In medium Langevin dynamics of heavy particles

 Workshop on Charm PhysicsPeter Vander Griend
with N. Brambilla, A. Vairo
Technical University of Munich

3 June 2021

Motivation

use heavy quarks and their bound states to probe the strongly coupled medium formed in heavy ion collisions

- high mass of charm (and bottom) quarks and the short formation time of their bound states make them ideal probes of the quark gluon plasma (QGP)
- experimental observables including nuclear modification factor $\left(R_{A A}\right)$ and elliptic flow (v_{2}) provide insights into nature of QGP
- need to describe nonequilibrium evolution of heavy particles in strongly coupled medium

Method

open quantum systems
allows for rigorous treatment of a quantum system of interest (quark/quarkonium) coupled to a bath or reservoir (QGP)
effective field theories
potential non-relativistic QCD (pNRQCD) to describe the interaction of a non-relativistic bound state (heavy quarkonium) with medium gluons

Advantages

- minimal assumptions on medium, i.e., strongly

$$
\left(T \sim m_{D} \sim g T\right) \text { or weakly }\left(T \gg m_{D} \sim g T\right) \text { coupled }
$$

- heavy quark number conserving
- explicitly account for non-Abelian nature of QCD, i.e., singlet and octet states
- account for both dissociation and recombination

Scales of Problem

System

- bound state of heavy quark and heavy antiquark characterized by heavy quark mass M, Bohr radius a_{0}, binding energy E
- for charmonium (bottomonium):

$$
M=1.67(4.78) \mathrm{GeV}, \quad \frac{1}{a_{0}}=0.839(1.49) \mathrm{GeV}, \quad|E|=0.421(0.461) \mathrm{GeV}
$$

- hierarchical ordering of scales: $M \gg 1 / a_{0} \gg E$

Medium

- QGP characerized by temperature: $(\pi) T \sim(\pi) \mathcal{O}(100) \mathrm{MeV}$

Combined System

- system time scale τ_{S}, environment time scale τ_{E}, relaxation time τ_{R} :

$$
\tau_{S} \sim \frac{1}{E}, \quad \tau_{E} \sim \frac{1}{\pi T}, \quad \tau_{R} \sim \frac{1}{\Sigma_{s}} \sim \frac{1}{a_{0}^{2}(\pi T)^{3}}
$$

Form of Evolution

- Markov Approximation: for $\tau_{R} \gg \tau_{E}$, state of system independent of history, i.e., evolution equations local in time
- Quantum Brownian Motion: for $\tau_{S} \gg \tau_{E}$, system realizes quantum Brownian motion
- Langevin dynamics:
- description of Brownian motion, i.e., a particle moving randomly due to uncorrelated interactions with its environment
- ansatz for description of heavy quarkonium interacting with thermal gluons in the QGP

Langevin Dynamics

- Langevin equations

$$
\frac{\mathrm{d} p_{i}}{\mathrm{~d} t}=-\eta_{D} p_{i}+\xi_{i}(t),\left\langle\xi_{i}(t) \xi_{j}\left(t^{\prime}\right)\right\rangle=\kappa \delta_{i j} \delta\left(t-t^{\prime}\right), \eta_{D}=\frac{\kappa}{2 M T}
$$

where p_{i} is the momentum of the particle (heavy quark), η_{D} is the drag coefficient, and ξ_{i} encodes the random, uncorrelated interactions of the particle with the medium

- κ is the heavy quark momentum diffusion coefficient
- as shown by Casalderrey-Solana and Teaney, for an in medium heavy quark, integration of force-force correlator along the Schwinger-Keldysh contour gives κ in terms of a chromo electric correlator ${ }^{1}$

potential Non-Relativistic QCD (pNRQCD)

In Medium Evolution Equations

evolution equations given by ${ }^{2}$

$$
\begin{aligned}
\frac{\mathrm{d} \rho_{s}(t)}{\mathrm{d} t}= & -i\left[h_{s}, \rho_{s}(t)\right]-\Sigma_{s} \rho_{s}(t)-\rho_{s}(t) \Sigma_{s}^{\dagger}+\bar{\Xi}_{s o}\left(\rho_{o}(t)\right) \\
\frac{\mathrm{d} \rho_{o}(t)}{\mathrm{d} t}= & -i\left[h_{o}, \rho_{o}(t)\right]-\Sigma_{o} \rho_{o}(t)-\rho_{o}(t) \Sigma_{o}^{\dagger}+\bar{\Xi}_{o s}\left(\rho_{s}(t)\right) \\
& +\Xi_{o o}\left(\rho_{o}(t)\right)
\end{aligned}
$$

