline{D}^{*\mu}\cdot(\partial_{\mu}D)-(\partial_{\mu}\overline{D})\cdot D^{*\mu}\right] \end{aligned}$$

- D and D^* represent isospin doublets
- g_{η_c} is the $\eta_c DD^*$ coupling constant- to be specified below

• Considering only the DD^* loop, the η_c self-energy is given by

• m_D and m_{D^*} are the D and D^* meson masses

• We are interested in the difference between the in-medium mass of the η_c , $m^*_{\eta_c}$, and its vacuum value, m_{η_c} ,

$$\Delta m_{\eta_c} = m^*_{\eta_c} - m_{\eta_c},$$

• The masses are obtained from

$$m_{\eta_c}^2 = (m_{\eta_c}^0)^2 + \Sigma_{\eta_c} (k^2 = m_{\eta_c}^2),$$

where $m_{\eta_c}^0$ is the bare η_c mass

• The in-medium mass $m_{\eta_c}^*$ is obtained with the self-energy Σ_{η_c} calculated with the medium-modified D and D^* masses

η_c meson self-energy $\Sigma_{\eta_c}(k)$

- \bullet The integral in Σ_{η_c} is divergent and therefore needs regularization
- We employ a phenomenological vertex form factor

$$u_{D^{(*)}}(k^2) = \left(\frac{\Lambda_{D^{(*)}}^2 + m_{\eta_c}^2}{\Lambda_{D^{(*)}}^2 + 4\omega_{D^{(*)}}^2(k^2)}\right)^2,$$

with cutoff parameter $\Lambda_{D^{(*)}}$

- The cutoff parameter Λ_D $(\Lambda_{D^*}=\Lambda_D)$ is an unknown input to our calculation
- Λ_D has been estimated to be Λ ≈ 2500 MeV-it serves as a reasonable guide to quantify the sensitivity of our results to its value.
- We present results for Λ_D in the interval 1500-3000 MeV

Parameters

• We use experimental values for the meson masses and empirical values for the coupling constants:

 $m_D = 1867.2 \text{ MeV}, \quad m_{D^*} = 2008.6 \text{ MeV}, \quad m_{\eta_c} = 2983.9, \text{MeV}$

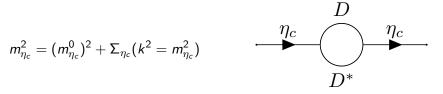
• For the coupling constants g_{η_c} and $g_{\psi DD}$ we use

 $g\eta_c = 0.60 g_{\psi DD}$ (PRD 93, 016004 (2016)) $g_{\psi DD} = 7.64$ (PRC 62, 034903 (2000))

• The first value was obtained as the residue at the pole of suitable form factors using a dispersion formulation of the relativistic constituent quark model; the second value was estimated using the vector meson dominance model

Results for η_c in nuclear matter

• m_{η_c} and $m^*_{\eta_c}$ are calculated by solving



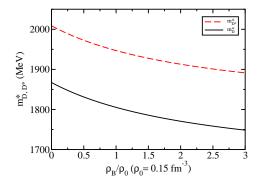
- The η_c mass in medium, $m_{\eta_c}^*$, is obtained with the self-energy Σ_{η_c} calculated with the medium-modified D and D^* masses, m_D^* and $m_{D^*}^*$
- m_D^* and $m_{D^*}^*$ are computed in the quark meson coupling model (QMC)

The quark meson coupling model [PPNP 58, 1 (2007)]

- The QMC model is a quark-based, relativistic mean field model of nuclear matter and nuclei.
- Here the relativistically moving confined light quarks in the nucleon bags (MIT bag) self-consistently interact directly with the scalar-isoscalar σ , vector-isoscalar ω , and vector-isovector ρ mean fields (Hartree approximation) generated by the light quarks in the other nucleons.
- The meson mean fields are responsible for nuclear binding.
- The self-consistent response of the bound light quarks to the mean field σ field leads to novel saturation mechanism for nuclear matter.
- The model has opened many opportunities for studies of the structure of finite nuclei and hadron properties in a nuclear medium (nuclei) with a model based on the underlying quarks degrees of freedom.

