PDC particle data group

NEWS: 2021 update of Listings and Summary Tables available

PDG view on Charm

Jonas Rademacker (University of Bristol) for the Particle Data Group

CHARM 2021

The Review of Particle Physics (2021)

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update.

pdgLive - Interactive Listings

Summary Tables

Reviews, Tables, Plots (2020)

Particle Listings

Errata

1

Q

Results provided by Google

Charm

PDC particle data group

NEWS: 2021 update of Listings and Summary Tables available

PDG view on Charm

Jonas Rademacker (University of Bristol) for the Particle Data Group

CHARM 2021

The Review of Particle Physics (2021)

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update.

pdgLive - Interactive Listings

Summary Tables

Reviews, Tables, Plots (2020)

Particle Listings

Errata

1

Q

Results provided by Google

Charm

What's new?

Web Version

What's new?

Jonas Rademacker (University of Bristol)

PDG on Charm

The future

- With only 64 years of age, the PDG feels younger than ever.
- Managing the ever increasing data and presenting them in an accessible way has become increasingly difficult.
- Clearly, online/app will be increasingly important (but books still very popular).
- Currently working on making all PDG data available in machine readable form.

	70 ²					
DG	🗧 Previc			SHORTCUTS -	CITATION CON	ITAC
cie data grou	p					
2020	2019	2018	2017	2016	2015	
2014	2013	2012	2011	2010	2009	
2008	2007	2006	2005	2004	2003	
2002	2001	2000	1999	1998	1997	
1996	1995	1994	1992	1990	1988	
1986	1984	1982	1980	1978	1977]
1976	1975	1974	1973	1972	1971	
1970	1969	1968	1967	1966	1965]
1964	1963	1961	1958	1957		
	The publicat <u>MEXT (Japan</u> activities fro University o	tion of the <i>Review of Parti</i> a), and I <u>NFN (Italy</u>). Indivic m their respective fundir f California. See <u>LBNL dis</u>	<i>le Physics</i> is supported lual collaborators receiv g agencies. All pages © claimers	by <u>US DOE, CERN,</u> ve support for their PDG 2021 Regents of the		

The 2,000+ page book of particle physics reference data managed by the Particle Data Group started in 1957 as a simple wallet card. Since then, it's grown to be the reference guide for particle physicists. Get to know this #SCPuReData resource: pdg.lbl.gov

9:56 pm · 26 May 2021 · Sprout Social

...

Public Reusable Research (PuRe) Data Resources

PDG has been been designated by the DOE as a PuRe resource.

You want data? We've got data! In fact, @Energy Office of Science has developed a new way to designate our best data sets that are the authoritative resources in their communities. Learn about our PuRe data resources. #SCPuReData energy.gov/science/articl...