- $\rho_{s, o}(t)$: density matrix of color singlet, octet bound state
- $h_{s, o}=\frac{\mathrm{p}^{2}}{M}+V_{s, o}$: singlet, octet Hamiltonian
- $V_{s}=-\frac{C_{f} \alpha_{s}(1 / a 0)}{r}$: singlet potential
- $V_{o}=\frac{\alpha_{s}(1 / a 0)}{2 N_{c} r}$: octet potential
- Σ, 三: encode medium interactions in correlators of the form

$$
\begin{gathered}
\left\langle\tilde{E}^{a, j}(0, \mathbf{0}) \tilde{E}^{a, j}(s, \mathbf{0})\right\rangle, \quad \tilde{E}^{a, i}(s, \mathbf{0})=\Omega(s) E^{a, i}(s, \mathbf{0}) \Omega(s)^{\dagger}, \\
\Omega(s)=\exp \left[-i g \int_{-\infty}^{s} \mathrm{~d} s^{\prime} A_{0}\left(s^{\prime}, \mathbf{0}\right)\right]
\end{gathered}
$$

${ }^{2}$ Phys. Rev. D 97, 074009 (2018).

Master Equation

evolution equations can be rewritten as master equation

$$
\frac{\mathrm{d} \rho(t)}{\mathrm{d} t}=-i[H, \rho(t)]+\sum_{n, m} h_{n m}\left(L_{i}^{n} \rho(t) L_{i}^{m \dagger}-\frac{1}{2}\left\{L_{i}^{m \dagger} L_{i}^{n}, \rho(t)\right\}\right),
$$

where

$$
\begin{gathered}
\rho(t)=\left(\begin{array}{cc}
\rho_{s}(t) & 0 \\
0 & \rho_{o}(t)
\end{array}\right), \quad H=\left(\begin{array}{cc}
h_{s}+\operatorname{Im}\left(\Sigma_{s}\right) & 0 \\
0 & h_{0}+\operatorname{Im}\left(\Sigma_{o}\right)
\end{array}\right) \\
L_{i}^{0}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) r^{i}, \quad L_{i}^{1}=\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{N_{c}^{2}-4}{2\left(N_{c}^{2}-1\right)} A_{i}^{o o \dagger}
\end{array}\right), \quad L_{i}^{2}=\left(\begin{array}{cc}
0 & \frac{1}{\sqrt{N_{c}^{2}-1}} \\
1 & 0
\end{array}\right) r^{i}, \\
L_{i}^{3}=\left(\begin{array}{cc}
0 & \frac{1}{\sqrt{N_{c}^{2}-1}} A_{i}^{o s \dagger} \\
A_{i}^{s o \dagger} & 0
\end{array}\right), \quad h=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
A_{i}^{u v}=\frac{g^{2}}{6 N_{c}} \int_{0}^{\infty} \mathrm{d} s e^{-i h_{u} s} r^{i} e^{i h_{v} s}\left\langle\tilde{E}^{a, j}(0, \mathbf{0}) \tilde{E}^{a, j}(s, \mathbf{0})\right\rangle
\end{gathered}
$$

Lindblad Form

- for $(\pi) T \gg E$, i.e., $e^{-i h_{s, o s}} \approx 1$, medium interactions encoded in transport coefficients

$$
\begin{aligned}
& \kappa=\frac{g^{2}}{6 N_{c}} \int_{0}^{\infty} \mathrm{d} t\left\langle\left\{E^{a, i}(t, 0), E^{a, i}(0,0)\right\}\right\rangle \\
& \gamma=-\frac{i g^{2}}{6 N_{c}} \int_{0}^{\infty} \mathrm{d} t\left\langle\left[E^{a, i}(t, 0), E^{a, i}(0,0)\right]\right\rangle
\end{aligned}
$$

- as shown by Casalderrey-Solana and Teaney, κ is the heavy quark momentum diffusion coefficient occurring in a Langevin equation ${ }^{3} ; \gamma$ is its dispersive counterpart
- evolution equation can be written as Lindblad equation

$$
\frac{\mathrm{d} \rho(t)}{\mathrm{d} t}=-i[H(t), \rho]+\sum_{n}\left(C_{i}^{n} \rho(t) C_{i}^{n \dagger}-\frac{1}{2}\left\{C_{i}^{n \dagger} C_{i}^{n}, \rho(t)\right\}\right)
$$

${ }^{3}$ Phys. Rev. D 74, 085012 (2006).