The quark meson coupling model [PPNP 58, 1 (2007)]

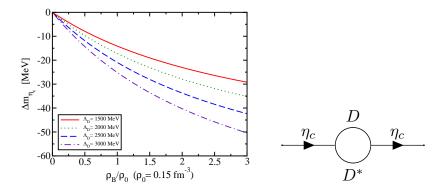
• QMC results for m_D^* and $m_{D^*}^*$ in nuclear matter:



 The mass shifts for the D and D* mesons are nearly the same-each decreasing by around 60 MeV at ρ_B = ρ₀

η_c mass shift in nuclear matter

• Results for the η_c mass in nuclear matter



The effect the nuclear medium is to decrease the η_c mass (attraction)
This effect increases with the cutoff mass Λ_D

Results for η_c in nuclei

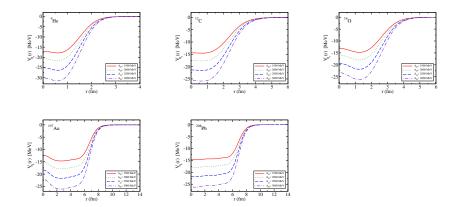
- We now discuss the situation where the η_c -meson is produced inside a nucleus A with baryon density distribution $\rho_B^A(r)$.
- The nuclear density distributions for ¹²C, ¹⁶O, ⁴⁰Ca, ⁴⁸Ca, ⁹⁰Zr, ¹⁹⁷Au, and ²⁰⁸Pb are calculated with the QMC model (For ⁴He, we used PRC 56, 566 (1997)).
- Using a local density approximation, the η_c -meson potential within nucleus A is given by

$$V_{\eta_c A}(r) = \Delta m_{\eta_c}(\rho_B^A(r)),$$

where Δm_{η_c} is the η_c mass shift and r is the distance from the center of the nucleus.

η_c -nucleus bound states

• η_c potentials for ⁴He ¹²C, ¹⁶O, ¹⁹⁷Au, and ²⁰⁸Pb:



 The η_c potentias are attractive enough to allow for the formation of bound states–However, the depth of the potential depends on Λ_D.

 Using the η_c potentials we next calculate the η_c-nucleus bound state energies by solving the Klein-Gordon equation

$$\left(-\nabla^2 + \mu^2 + 2mV(\vec{r})\right)\phi_{\eta_c}(\vec{r}) = \mathcal{E}^2\phi_{\eta_c}(\vec{r}), \qquad (1)$$

where *m* is the reduced mass of the η_c -nucleus system and $V(\vec{r})$ is the η_c -nucleus potential

• The bound state energies (E) of the η_c -nucleus system are

$$E = \mathcal{E} - m$$

where $\ensuremath{\mathcal{E}}$ is the energy eigenvalue

η_c -nucleus bound states

		Bound state energies			
	nl	$\Lambda_D = 1500$	$\Lambda_D = 2000$	$\Lambda_D = 2500$	$\Lambda_D = 3000$
$\frac{4}{\eta_c}$ He $\frac{12}{\eta_c}$ C	1s	-1.49	-3.11	-5.49	-8.55
$^{12}_{\eta_c}C$	1s	-5.91	-8.27	-11.28	-14.79
	1p	-0.28	-1.63	-3.69	-6.33
$^{16}_{\eta_c}O$	1s	-7.35	-9.92	-13.15	-16.87
	1p	-1.94	-3.87	-6.48	-9.63
$\frac{197}{\eta_c}$ Au	1s	-12.57	-15.59	-19.26	-23.41
	1p	-11.17	-14.14	-17.77	-21.87
	1d	-9.42	-12.31	-15.87	-19.90
	2s	-8.69	-11.53	-15.04	-19.02
	1f	-7.39	-10.19	-13.70	-17.61
$\frac{208}{\eta_c}$ Pb	1s	-12.99	-16.09	-19.82	-24.12
	1p	-11.60	-14.64	-18.37	-22.59
	1d	-9.86	-12.83	-16.49	-20.63
	2s	-9.16	-12.09	-15.70	-19.80
	1f	-7.85	-10.74	-14.30	-18.37

• Results for η_c -nucleus bound states

- The η_c is expected to form bound states with all the nuclei studied, independent of the value of Λ_D.
- Particular values for the bound state energies clearly depend on Λ_D
- Note also that the η_c binds more strongly to heavier nuclei

- We have calculated the η_c mass shift Δm_{η_c} in nuclear matter
- Essential to our results are m_D^* and $m_{D^*}^*$
- A negative mass shift Δm_{η_c} means that the nuclear mean field provides attraction
- The η_c potentials were calculated using a local density approximation, with the nuclear density distributions calculated in the QMC model
- We have calculated the η_c -nucleus bound state energies for various nuclei
- We expect that the η_c meson forms bound states for all nuclei
- The discovery of such bound states would represent an important step forward in our understanding of the nature of strongly interacting systems.