4:15 pm · 13 Apr 2021 · Sprout Social

Citation: M.	Tanabashi et al	(Farticle Data Group), Phys. Rev. D 98, 030001 (2018)
D^0		I(J ^I	$(D^{D}) = \frac{1}{2}(0^{-})$
		D ⁰ MASS	5
The fit inclu and D _{s1} (25	des D [±] , D ⁰ , 36) [±] mass a	D_s^{\pm} , $D^{*\pm}$, D^{*0} , nd mass difference	$D_s^{*\pm}$, $D_1(2420)^0$, $D_2^{*}(2460)^0$, e measurements.
Given the re omitted all before 2015	ecent additio those masse for those ear	n of much more s published up th dier results.	precise measurements, we have prough 1990. See any Review
VALUE (MeV)	EVTS	DOCUMENT II	D <u>TECN COMMENT</u>
1864.83 ±0.05 OU			
$1864.845 \pm 0.025 \pm 0.$ $1864.845 \pm 0.025 \pm 0.$ $1864.75 \pm 0.15 \pm 0.$ $1864.841 \pm 0.048 \pm 0.$ $1865.30 \pm 0.33 \pm 0.$	63 4.3k 057 63k 11 063 4.3k 23 0.1k	¹ TOMARAD AAIJ ² LEES ANASHIN	ZE 14 $D^0 \rightarrow K^- 2\pi^-$ 13V LHCB $D^0 \rightarrow K^+ 2K^-$ 13S BABR e^+e^- at $\gamma(4S)$ 10A KEDR e^+e^- at $\psi(377)$
largest source of K^- and K^0_S mas	error in the sses. The sys MeV, where	TOMARADZE 1 tematic error give the second error i	4 value is from the uncertainties in above is the addition in quadra s from those mass uncertainties.
² The largest source mass. The guete	e of error in	the LEES 135 v	alue is from the uncertainty of t
² The largest source mass. The quote	ce of error in d systematic	the LEES 135 v. error is in fact ±	alue is from the uncertainty of t 0.043 + 3 (m_{K^+} – 493.677), in
\pm 0.022 \pm 0.053 ² The largest source mass. The quote The fit inclu and $D_{s1}(25)$	des D^{\pm} , D^{0} ,	the LEES 135 v. error is in fact \pm $m_{D\pm} - m_{L}$ $D_s^{\pm}, D^{*\pm}, D^{*0},$ nd mass difference	alue is from the uncertainty of t $0.043 + 3 (m_{K^+} - 493.677)$, in D_s^{\pm} , $D_1(2420)^0$, $D_2^*(2460)^0$, e measurements.
\pm 0.022 \pm 0.053 ² The largest source mass. The quote The fit inclu and D_{s1} (25 <u>VALUE</u> (MeV)	des D^{\pm} , D^0 , 36) [±] mass a	the LEES 13s v. error is in fact \pm $m_{D^{\pm}} - m_{L}$ $D_{s}^{\pm}, D^{*\pm}, D^{*0},$ nd mass difference <u>DOCUMENT ID</u>	alue is from the uncertainty of t $0.043 + 3 (m_{K^+} - 493.677)$, in D_s^{\pm} , $D_1(2420)^0$, $D_2^*(2460)^0$, e measurements. <u>TECN</u> <u>COMMENT</u>
\pm 0.022 \pm 0.053 ² The largest sour mass. The quote The fit inclu and D_{s1} (25 <u>VALUE (MeV)</u> 4.822 \pm 0.015 OUR F 4.76 \pm 0.12 \pm 0.07	the of error in d systematic des D^{\pm} , D^{0} , $36)^{\pm}$ mass a 1 T	the LEES 13s v error is in fact \pm $m_{D^{\pm}} - m_{L}$ $D_{s}^{\pm}, D^{*\pm}, D^{*0},$ nd mass difference <u>DOCUMENT ID</u> AAIJ	alue is from the uncertainty of t $0.043 + 3 (m_{K^+} - 493.677)$, in $D_s^{*\pm}$, $D_1(2420)^0$, $D_2^*(2460)^0$, e measurements. <u>TECN</u> <u>COMMENT</u> 13V LHCB $D^+ \rightarrow K^+K^-$
±0.022 ± 0.053 ² The largest sour mass. The quote The fit inclu and D _{s1} (25 <u>VALUE (MeV)</u> 4.822±0.015 OUR F 4.76 ±0.12 ±0.07	ee of error in d systematic des D [±] , D ⁰ , 36) [±] mass a	the LEES 13s v error is in fact \pm $m_{D\pm} - m_{L}$ $D_{s}^{\pm}, D^{s\pm}, D^{s0},$ nd mass differenc <u>DOCUMENT ID</u> AAIJ D^{0} MEAN LL	alue is from the uncertainty of t $0.043 + 3 (m_{K^+} - 493.677)$, in D_{s}^{\pm} , $D_1(2420)^0$, $D_2^{*}(2460)^0$, e measurements. <u>TECN</u> <u>COMMENT</u> 13V LHCB $D^+ \rightarrow K^+K^-$ IFE
\pm 0.022 \pm 0.053 ² The largest sour mass. The quote The fit inclu- and D_{s1} (25 <u>VALUE (MeV)</u> 4.822\pm0.015 OUR F 4.76 ±0.12 ±0.07 Measurement average.	the of error ind d systematic des D^{\pm} , D^{0} , $36)^{\pm}$ mass a 17	the LEES 13s v error is in fact \pm $m_{D\pm} - m_{L}$ $D_{\pm}^{\pm} - m_{L}$ $D_{\pm}^{\pm} - m_{L}^{*0}$ nd mass differenc <u>DOCUMENT ID</u> AAIJ D^{0} MEAN LL rror > 10 × 10 ⁻¹¹	alue is from the uncertainty of t $0.043 + 3 (m_{K^+} - 493.677)$, in D_{s}^{\pm} , $D_1(2420)^0$, $D_2^*(2460)^0$, e measurements. <u>TECN</u> <u>COMMENT</u> 13V LHCB $D^+ \rightarrow K^+K^-$ IFE 5 s have been omitted from the
\pm 0.022 \pm 0.053 ² The largest sour mass. The quote The fit inclu and D_{s1} (25 <u>VALUE (MeV)</u> 4.822 \pm 0.015 OUR F 4.76 ± 0.12 ± 0.07 Measurement average. <u>VALUE (10⁻¹⁵ s)</u>	the of error in dispersive of error in dispersive matrix $(des D^{\pm}, D^0, 36)^{\pm}$ mass a mass a the mass with an end of the mass of the	the LEES 135 v error is in fact \pm $m_{D\pm} - m_{L}$ $D_{s}^{\pm}, D^{s\pm}, D^{s0},$ nd mass difference <u>DOCUMENT ID</u> AAIJ D^{0} MEAN LL rror > 10 × 10 ⁻¹¹ <u>DOCUMENT ID</u>	alue is from the uncertainty of t 0.043 + 3 (m_{K^+} - 493.677), in p D_s^{\pm} , $D_1(2420)^0$, $D_2^*(2460)^0$, e measurements. <u>TECN</u> <u>COMMENT</u> 13V LHCB $D^+ \rightarrow K^+K^-$ IFE 5 s have been omitted from the <u>TECN</u> <u>COMMENT</u>
\pm 0.022 \pm 0.053 ² The largest sour mass. The quote The fit inclu and D_{S1} (25 <u>VALUE (MeV)</u> 4.822 \pm 0.015 OUR F 4.76 ± 0.12 ± 0.07 Measurement average. <u>VALUE (10⁻¹⁵ s)</u> 40.014 ± 1.5 OUR	the of error in dispersive of error in dispersive matrix $des D^{\pm}, D^{0}, ds D^{\pm}$ mass a dispersive mass at the swith an element of the second s	the LEES 13s v error is in fact \pm $m_{D\pm} - m_{L}$ $D_{s}^{\pm}, D^{s\pm}, D^{s0},$ nd mass difference <u>DOCUMENT ID</u> AAIJ D^{0} MEAN LL pror > 10 × 10 ⁻¹¹ <u>DOCUMENT ID</u>	alue is from the uncertainty of t $0.043 + 3 (m_{K^+} - 493.677)$, in p_0 D_s^{\pm} , $D_1(2420)^0$, $D_2^*(2460)^0$, e measurements. <u>TECN</u> <u>COMMENT</u> 13V LHCB $D^+ \rightarrow K^+K^-$ IFE 5 s have been omitted from the <u>TECN</u> <u>COMMENT</u> 0.025 EQCS as analyze ≈ 120
\pm 0.022 \pm 0.053 ² The largest sour mass. The quote The fit inclu and $D_{s1}(25$ <u>VALUE (MeV)</u> 4.822 \pm 0.015 OUR F 4.76 ± 0.12 ± 0.07 Measurement average. <u>VALUE (10⁻¹⁵ s)</u> 410.1± 1.5 OUR A 409.6± 1.1± 1.5 407 .9± 6.0± 4.3	the of error in a dystematic dystematic dystematic dystematic D^{\pm} , D^{0} , $36)^{\pm}$ mass a dystematic d	the LEES 13s v error is in fact \pm $m_{D\pm} - m_{L}$ $D_{\pm}^{\pm} - m_{L}$ AaIJ D^{0} MEAN LL $more > 10 \times 10^{-11}$ DOCUMENT ID LINK KUSHNIR	alue is from the uncertainty of t $0.043 + 3 (m_{K^+} - 493.677)$, in p_0 D_s^{\pm} , $D_1(2420)^0$, $D_2^*(2460)^0$, e measurements. <u>TECN</u> <u>COMMENT</u> 13V LHCB $D^+ \rightarrow K^+K^-$ IFE 5 s have been omitted from the <u>TECN</u> <u>COMMENT</u> 02F FOCS γ nucleus, ≈ 180 01 SELX $K^-\pi^+$, $K^-\pi^+$
$\begin{array}{c} \pm 0.022 \pm 0.053\\ ^{2}\ {\rm The largest sour}\\ {\rm mass. The quote}\\ {\rm The fit inclu}\\ {\rm and } D_{\rm S1}(25\\ {\rm VALUE(MeV)}\\ {\rm 4.822\pm0.015\ OUR\ F}\\ {\rm 4.76\ \pm 0.12\ \pm 0.07}\\ {\rm Measuremen}\\ {\rm average.}\\ \hline {\rm VALUE(10^{-15}\ {\rm s})}\\ {\rm 400.1\pm\ 1.5\ OUR\ A}\\ {\rm 409.6\pm\ 1.1\pm\ 1.5}\\ {\rm 407.9\pm\ 6.0\pm\ 4.3}\\ {\rm 413\ \pm\ 3\ \pm\ 4}\\ \end{array}$	the of error in disystematic des D^{\pm} , D^{0} , 36) ^{\pm} mass a IT this with an element EVTS TERACE 210k 10k 35k	the LEES 13s v error is in fact \pm $m_{D\pm} - m_{L}$ $D_{s}^{\pm}, D^{s\pm}, D^{*0}, n^{*0}, n^{*$	alue is from the uncertainty of t $0.043 + 3 (m_{K^+} - 493.677)$, in p_0 D_s^{\pm} , $D_1(2420)^0$, $D_2^*(2460)^0$, e measurements. <u>TECN</u> <u>COMMENT</u> I3V LHCB $D^+ \rightarrow K^+K^-$ IFE $\frac{TECN}{2} \frac{COMMENT}{2}$ $02F$ FOCS γ nucleus, ≈ 180 01 SELX $K^-\pi^+$, $K^-\pi^+\pi$

FRABETTI 94D E687 $K^-\pi^+, K^-\pi^+\pi^+\pi^-$

Page 1

Created: 6/5/2018 19:00

Citation: P.A. Zvla et al. (Particle Data Group). Prog. Phys. 2020, 083C01 (2020) and 2021 update

 $I(J^P) = \frac{1}{2}(0^-)$

D⁰ MASS

The fit includes D^{\pm} , D^{0} , D_{s}^{\pm} , $D^{*\pm}$, D^{*0} , $D_{s}^{*\pm}$, $D_{1}(2420)^{0}$, $D_{2}^{*}(2460)^{0}$, and $D_{s1}(2536)^{\pm}$ mass and mass difference measurements.

