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Motivation

use heavy quarks and their bound states to probe the strongly
coupled medium formed in heavy ion collisions

» high mass of charm (and bottom) quarks and the short
formation time of their bound states make them ideal probes
of the quark gluon plasma (QGP)

P experimental observables including nuclear modification factor
(Raa) and elliptic flow (v) provide insights into nature of
QGP

» need to describe nonequilibrium evolution of heavy particles in
strongly coupled medium



Method

open quantum systems

allows for rigorous treatment of a quantum system of interest
(quark/quarkonium) coupled to a bath or reservoir (QGP)

effective field theories

potential non-relativistic QCD (pNRQCD) to describe the
interaction of a non-relativistic bound state (heavy quarkonium)
with medium gluons

Advantages
» minimal assumptions on medium, i.e., strongly
(T ~mp ~ gT) or weakly (T > mp ~ gT) coupled
» heavy quark number conserving

» explicitly account for non-Abelian nature of QCD, i.e., singlet
and octet states

» account for both dissociation and recombination



Scales of Problem

System

» bound state of heavy quark and heavy antiquark characterized by heavy
quark mass M, Bohr radius ag, binding energy E
» for charmonium (bottomonium):

1
M =167 (4.78) GeV, — =0.839(1.49) GeV, |E|=0.421(0.461) GeV,
0

» hierarchical ordering of scales: M > 1/ap > E
Medium

» QGP characerized by temperature: (w)T ~ (7)O(100) MeV

Combined System

» system time scale 75, environment time scale 7g, relaxation time 7g:
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Form of Evolution

» Markov Approximation: for 7 > T, state of system
independent of history, i.e., evolution equations local in time

» Quantum Brownian Motion: for 75 > 7, system realizes
quantum Brownian motion
» Langevin dynamics:

» description of Brownian motion, i.e., a particle moving
randomly due to uncorrelated interactions with its environment

> ansatz for description of heavy quarkonium interacting with
thermal gluons in the QGP



Langevin Dynamics

» Langevin equations

K

dp; / /
Pi _ —nppi+&i(t), (&i(t)§(t)) = kdyo(t—t'), np = 2MT’

dt

where p; is the momentum of the particle (heavy quark), np is
the drag coefficient, and &; encodes the random, uncorrelated
interactions of the particle with the medium

P k is the heavy quark momentum diffusion coefficient

» as shown by Casalderrey-Solana and Teaney, for an in medium
heavy quark, integration of force-force correlator along the
Schwinger-Keldysh contour gives  in terms of a chromo
electric correlator!

'Phys. Rev. D 74, 085012 (2006).



potential Non-Relativistic QCD (pNRQCD)

QCD > effective theory of the strong
4 wm interaction obtained from full QCD via
non-relativistic QCD (NRQCD) by
NRQCD successive integrating out of the hard
4wy (M) and soft (Mv) scales
> degrees of freedom are singlet and
pNRQCD

octet heavy-heavy bound states and
4 w2 ultrasoft gluons

» small bound state radius and large
quark mass allow for double expansion
in r and M~1




In Medium Evolution Equations
evolution equations given by?

dp(;f‘t) =—i [hs’ ps(t)] - Zsps(t) - ps(t)Zl + Eso(po(t))7
dpgit) = - i[hoapo(t)] - Zopo(t) - po(t)fg + Eos(ﬂs(t))

+ Zoo(Po(t))
> pso(t): density matrix of color singlet, octet bound state

2 . . .
> heo =1 + Vs o singlet, octet Hamiltonian

> V= —M: singlet potential
>V, = “52(,1\/2:0): octet potential
» >, =: encode medium interactions in correlators of the form

(E%(0,0)E%/(s,0)),  E%/(s,0) = Q(s)E™'(s, 0)2(s)",

Q(s) = exp [—ig / T ds Ag(s', 0)}

—0o0

2Phys. Rev. D 97, 074009 (2018).



Master Equation

evolution equations can be rewritten as master equation

(Jlfc’lit) = i[H, p(t)] + zn; hom <L,’-’p(t)L§”T - % {LTTL'I]”’“)}) ’

where

p(t) = <ps(§t) po?o) = (hs ’ I(;n(ZS) ho + I(rJn(Zo)) ’
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Lindblad Form

» for ()T > E, i.e., e 'Mo% 2 1, medium interactions encoded
in transport coefficients

2

k= 6‘?’;\/6 /OOO dt< {E*'(t,0), E*/(0,0)} >

-8 [l evon)

» as shown by Casalderrey-Solana and Teaney, k is the heavy
quark momentum diffusion coefficient occurring in a Langevin
equation3; v is its dispersive counterpart

» evolution equation can be written as Lindblad equation

3Phys. Rev. D 74, 085012 (2006).