Langevin Form

- taking $e^{-i h_{s, o s}} \approx 1-i h_{s, o} s$, medium interactions take more complicated form as Hamiltonian term gives rise to terms suppressed by E / T, i.e.,

$$
A_{i}^{\mu v}=\frac{r_{i}}{2}(\kappa-i \gamma)+\left(-\frac{i p_{i}}{2 M T}+\frac{\Delta V_{u v} r_{i}}{4 T}\right) \kappa
$$

- evolution equation can no longer be written as a Lindblad equation without introducing subleading corrections
- following the procedure of Blaizot and Escobedo ${ }^{4}$, we project the evolution equations onto eigenstates of the bound state radius $\langle r|$ and $\left|r^{\prime}\right\rangle$ corresponding to the radius pre- and post-, respectively, interaction with the medium; we work in the system of coordinates

$$
r_{+}=\frac{r+r^{\prime}}{2}, \quad r_{-}=r-r^{\prime}
$$

Scaling

- the projected evolution parameters depend on the operators/quantities $r_{+}, r_{-}, \nabla_{+}, \nabla_{-}, V_{s, o}, \kappa$, and γ
- we assign a scaling to extract leading order evolution
- bound state is Coulombic

$$
r_{+} \sim 1 / \sqrt{E M}, \quad \nabla_{+} \sim \sqrt{E M}
$$

- potential scales as the binding energy

$$
V_{s, o} \sim E
$$

- κ, γ are thermal quantities of dimension 3

$$
\kappa, \gamma \sim(\pi T)^{3}
$$

- interaction with medium thermalizes bound state

$$
r_{-} \sim 1 / \sqrt{\pi T M}, \quad \nabla_{-} \sim \sqrt{\pi T M}
$$

Evolution of Scales

Temperature $[\mathrm{MeV}]$

Evolution of relevant scales for Evolution of relevant scales for charmonium assuming Bjorken bottomonium assuming Bjorken evolution. evolution.

Leading Order Evolution

- as $M \gg \pi T \gg E$, there are two small parameters in which to expand; for $(\pi T) / M \sim E /(\pi T)$, the leading order evolution operators are of order πT

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{\rho_{s}^{\mathrm{rr}}}{\rho_{o}^{\mathrm{rr}}}=\left(\begin{array}{cc}
-r_{+}^{2} \kappa & \frac{1}{N_{c}^{2}-1} r_{+}^{2} \kappa \\
r_{+}^{2} \kappa & -\frac{1}{N_{c}^{2}-1} r_{+}^{2} \kappa
\end{array}\right)\binom{\rho_{s}^{\mathrm{rr}}}{\rho_{o}^{r r^{\prime}}}+\cdots,
$$

where $\rho_{s, o}^{\mathrm{rr}}=\langle\mathrm{r}| \rho_{s, o}(t)\left|\mathrm{r}^{\prime}\right\rangle$ and the ellipsis indicates terms suppressed by addition powers of $(\pi T) / M \sim E /(\pi T)$

- evolution matrix has eigenvalues

$$
\left\{\lambda_{0}, \lambda_{8}\right\}=\left\{0,-r_{+}^{2} \kappa \frac{N_{c}^{2}}{N_{c}^{2}-1}\right\}
$$

Corrections to Leading Order Evolution I

- à la Blaizot and Escobedo, move to basis in which LO evolution is diagonal

$$
\rho_{0}=\frac{\rho_{s}+\rho_{o}}{N_{c}^{2}}, \quad \rho_{8}=\frac{\left(N_{c}^{2}-1\right) \rho_{s}-\rho_{o}}{N_{c}^{2}}
$$

- include terms suppressed by powers of $(\pi T) / M \sim E /(\pi T)$

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{\rho_{0}^{\mathrm{rr}}}{\rho_{8}^{\mathrm{rr}}}=\left(\begin{array}{cc}
\ell_{00}^{(1)}+\ell_{00}^{(2)} & \ell_{08}^{(1)}+\ell_{08}^{(2)} \\
\ell_{80}^{(1)}+\ell_{80}^{(2)} & \ell_{88}^{(0)}+\ell_{88}^{(1)}+\ell_{88}^{(2)}
\end{array}\right)\binom{\rho_{0}^{\mathrm{rr}}}{\rho_{8}^{\mathrm{rr}^{\prime}}}+\cdots,
$$

where superscripts in parenthesis indicate degree of suppression in $\sqrt{(\pi T) / M} \sim \sqrt{E /(\pi T)}$ with respect to LO evolution and the ellipsis indicates further suppressed terms