Given the recent addition of much more precise measurements, we have omitted all those masses published up through 1990. See any Review before 2015 for those earlier results.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1864.84 ±0.05 OUR FIT	•				
1864.84 ±0.05 OUR AV	ERAGE				
$1864.845 \pm 0.025 \pm 0.057$	63k	¹ TOMARADZE	14		$D^0 \rightarrow K^- 2\pi^+ \pi^-$
$1864.75\ \pm 0.15\ \pm 0.11$		AAIJ	13V	LHCB	$D^0 \rightarrow K^+ 2K^- \pi^+$
$1864.841 \!\pm\! 0.048 \!\pm\! 0.063$	4.3k	² LEES	135	BABR	e^+e^- at $\Upsilon(4S)$
$1865.30\ \pm 0.33\ \pm 0.23$	0.1k	ANASHIN	10A	KEDR	e^+e^- at $\psi(3770)$
$1864.847 \pm 0.150 \pm 0.095$	0.3k	CAWLFIELD	07	CLEO	$D^0 \rightarrow K^0_S \phi$
1 Obtained by analyzing largest source of error \mathcal{K}^- and \mathcal{K}^0_S masses. $^\pm0.022\pm0.053$ MeV, 2 The largest source of mass. The quoted systematic systematic structure of the systematic	CLEO-c in the T The syste where th error in t ematic e	data but not auth OMARADZE 14 ematic error given he second error is f the LEES 135 valu rror is in fact ± 0.1	ored b value above from t ue is f 043 +	by the C is from is the a hose ma from the 3 (m _K	LEO Collaboration. The the uncertainties in the ddition in quadrature of ss uncertainties. uncertainty of the K^+ + - 493.677), in MeV.

$m_{D^{\pm}} - m_{D^{0}}$

The fit includes D^{\pm} , D^{0} , D_{ϵ}^{\pm} , $D^{*\pm}$, D^{*0} , $D_{\epsilon}^{*\pm}$, $D_{1}(2420)^{0}$, $D_{2}^{*}(2460)^{0}$, and $D_{s1}(2536)^{\pm}$ mass and mass difference measurements.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
4.822±0.015 OUR FIT				
4.76 ±0.12 ±0.07	AAIJ	13V	LHCB	$D^+ \rightarrow K^+ K^- \pi^+$

D⁰ MEAN LIFE

M	leasuremen /erage.	ts with an	error $> 10 imes 10^{-1}$	⁵ s ha	ve been	omitted from the
VALUE (10-1	¹⁵ s)	EVTS	DOCUMENT ID		TECN	COMMENT
410.1± 1.	5 OUR AV	ERAGE				
409.6± 1.	1 ± 1.5	210k	LINK	02F	FOCS	γ nucleus, \approx 180 Ge
107010	0 4 2	1.01	KUCUNID	01		$\nu = + \nu = + +$

$409.6 \pm 1.1 \pm 1$	L.5 210k	LINK	02F	FOCS	γ nucleus, \approx 180 GeV
$407.9\pm~6.0\pm~4$	1.3 10k	KUSHNIR	01	SELX	$K^{-}\pi^{+}$, $K^{-}\pi^{+}\pi^{+}\pi^{-}$
413 \pm 3 \pm 4	4 35k	AITALA	99E	E791	$K^{-}\pi^{+}$
$408.5 \pm \ 4.1 \substack{+ \\ - } \ 3$	3.5 25k 3.4 25k	BONVICINI	99	CLE2	$e^+e^-\approx~\Upsilon(4S)$
$413 \pm 4 \pm 3$	3 16k	FRABETTI	94D	E687	$K^{-}\pi^{+}$, $K^{-}\pi^{+}\pi^{+}\pi^{-}$
https://pdg.lk	ol.gov	Page 1		Cre	ated: 6/1/2021 08:32

HTTP://PDG.LBL.GOV

16k

413 + 4 + 3

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

• • • We do not use the following data for averages, fits, limits, etc. • • •

424 417	$^{\pm 11}_{\pm 18}$	$^\pm$ 7 \pm 15	5118 890	FRABETTI ALVAREZ	91 90	E687 NA14	${}^{K^{-}\pi^{+}}_{K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{+}\pi^{-}}_{K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{+}\pi^{-}}$		
388	$^{+23}_{-21}$		641	¹ BARLAG	90C	ACCM	π^- Cu 230 GeV		
480	± 40	± 30	776	ALBRECHT	881	ARG	e^+e^- 10 GeV		
422	\pm 8	± 10	4212	RAAB	88	E691	Photoproduction		
420	± 50		90	BARLAG	87B	ACCM	K^- and π^- 200 GeV		
1 E	1 BARLAG 90C estimate systematic error to be negligible.								

See the related review(s):

 $D^0 - \overline{D}^0$ Mixing

$\left|m_{D_{1}^{0}}-m_{D_{2}^{0}}\right|=x\ \Gamma$

The D_1^0 and D_2^0 are the mass eigenstates of the D^0 meson, as described in the note on " $D^0-\overline{D^0}$ Mixing,' above. The experiments usually present $x \equiv \Delta m/\Gamma$. Then $\Delta m = x \Gamma = x \hbar/\tau$.

"OUR EVALUATION" comes from CPV allowing averages provided by the Heavy Flavor Averaging Group, see the note on " $D^0-\overline{D}{}^0$ Mixing."

VALUE $(10^{10} h s^{-1})$	CL%	DOCUMENT ID		TECN	COMMENT
0.95 ^{+0.41} OUR E	VALUAT	ION			
0.8 ±0.7 OUR A	VERAGE	Error includes so	ale fa	ctor of	1.7. See the ideogram
below. - 2.10±1.29±0.41 3.7 ±2.9 ±1.5		¹ AAIJ ² AAIJ ³ LEES ⁴ KO	17A0 16V 16D 14	LHCB LHCB BABR BELL	pp at 7, 8 TeV pp at 7 TeV e^+e^- , 10.6 GeV $e^+e^- \rightarrow \Upsilon(nS)$
$1.37 \pm 0.46 \substack{+0.18 \\ -0.28}$		⁵ PENG	14	BELL	$e^+e^- \rightarrow \Upsilon(nS)$
0.39±0.56±0.35 • • • We do not use th	e followin	⁶ AALTONEN ⁷ DEL-AMO-SA. g data for averages	13AE .10D s, fits,	CDF BABR limits,	$p\overline{p}$ at 1.96 TeV e^+e^- , 10.6 GeV etc. • • •
c. +14		⁸ AAIJ ⁹ AAIJ	13CE 13N	LHCB LHCB	Repl. by AAIJ 17AO Repl. by AAIJ 13CE
$ \begin{array}{c} 6.4 & -1.7 & \pm 1.0 \\ - 2 & +7 \\ - 6 \end{array} $		¹¹ LOWREY	09AN	CLEO	e^+e^- at 10.58 GeV e^+e^- at $\psi(3770)$
$1.98 \pm 0.73 \substack{+0.32 \\ -0.41}$		¹² ZHANG	07в	BELL	Repl. by PENG 14
< 7 -11 to +22 < 11 < 30	95 90 90	¹³ ZHANG ¹² ASNER BITENC CAWLFIELD	06 05 05 05	BELL CLEO BELL CLEO	$e^+e^-e^+e^-pprox$ 10 GeV
HTTP://PDG.LBL.0	GOV	Page 2		Cre	ated: 6/5/2018 19:00