Langevin Form

> taking e thsos 5 1 — ihs o5, medium interactions take more
complicated form as Hamiltonian term gives rise to terms
suppressed by E/T, i.e.,

r ip/ AV, r
A =D —ig) [ —o 4
2 (=) ( OMT 4T >”

P evolution equation can no longer be written as a Lindblad
equation without introducing subleading corrections

» following the procedure of Blaizot and Escobedo*, we project
the evolution equations onto eigenstates of the bound state
radius (r| and |r’) corresponding to the radius pre- and post-,
respectively, interaction with the medium; we work in the
system of coordinates

r+r ,

ry = > rL=r—r

*JHEP 06 (2018) 034.



Scaling

> the projected evolution parameters depend on the
operators/quantities r, r—, Vi, V_, Vs, K, and
P> we assign a scaling to extract leading order evolution
» bound state is Coulombic

r. ~1/VEM, V. ~VEM
» potential scales as the binding energy
Vsonr~ E
P k, 7y are thermal quantities of dimension 3
K, ¥~ (xT)3
P interaction with medium thermalizes bound state

r-~1/vVaTM, V_~vVaTM



Evolution of Scales
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Leading Order Evolution

» as M > nT > E, there are two small parameters in which to
expand; for (nT)/M ~ E /(7w T), the leading order evolution
operators are of order 7 T

/ 2 1 2 /
AN [T w8
de \ply e —gerrie ) \og ’
where pf, = (r|ps o(t)|r') and the ellipsis indicates terms
suppressed by addition powers of (7 T)/M ~ E /(7 T)

P evolution matrix has eigenvalues

Ne
{/\0, /\8} = {0, —rme2 — 1}

C



Corrections to Leading Order Evolution |

» 3 la Blaizot and Escobedo, move to basis in which LO
evolution is diagonal

_ Ps + Po (Ng_l)ps_foo

PO ch- 1 P8 - N? )

» include terms suppressed by powers of (7 T)/M ~ E/(nwT)

rr/ 1 2 1 2 rr/
i <p0/> _ Eg?) + E(()g) 0688) 41688) , <Po,) oo
de \pg g9+ 6D+ iy ) ) \og
where superscripts in parenthesis indicate degree of

suppression in /(7 T)/M ~ /E/(wT) with respect to LO

evolution and the ellipsis indicates further suppressed terms



Corrections to Leading Order Evolution Il

> evolution matrix has eigenvalues {\j, A} which reduce to
{Xo, Ag} in limit (7 T)/M ~ E/(wT) — 0
> \j given by

é(l) g(l)
No = £8g) + 05 — "Lt
lgg
where
) _ 20 i 2 r-V_ r2
1 1 i 1 i 0 N2
688) = _m§r+'r—% E%(ao) = _§r+'r—% Egs) Y i 1&"5



Fokker Planck Equation

Wigner transforming the evolution equation of the state evolved by
g gives the Fokker Planck equation
0 Y
—+v-V | po(t) = —
(81‘ + +> po(t)

k_p, M
PACREC Y ALIA

2
+ (7 o Vp)
Vr 2Nrs |
where fo(t) is the Wigner transform of the state evolved by Aj, v
is the relative velocity of the quark and antiquark and p = Mv/2

r+'vP

po(t),




Langevin Equation

the corresponding Langevin equations are

drfr ~2p; Md2rfr

dt ~ M’ 2 de

= —Fi(r*) —nijpj + &t rT) + 0i(t,rF).

where

> (&i(t,rT)E(t,rT)) = d(t — t')dj; ki & encodes random,
uncorrelated interactions with medium; « is heavy quark
momentum diffusion coefficient

> 1;i(rt) = 5470;: Einstein relation between  and drag
coefficient 7

TN NG,

> (0;(t,rT)0;(t',rT)) =4d(t—t )4Ngm$. 0; is second random
force due to fluctuations in force between quark and antiquark
which are, on average, 0

.
> Fi(rt) = —fy%: correction to quark-antiquark potential



Summary and Future Directions

>

| 2

>

heavy quarkonia and their bound states are excellent probes of
QGP formed in HICs

heavy quark mass M and scale hierarchy 1/ag > 7 Tmake
problem ideally suited for use of pNRQCD; furthermore,
M > mT makes Langevin equation natural candidate for
description of dynamics

evolution equations of in medium Coulombic bound state
depend on chromo electric-electric correlators; in limit

n T > E, correlectors reduce to linear combination of x and ~
5

inclusion of higher order corrections a la Blaizot and
Escobedo® allows for derivation of Langevin equation
containing x from first principles

future work: similar calculation for single quark

®Phys. Rev. D 97, 074009 (2018).
®JHEP 06 (2018) 034.



Thank you!