Corrections to Leading Order Evolution II

- evolution matrix has eigenvalues $\left\{\lambda_{0}^{\prime}, \lambda_{8}^{\prime}\right\}$ which reduce to $\left\{\lambda_{0}, \lambda_{8}\right\}$ in limit $(\pi T) / M \sim E /(\pi T) \rightarrow 0$
- λ_{0}^{\prime} given by

$$
\lambda_{0}^{\prime}=\ell_{00}^{(1)}+\ell_{00}^{(2)}-\frac{\ell_{08}^{(1)} \ell_{80}^{(1)}}{\ell_{88}^{(0)}}+\cdots,
$$

where

$$
\begin{gathered}
\ell_{00}^{(1)}=\frac{2 i}{M} \nabla_{+} \cdot \nabla_{-}-\frac{i}{2} r_{+} \cdot r_{-} \gamma, \quad \ell_{00}^{(2)}=-\kappa\left(\frac{r_{-} \cdot \nabla_{-}}{2 M T}+\frac{r_{-}^{2}}{4}\right), \\
\ell_{08}^{(1)}=-\frac{1}{N_{c}^{2}-1} \frac{i}{2} r_{+} \cdot r_{-} \gamma, \quad \ell_{80}^{(1)}=-\frac{i}{2} r_{+} \cdot r_{-} \gamma, \quad \ell_{88}^{(0)}=-\frac{N_{c}^{2}}{N_{c}^{2}-1} r_{+}^{2} \kappa
\end{gathered}
$$

Fokker Planck Equation

Wigner transforming the evolution equation of the state evolved by λ_{0}^{\prime} gives the Fokker Planck equation

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla_{+}\right) \tilde{\rho}_{0}(t)= & {\left[\frac{\kappa}{4} \nabla_{\mathbf{p}}^{2}+\frac{M}{2} \eta \nabla_{\mathbf{p}} \cdot \mathbf{v}+\frac{\gamma}{2} \mathbf{r}_{+} \cdot \nabla_{\mathbf{p}}\right.} \\
& \left.+\left(\frac{\gamma}{\sqrt{\kappa}} \frac{\mathbf{r}_{+} \cdot \nabla_{\mathbf{p}}}{2 N_{c}\left|\mathbf{r}_{+}\right|}\right)^{2}\right] \tilde{\rho}_{0}(t)
\end{aligned}
$$

where $\tilde{\rho}_{0}(t)$ is the Wigner transform of the state evolved by λ_{0}^{\prime}, v is the relative velocity of the quark and antiquark and $\mathrm{p}=\mathrm{Mv} / 2$

Langevin Equation

the corresponding Langevin equations are

$$
\frac{\mathrm{dr}_{i}^{+}}{\mathrm{d} t}=\frac{2 \mathrm{p}_{i}}{M}, \quad \frac{M}{2} \frac{\mathrm{~d}^{2} r_{i}^{+}}{\mathrm{d} t^{2}}=-F_{i}\left(\mathrm{r}^{+}\right)-\eta_{i j} p_{j}+\xi_{i}\left(t, \mathrm{r}^{+}\right)+\theta_{i}\left(t, \mathrm{r}^{+}\right)
$$

where

- $\left\langle\xi_{i}\left(t, \mathrm{r}^{+}\right) \xi_{j}\left(t^{\prime}, \mathrm{r}^{+}\right)\right\rangle=\delta\left(t-t^{\prime}\right) \delta_{i j} \kappa$: ξ_{i} encodes random, uncorrelated interactions with medium; κ is heavy quark momentum diffusion coefficient
- $\eta_{i j}\left(\mathrm{r}^{+}\right)=\frac{\kappa}{2 M T} \delta_{i j}$: Einstein relation between κ and drag coefficient η
- $\left\langle\theta_{i}\left(t, \mathrm{r}^{+}\right) \theta_{j}\left(t^{\prime}, \mathrm{r}^{+}\right)\right\rangle=\delta\left(t-t^{\prime}\right) \frac{r_{i}^{+} r_{j}^{+} \gamma^{2}}{4 N_{c}^{2} \kappa r_{+}^{2}}: \theta_{i}$ is second random force due to fluctuations in force between quark and antiquark which are, on average, 0
- $F_{i}\left(r^{+}\right)=-\gamma \frac{r_{i}^{+}}{2}$: correction to quark-antiquark potential

Summary and Future Directions

- heavy quarkonia and their bound states are excellent probes of QGP formed in HICs
- heavy quark mass M and scale hierarchy $1 / a_{0} \gg \pi T$ make problem ideally suited for use of pNRQCD; furthermore, $M \gg \pi T$ makes Langevin equation natural candidate for description of dynamics
- evolution equations of in medium Coulombic bound state depend on chromo electric-electric correlators; in limit $\pi T \gg E$, correlectors reduce to linear combination of κ and γ 5
- inclusion of higher order corrections à la Blaizot and Escobedo ${ }^{6}$ allows for derivation of Langevin equation containing κ from first principles
- future work: similar calculation for single quark

[^0]Thank you!

[^0]: ${ }^{5}$ Phys. Rev. D 97, 074009 (2018).
 ${ }^{6}$ JHEP 06 (2018) 034.