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

424	± 11	\pm 7	5118	FRABETTI	91	E687	$K^{-}\pi^{+}$, $K^{-}\pi^{+}\pi^{+}\pi^{-}$		
417	± 18	± 15	890	ALVAREZ	90	NA14	$K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{+}\pi^{-}$		
388	$^{+23}_{-21}$		641	¹ BARLAG	90C	ACCM	π^- Cu 230 GeV		
480	± 40	± 30	776	ALBRECHT	881	ARG	e ⁺ e ⁻ 10 GeV		
422	\pm 8	± 10	4212	RAAB	88	E691	Photoproduction		
420	± 50		90	BARLAG	87 B	ACCM	K^- and π^- 200 GeV		
16	1 BARLAG 90C estimate systematic error to be negligible.								

See the related review(s):

 $D^0 - \overline{D}^0$ Mixing

$$\left|m_{D_{1}^{0}}-m_{D_{2}^{0}}\right|=x\;\mathsf{\Gamma}$$

The D_1^0 and D_2^0 are the mass eigenstates of the D^0 meson, as described in the note on " $D^0-\overline{D}^0$ Mixing,' above. The experiments usually present $x \equiv \Delta m/\Gamma$. Then $\Delta m = x \ \Gamma = x \ \hbar/\tau$.

"OUR EVALUATION" comes from CPV allowing averages provided by the Heavy Flavor Averaging Group, see the note on " $\mathcal{D}^0-\overline{\mathcal{D}}^0$ Mixing."

VALUE $(10^{10} h s^{-1})$ CL%	DOCUMENT ID	TECN	COMMENT
0.95 ^{+0.41} OUR EVAL	UATION		
0.7 ±0.4 OUR AVER/	AGE Error includes s	cale factor of	1.4. See the ideogram
below.			-
$0.66 \substack{+0.41 \\ -0.37}$	¹ AAIJ	19X LHCB	$D^0 \rightarrow \ \kappa^0_S \pi^+ \pi^-$
	² AAIJ	18K LHCB	pp at 7, 8, 13 TeV
$-$ 2.10 \pm 1.29 \pm 0.41	³ AAIJ	16V LHCB	pp at 7 TeV
3.7 ±2.9 ±1.5	⁴ LEES	16D BABR	e ⁺ e ⁻ , 10.6 GeV
	⁵ KO	14 BELL	$e^+ e^- ightarrow ~ \Upsilon(nS)$
$1.37 \pm 0.46 {+0.18 \atop -0.28}$	⁶ PENG	14 BELL	$e^+e^- ightarrow ~\Upsilon(nS)$
	⁷ AALTONEN	13AE CDF	pp at 1.96 TeV
$0.39 \pm 0.56 \pm 0.35$	⁸ DEL-AMO-SA	10D BABR	e ⁺ e ⁻ , 10.6 GeV
• • • We do not use the follo	owing data for average	es, fits, limits,	etc. • • •
	⁹ AALI	17A0 LHCB	Repl. by AAU 18K
	10 AALI	13CE LHCB	Repl. by AALI 17A0
	¹¹ AAIJ	13N LHCB	Repl. by AAIJ 13CE
$6.4 \ ^{+1.4}_{-1.7} \ \pm 1.0$	¹² AUBERT	09AN BABR	e ⁺ e ⁻ at 10.58 GeV
-2 + 7 - 6	¹³ LOWREY	09 CLEO	e^+e^- at ψ (3770)
$1.98 \pm 0.73 {+0.32 \atop -0.41}$	¹⁴ ZHANG	07B BELL	Repl. by PENG 14
< 7 95	¹⁵ ZHANG	06 BELL	e ⁺ e ⁻
-11 to $+22$	¹⁴ ASNER	05 CLEO	$e^+e^- \approx 10 \text{ GeV}$
< 11 90	BITENC	05 BELL	
https://pdg.lbl.gov	Page 2	Cre	ated: 6/1/2021 08:32

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

\bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

				0 0	,	,,		
424	$\pm 11 \\ \pm 18$	± 7 ± 15	5118	FRABETTI	91 00	E687	$K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{+}\pi^{-}$ $K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{+}\pi^{-}$	
417	± 10	± 10	890	ALVAREZ	90	INA14	N <i>n n n n n n</i>	
388	$^{+23}_{-21}$		641	¹ BARLAG	90C	ACCM	π^- Cu 230 GeV	
480	± 40	± 30	776	ALBRECHT	881	ARG	e^+e^- 10 GeV	
422	\pm 8	± 10	4212	RAAB	88	E691	Photoproduction	
420	±50		90	BARLAG	87 B	ACCM	K^- and π^- 200 GeV	
16	¹ BARLAG 90C estimate systematic error to be negligible.							

See the related review(s):

 $D^0 - \overline{D}^0$ Mixing

$$\left|m_{D_1^0}-m_{D_2^0}\right|=x\;\mathsf{\Gamma}$$

The D_1^0 and D_2^0 are the mass eigenstates of the D^0 meson, as described in the note on " $D^0-\overline{D}^0$ Mixing,' above. The experiments usually present $x \equiv \Delta m/\Gamma$. Then $\Delta m = x \Gamma = x \hbar/\tau$.

"OUR EVALUATION" comes from CPV allowing averages provided by the Heavy Flavor Averaging Group, see the note on " ${\cal D}^0-\overline{\cal D}^0$ Mixing."

VALUE $(10^{10} h s^{-1})$	CL%	DOCUMENT ID		TECN	COMMENT
0.95 ^{+0.41} OUR E	VALUATI	ON			
0.7 ±0.4 OUR A	VERAGE	Error includes sc	ale fa	ctor of 1	4. See the ideogram
$0.66 \substack{+0.41 \\ -0.37}$		1 AAIJ	19X	LHCB	$D^0 \rightarrow \kappa^0_S \pi^+ \pi^-$
$-2.10\pm1.29\pm0.41$ 3.7 ±2.9 ±1.5		² AAIJ ³ AAIJ ⁴ LEES ⁵ KO	18K 16V 16D 14	LHCB LHCB BABR BELL	$pp \text{ at } 7, 8, 13 \text{ TeV}$ $pp \text{ at } 7 \text{ TeV}$ $e^+ e^-, 10.6 \text{ GeV}$ $e^+ e^- \rightarrow \Upsilon(nS)$
$1.37 \pm 0.46 - 0.28$ $0.39 \pm 0.56 \pm 0.35$ • • We do not use the	following	⁷ AALTONEN ⁸ DEL-AMO-SA	14 13AE 10D	BELL CDF BABR limits, e	$e^+e^- \rightarrow T(nS)$ $p\overline{p}$ at 1.96 TeV e^+e^- , 10.6 GeV etc. • • •
		⁹ AAIJ ¹⁰ AAIJ ¹¹ AAIJ	17AO 13CE 13N	LHCB LHCB LHCB	Repl. by AAIJ 18K Repl. by AAIJ 17A0 Repl. by AAIJ 13CE
$6.4 \begin{array}{c} +1.4 \\ -1.7 \end{array} \pm 1.0$:	¹² AUBERT	09AN	BABR	e^+e^- at 10.58 GeV
-2 + 7 - 6	:	¹³ LOWREY	09	CLEO	e^+e^- at $\psi(3770)$
$1.98 \!\pm\! 0.73 \!+\! 0.32 \\ -\! 0.41$:	¹⁴ ZHANG	07 B	BELL	Repl. by PENG 14
< 7 -11 to +22 < 11	95 90	¹⁵ ZHANG ¹⁴ ASNER BITENC	06 05 05	BELL CLEO BELL	e^+e^- $e^+e^- \approx 10 \text{ GeV}$
https://pdg.lbl.gov		Page 2		Crea	ated: 6/1/2021 08:32

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

D mixing

D mixing

• PDG takes charm mixing results ($x, y, \phi, |q/p|$) from HFLAV, who kindly recalculate it for us according to PDG rules (only published results, no preprints).

Y. Amhis et al. (Heavy Flavor Averaging Group) (2018), [arXiv:1909.12524], updated results and plots available at https://hflav.web.cern.ch/

- So, while an exciting topic with impressive progress, you have learnt all about this in Jolanta's talk.
- More about HFLAV and its connection to the PDG can be found in the PDG review on HFLAV:

D mixing

• PDG takes charm mixing results ($x, y, \phi, |q/p|$) from HFLAV, who kindly recalculate it for us according to PDG rules (only published results, no preprints).

Y. Amhis et al. (Heavy Flavor Averaging Group) (2018), [arXiv:1909.12524], updated results and plots available at https://hflav.web.cern.ch/

- So, while an exciting topic with impressive progress, you have learnt all about this in Jolanta's talk.
- More about HFLAV and its connection to the PDG can be found in the PDG review on HFLAV:

2018

 $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$

$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$

CP violation in these modes can come from the decay amplitudes (direct) and/or from mixing or interference of mixing and decay (indirect). The difference ΔA_{CP} is primarily sensitive to the direct component, and only retains a second-order dependence on the indirect component for measurements where the mean decay time of the K^+K^- and $\pi^+\pi^-$ samples are not identical. The results below are averaged assuming the indirect component can be neglected.

VALUE (%)	EVTS	DOCUMENT ID	TECN	COMMENT
-0.12±0.13 OUR	VERAGE Error i	ncludes scale fa	ctor of 1.8. S	ee the ideogram below.
$-0.10\!\pm\!0.08\!\pm\!0.03$	6.5M,2.2M	AAIJ	16D LHCB	Time-integrated
$0.14 \pm 0.16 \pm 0.08$	2.2M,0.8M	AAIJ	14AK LHCB	Time-integrated
$-0.62\!\pm\!0.21\!\pm\!0.10$		AALTONEN	120 CDF	Time-integrated
$0.24 \pm 0.62 \pm 0.26$		¹ AUBERT	08M BABR	Time-integrated
$-0.86 \pm 0.60 \pm 0.07$	120k	STARIC	08 BELL	Time-integrated
\bullet \bullet \bullet We do not us	e the following dat	a for averages,	fits, limits, etc	
$0.49\!\pm\!0.30\!\pm\!0.14$	0.56M,0.22M	AAIJ	13AD LHCB	See AAIJ 14AK
$-0.82\!\pm\!0.21\!\pm\!0.11$	1.4M,0.4M	AAIJ	12G LHCB	See AAIJ 16D
$-0.46 \pm 0.31 \pm 0.12$		AALTONEN	12B CDF	See AALTONEN 120

HTTP://PDG.LBL.GOV

Page 102 Created: 6/5/2018 19:00

D⁰ CP-VIOLATING ASYMMETRY DIFFERENCES

$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$

CP violation in these modes can come from the decay amplitudes (direct) and/or from mixing or interference of mixing and decay (indirect). The difference ΔA_{CP} is primarily sensitive to the direct component, and only retains a second-order dependence on the indirect component for measurements where the mean decay time of the K^+K^- and $\pi^+\pi^-$ samples are not identical. The results below are averaged assuming the indirect component can be neglected.

VALUE (%)	EVTS	DOCUMENT IL)	TECN	COMMENT
-0.154 ± 0.029	53M,17M	AAIJ	19D	LHCB	Time-integrated
• • • We do not use t	he following data	for averages, f	its, lir	nits, etc	
$-0.10\ \pm 0.08\ \pm 0.03$	6.5M,2.2M	AAIJ	16D	LHCB	See AAIJ 19D
$0.14\ \pm 0.16\ \pm 0.08$	2.2M,0.8M	AAIJ	14AK	LHCB	See AAIJ 19D
$0.49\ \pm 0.30\ \pm 0.14$	0.56M,0.22M	AAIJ	13AD	LHCB	See AAIJ 14AK
$-0.82\ \pm 0.21\ \pm 0.11$	1.4M,0.4M	AAIJ	12G	LHCB	See AAIJ 16D
$-0.46\ \pm 0.31\ \pm 0.12$		AALTONEN	12B	CDF	See AALTONEN 120
$-0.62\ \pm 0.21\ \pm 0.10$		AALTONEN	120	CDF	Time-integrated
$0.24 \pm 0.62 \pm 0.26$		¹ AUBERT	08M	BABR	Time-integrated
$-0.86\ \pm 0.60\ \pm 0.07$	120k	STARIC	08	BELL	Time-integrated
1.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	AUDEDT AG		· · · +		(+)

¹ Calculated from the AUBERT 08M values of $A_{CP}(K^+K^-)$ and $A_{CP}(\pi^+\pi^-)$. The systematic error here combines the systematic errors in quadrature, and therefore somewhat over-estimates it.

D⁰ TESTS OF LOCAL CP-VIOLATION (CPV)

We list model-independent searches for local *CP* violation in phase-space distributions of multi-body decays.

Most of these searches divide phase space (Dalitz plot for 3-body decays, five-dimensional equivalent for 4-body decays) into bins, and perform a χ^2 test comparing normalised yields N_i, N_i in CP-conjugate bin pairs $i: \chi^2 = \Sigma_i(N_i - \alpha \bar{N}_i)/\alpha(N_i - \alpha \bar{N}_i)$. The factor $\alpha = (Z_iN_i)/(Z_iN_i)$ removes the dependence on phase-space-integrated rate asymmetries. The result is used to obtain the probability (p-value) to obtain the measured χ^2 or larger under the assumption of CP conservation [AUBBERT 0840, BENIAGA 09]. Alternative methods obtain p-values from other test variables based on unbinned analyses [WILLIAMS 11, AAIJ 14C]. Results can be combined using Fisher's method [MOSTELLER 48].

p-value (%)	EVTS	DOCUMENT ID	•	TECN	COMMENT
4.9 OUR EVAL	UATION				
2.6	566k	¹ AAIJ	15A	LHCB	unbinned method
32.8	82k	AUBERT	08AC	BABR	x ²
					~
¹ Unusually, A limited test s	AIJ 15A assigns	an uncertainty on	the p v	alue of :	$\pm 0.5\%$. This results from
¹ Unusually, A limited test s Local CPV in p-value (%)	AIJ 15A assigns statistics. $D^0, \overline{D}^0 \rightarrow \pi$ EVTS	an uncertainty on $+\pi^-\pi^+\pi^-$ DOCUMENT ID	the p v	alue of : TECN	±0.5%. This results from

Page 105 Created: 6/1/2021 08:32

https://pdg.lbl.gov

2021

 $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$ 2018

 $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) \stackrel{(\%)}{\longrightarrow} AVERAGE$ HTTP://PDG.LBL.GOV $0.12 \stackrel{(m)}{=} 0.12 \stackrel{(m)}{=} 0.12 \stackrel{(m)}{=} 13 (m)$

D⁰ CP-VIOLATING ASYMMETRY DIFFERENCES

$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$

CP violation in these modes can come from the decay amplitudes (direct) and/or from mixing or interference of mixing and decay (indirect). The difference ΔA_{CP} is primarily sensitive to the direct component, and only retains a second-order dependence on the indirect component for measurements where the mean decay time of the K^+K^- and $\pi^+\pi^-$ samples are not identical. The results below are averaged assuming the indirect component can be neglected.

VALUE (%)	EVTS	DOCUMENT IL)	TECN	COMMENT
-0.154 ± 0.029	53M,17M	AAIJ	19D	LHCB	Time-integrated
• • • We do not use	the following data	for averages, fi	ts, lin	nits, etc.	•••
$-0.10 \pm 0.08 \pm 0.03$	6.5M,2.2M	AAIJ	16D	LHCB	See AAIJ 19D
$0.14 \pm 0.16 \pm 0.08$	2.2M,0.8M	AAIJ	14AK	LHCB	See AAIJ 19D
$0.49 \pm 0.30 \pm 0.14$	0.56M,0.22M	AAIJ	13AD	LHCB	See AAIJ 14AK
$-0.82\ \pm 0.21\ \pm 0.11$	1.4M,0.4M	AAIJ	12G	LHCB	See AAIJ 16D
$-0.46\ \pm 0.31\ \pm 0.12$		AALTONEN	12B	CDF	See AALTONEN 120
$-0.62\ \pm 0.21\ \pm 0.10$		AALTONEN	120	CDF	Time-integrated
$0.24\ \pm 0.62\ \pm 0.26$		¹ AUBERT	M80	BABR	Time-integrated
$-0.86\ \pm 0.60\ \pm 0.07$	120k	STARIC	08	BELL	Time-integrated
1 Coloriana di Grana di	- AUDEDT OOM	under an A	$(\nu^+$	v=)	

Calculated from the AUBERT USM values of $A_{CP}(\pi^+\pi^-)$ and $A_{CP}(\pi^+\pi^-)$. The systematic error here combines the systematic errors in quadrature, and therefore somewhat over-estimates it.

D⁰ TESTS OF LOCAL CP-VIOLATION (CPV)

We list model-independent searches for local *CP* violation in phase-space distributions of multi-body decays.

Most of these searches divide phase space (Dalitz plot for 3-body decays, five-dimensional equivalent for 4-body decays) into bins, and perform a χ^2 test comparing normalised yields N_i, \overline{N}_i in CP-conjugate bin pairs $i: \chi^2 = \Sigma_i(N_i - \alpha \overline{N}_i)/\alpha(N_i - \alpha \overline{N}_i)$. The factor $\alpha = (Z_iN_i)/(Z_i\overline{N}_i)$ removes the dependence on phase-space-integrated rate asymmetries. The result is used to obtain the probability (p-value) to obtain the measured χ^2 or larger under the assumption of CP conservation [AUBBERT 0840, BENGAG 09]. Alternative methods obtain p-values from other test variables based on unbinned analyses [WILLIAMS 11, AAIJ 14C]. Results can be combined using Fisher's method [MOSTELLER 48].

Local CPV in I	$D^{\circ}, D^{\circ} \rightarrow$	$\pi^{+}\pi^{-}\pi^{0}$
p-value (%)	EVTS	DOCUMENT ID

4.9 OUR EVALUA	ATION			
2.6	566k	¹ AAIJ	15A LHCB	unbinned method
32.8	82k	AUBERT	08AO BABR	χ^2
¹ Unusually, AAI, limited test sta	J 15A assigns a tistics.	an uncertainty on t	the p value of :	$\pm 0.5\%$. This results from
Local CPV in D	$D^0, \overline{D}^0 \rightarrow \pi$	$+\pi^{-}\pi^{+}\pi^{-}$		
p-value (%)	EVTS	DOCUMENT ID	TECN	COMMENT
0.6+0.2	1.0M	1 4411	17AF LHCB	unbinned P-odd

TECN COMMENT

https://pdg.lbl.gov Page 105 Created: 6/1/2021 08:32

PDG on Charm

2021

 $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$ 20212018

PDG on Charm

D⁰ TESTS OF LOCAL CP-VIOLATION (CPV)

We list model-independent searches for local CP violation in phase-space distributions of multi-body decays.

Most of these searches divide phase space (Dalitz plot for 3-body decays, five-dimensional equivalent for 4-body decays) into bins, and perform a χ^2 test comparing normalised yields N_i , \overline{N}_i in CP-conjugate bin pairs $i:\chi^2=\Sigma_i(N_i-\alpha\,\overline{N}_i)/c(N_i-\alpha\,\overline{N}_i)$. The factor $\alpha=(\Sigma_iN_i)/(\Sigma_i\overline{N}_i)$ removes the dependence on phase-space-integrated rate asymmetries. The result is used to obtain the probability (p-value) to obtain the measured χ^2 or larger under the assumption of CP conservation (AUBERT 08A0, BEDIAGA 09). Alternative methods obtain p-values from other test variables based on unbinned analyses [WILLIAMS 11, AAU 14C]. Results can be combined using Fisher's method [MOSTELLER 48].

p-value (%)	EVTS	DOCUMENT ID		TECN	COMMENT
4.9 OUR EVALU	JATION				
2.6	566k	¹ AAIJ	15A	LHCB	unbinned method
32.8	82k	AUBERT	08A0	BABR	χ^2
¹ Unusually, A/ limited test st	IJ 15A assigns atistics.	an uncertainty on	the p v	alue of :	$\pm 0.5\%$. This results from
¹ Unusually, AA limited test st	AlJ 15A assigns atistics. $D^0, \overline{D}^0 \rightarrow \pi$	an uncertainty on $\pi^+\pi^-\pi^+\pi^-$	the p v	alue of	$\pm 0.5\%$. This results from
¹ Unusually, A4 limited test st Local CPV in p-value (%)	AlJ 15A assigns atistics. $D^0, \overline{D}^0 \rightarrow \pi$	an uncertainty on $\pi^+\pi^-\pi^+\pi^-$	the p v	alue of	±0.5%. This results from

https://pdg.lbl.gov Page 105 Created: 6/1/2021 08:32

 $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$ 2021 2018

First observation of CP violation in charm

Searches for CPV by comparing Dalitz plot shapes (binned or unbinned)

 Compare yields in CP-conjugate bins

$$S_{CP} = \frac{N_i - \alpha \overline{N}_i}{\sigma (N_i - \alpha \overline{N}_i)}$$
$$\alpha = \frac{N_{\text{total}}}{\overline{N}_{\text{total}}}$$

 Calculate p-value for no-CPV hypothesis based on

$$\chi^2 = \sum_i \, (S_{CP}^i)^2$$

• Model independent. Many production and detection effects cancel.

Introduced by BaBar: PRD78, 051102 (2008). Developed further in PRD 80, 096006 (2009), PRD86, 036005 (2012)

Searches for CPV by comparing Dalitz plot shapes (binned or unbinned)

Combining local CPV results

82k

Local CPV in D	$^{\pm} \rightarrow K^{+}_{EVTS}$	- Κ - π [±] DOCUMEN	NT ID	TECN COMMEN	IT
31 OUR EVALUA					
72	224k	LEES	13F	BABR χ^2	
12.7	370k	1 AAIJ	11 G	LHCB χ^2	
Local <i>CPV</i> in <i>D</i> ⁰ ,	$\overline{D}^0 \rightarrow \pi^+$	$\pi^{-}\pi^{0}$			
p-value (%)	EVTS	DOCUMENT ID	TECN	COMMENT	
4.9 OUR EVALUATI	ON				
2.6	566k	¹ AAIJ	15A LHCB	unbinned method	

AUBERT

<u>Fisher's method</u> allows the combination of p-values - it translates p-values to χ^2 , adds them, then calculates a new p-value). (Many thanks go to Mike Williams for pointing us to this method.)

08A0 BABR χ^2

Jonas Rademacker (University of Bristol)

32.8

Charm input to CPV in B

All three processes sensitive to the same charm interference parameters (one complex number, *Z*, per phase-space region)

 $\frac{1}{\sqrt{2}} \left(|D^0\rangle + |\overline{D}{}^0\rangle \right) \to |f\rangle$

well-defined $D^0 - \overline{D}^0$ superpositions, accessible at CLEO-c, BES III

$D^0 \to K^+ \pi^- \pi^+ \pi^-$ Coherence factor then

Use interference effects in charm as input to γ $\Gamma(B^- \to (K^+ 3\pi)_D K^-) \propto r_B^2 + (r_D^{K3\pi})^2 + 2R_{K3\pi}r_Br_D^{K3\pi} \cdot \cos(\delta_B + \delta_D^{K3\pi} - \gamma)$

Combined with LHCb

$D^0 \to K^+ \pi^- \pi^+ \pi^-$ Coherence factor now

Use interference effects in charm as input to γ $\Gamma(B^- \to (K^+ 3\pi)_D K^-) \propto r_B^2 + (r_D^{K3\pi})^2 + 2R_{K3\pi}r_Br_D^{K3\pi} \cdot \cos(\delta_B + \delta_D^{K3\pi} - \gamma)$

CLEO-c data: <u>Phys.Lett. B757 (2016) 520-527</u> <u>Phys.Rev.D80:031105,2009</u> LHCb: <u>PRL 116 (2016) no.24, 241801</u>

CLEO-c input theory: PRD D68 (2003) 033003 LHCb input theory: Phys.Lett. B728 (2014) 296-302

Jonas Rademacker (University of Bristol)

PDG on Charm

$D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$ Coherence factor now

 $Z = R e^{-\iota \delta}$ Use interference effects in charm as input to γ $\Gamma(\mathsf{B}^{-} \to (\mathsf{K}^{+} 3\pi)_{\mathsf{D}} \mathsf{K}^{-}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2R_{K3\pi}r_{B}r_{D}^{K3\pi} \cdot \cos(\delta_{B} + \delta_{D}^{K3\pi} - \gamma)$

Jonas Rademacker (University of Bristol)

PDG on Charm

$D^0 \to K^+ \pi^- \pi^+ \pi^-$ Coherence factor now

Use interference effects in charm as input to γ $\Gamma(B^- \to (K^+ 3\pi)_D K^-) \propto r_B^2 + (r_D^{K3\pi})^2 + 2R_{K3\pi}r_Br_D^{K3\pi} \cdot \cos(\delta_B + \delta_D^{K3\pi} - \gamma)$

77. Spectroscopy of Mesons Containing Two Heavy Quarks

Revised March 2020 by S. Eidelman (Budker Inst., Novosibirsk; Novosibirsk U.), C. Hanhart (Jülich), J. J. Hernández-Rey (IFIC, Valencia), R.E. Mitchell (Indiana U.), S. Navas (Dp.de Fisica. U. de Granada) and C. Patrignani (Bologna U.).

New Particles

Plot by Patrick Koppenburg: <u>https://www.nikhef.nl/~pkoppenb/particles.html</u>

*The J/ψ remains the J/ψ .

Approach: name implies quantum numbers, not quark content. X reserved for states with unknown quantum numbers.

Revised August 2018 by V. Burkert (Jefferson Lab), S. Eidelman (Budker Inst., Novosibirsk; Novos Revised August 2018 by V. Burkert (Jefferson Lab), S. Eidelman (Budker Inst., Novosibirsk; Novosibirsk U.), C. Hanhart (Jülich), E. Klempt (Bonn U.), R.E. Mitchell (Indiana U.), U. Thoma (Novosibirsk), Novosibirsk (Novosibirsk), Novosibirsk), Novosibirsk (Novosibi birsk U.J, U. Hanhart (Julich), E. Klempt (Bonn U.J, K.E. Mitchell (Indiana U.J, U.J, L. Tiator (KPH, JGU Mainz) and R.L. Workman (George Washington U.). Meson name translation table

Mesons wit	h complete $I^G J^{PC}$ assignment
PDG Name	Former Common Name(s)
$\overline{\psi_2(3823)^*}$	X(3823)
$\chi_{c1}(3872)$	X(3872)
$Z_c(3900)$	$Z_c(3900)$
$\chi_{c2}(3930)^{\dagger}$	$\chi_{c2}(2P), Z(3930)$
$\chi_{c1}(4140)$	Y(4140)
$Z_c(4200)$	$Z_c(4200)$
$\psi(4230)$	Y(4230)
$R_{c0}(4240)$	$Z_c(4240)$
$\psi(4260)$	Y(4260)
$\chi_{c1}(4274)$	Y(4274)
$\psi(4360)$	Y(4360)
$Z_c(4430)$	$Z_c(4430)$
$\chi_{c0}(4500)$	X(4500)
$\psi(4660)$	X(4630), Y(4660)
$\chi_{c0}(4700)$	X(4700)
$Z_b(10610)$	$Z_b(10610)$
$Z_b(10650)$	$Z_b^{(\prime)}(10650)$

Mesons with	n incomplete $I^G J^{PC}$ assignment
PDG Name	Former Common Name(s)
$X(3915)^{\ddagger}$	$\chi_{c0}(3915), X(3915), Y(3940)$
X(3940)	X(3940)
X(4020)	$Z_c^{(\prime)}(4020)$
$X(4050)^{\pm}$	$Z_1(4050)$
$X(4055)^{\pm}$	$Z_c(4055)$
X(4160)	X(4160)
$X(4250)^{\pm}$	$Z_2(4250)$
X(4350)	X(4350)

8. Naming Scheme for Hadrons

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

also known as X(3872)

This state shows properties different from a conventional $q \overline{q}$ state. A candidate for an exotic structure. See the review on non- $q \overline{q}$ states.

Charmonium

Charmonium

Jonas Rademacker (University of Bristol)

PDG on Charm

Charm 2020-21, I wish I were in Mexico 22

Charmonium

Charmonium

Charmonium

New Charm-Strange

Mellissa Cruz' talk

New really strange: First tetra flavour

LHCb: <u>PRL 125 (2020) 242001</u> LHCb: <u>PRD 102 (2020) 112003</u>

84. Charmed Baryons Revised in part June 2020 by D.J. Robinson (LBNL).

Doubly charmed baryon Ξ_{cc}^+ ?

-(1) - $D^{-}U^{-}$

PDG on Charm

\rightarrow	СĊ	pdg.lbl.gov/2018/listings/rpp2018-list-xicc-plus.pdf					
S	065.dvi	1 / 2 - 100% + 🕃 🕎					
		Citation: M. Tanabashi <i>et al.</i> (Particle Data Group), Phys. Rev. D 98 , 030001 (2018)					
		Ξ_{cc}^+ $I(J^P) = ?(?^?)$ Status: *					
		OMITTED FROM SUMMARY TABLE This would presumably be an isospin-1/2 particle, a $ccu \equiv_{cc}^{++}$ and a $ccd \equiv_{cc}^{+}$. However, opposed to the evidence cited below, the BABAR experiment has found no evidence for a \equiv_{cc}^{+} in a search in $\Lambda_c^+ K^- \pi^+$ and $\equiv_c^0 \pi^+$ modes, and no evidence of a \equiv_{cc}^{++} in $\Lambda_c^+ K^- \pi^+ \pi^+$ and $\equiv_c^0 \pi^+ \pi^+$ modes (AUBERT, B 06D). Nor have the BELLE (CHIS-TOV 06, KATO 14) or LHCb (AAIJ 13CD) experiments found any evidence for this state.					
		Ξ_{cc}^+ MASS					
		VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT					
		3518.9±0.9 OUR AVERAGE 3518 ± 3 63519 ± 1 16162 MATTSON102 SELX Σ^- nucleus \approx 600 GeV					
	¹ OCHERASHVILI 05 claims "an excess of 5.62 events over 1.38 ± 0.13 events" for significance of 4.8 σ in pD^+K^- events. ² MATTSON 02 claims "an excess of 15.9 events over an expected background of $6.1 \pm$ events, a statistical significance of 6.3 σ " in the $\Lambda_c^+K^-\pi^+$ invariant-mass spectrum						
Jonas Rade		The probability that the peak is a fluctuation increases from 1.0×10^{-6} to 1.1×10^{-4} when the number of bins searched is considered.	e in Mexico 27				

$$\Lambda_c^+ (\to p K^- \pi^+) K^- \pi^+ \pi^+ \qquad m = 3621.40 \pm 0.72 (\text{stat}) \pm 0.27 (\text{syst}) \pm 0.14 (\Lambda_c^+)$$

 $\Delta m = 103 \text{ MeV}$

V/c² $D^{-}V^{-}$ (1.)

$$\Lambda_c^+ (\to pK^-\pi^+)K^-\pi^+\pi^+ \qquad m = 3621.40 \pm 0.72 \text{(stat)} \pm 0.27 \text{(syst)} \pm 0.14 (\Lambda_c^+)$$

 Ξ_{cc}^+ ?

$$\Lambda_c^+ (\to p K^- \pi^+) K^- \pi^+ \pi^+ \qquad m = 3621.40 \pm 0.72 (\text{stat}) \pm 0.27 (\text{syst}) \pm 0.14 (\Lambda_c^+)$$

 Ξ_{cc}^+ ?

 $\Lambda_c^+ (\to p K^- \pi^+) K^- \pi^+ \pi^+ \qquad m = 3621.40 \pm 0.72 (\text{stat}) \pm 0.27 (\text{syst}) \pm 0.14 (\Lambda_c^+)$

 Ξ_{cc}^+ ?

→ C A pdg.lbl.gov/2020/listings/rpp2020-list-xicc-plus.pdf

 $\Lambda_c^+(\to pK^-\pi^+)K^-\pi^+\pi^+ \qquad m = 3621.40 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \pm 0.14(\Lambda_c^+)$

 $\Lambda_c^+(\to pK^-\pi^+)K^-\pi^+\pi^+ \qquad m = 3621.40 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \pm 0.14(\Lambda_c^+)$

Pentaquarks 2006

PENTAQUARK UPDATE

Written February 2006 by G. Trilling (LBNL).

To summarize, with the exception described in the previous paragraph, there has not been a high-statistics confirmation of any of the original experiments that claimed to see the Θ^+ ; there have been two high-statistics repeats from Jefferson Lab that have clearly shown the original positive claims in those two cases to be wrong; there have been a number of other highstatistics experiments, none of which have found any evidence for the Θ^+ ; and all attempts to confirm the two other claimed pentaquark states have led to negative results. The conclusion that pentaquarks in general, and the Θ^+ , in particular, do not exist, appears compelling.

Pentaquarks 2018

105. Pentaquarks

Written March 2016 by M. Karliner (Tel Aviv U.), T. Skwarnicki (Syracuse U.)

LHCb: PRL 115 (2015) 072001

$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ Amplitude Analysis

LHCb: JHEP 02 (2019) 126

3 2 45000	Q 5000	Amplitude	$ c_k $	$\arg(c_k)$ [rad]	Fit fraction $[\%]$
≥ 35000 LHCb	¥ 4000	$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=0}$	1 (fixed)	0 (fixed)	$23.82 \pm 0.38 \pm 0.50$
t 2000	8 3000	$D^0 \to K_1(1400)^+ K^-$	$0.614 \pm 0.011 \pm 0.031$	$1.05 \pm 0.02 \pm 0.05$	$19.08 \pm 0.60 \pm 1.46$
		$D^0 \to [K^- \pi^+]_{L=0} [K^+ \pi^-]_{L=0}$	$0.282 \pm 0.004 \pm 0.008$	$-0.60 \pm 0.02 \pm 0.10$	$18.46 \pm 0.35 \pm 0.94$
	C C C C C C C C C C C C C C C C C C C	$D^0 \to K_1(1270)^+ K^-$	$0.452 \pm 0.011 \pm 0.017$	$2.02 \pm 0.03 \pm 0.05$	$18.05 \pm 0.52 \pm 0.98$
$m(K^+K^-)$ [MeV/c ²]	$\frac{1}{400} \frac{1}{600} \frac{1}{m(\pi^+\pi^-)} \frac{1}{[\text{MeV}/c^2]}$	$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=0}$	$0.259 \pm 0.004 \pm 0.018$	$-0.27 \pm 0.02 \pm 0.03$	$9.18 \pm 0.21 \pm 0.28$
		$D^0 \to K^* (1680)^0 [K^- \pi^+]_{L=0}$	$2.359 \pm 0.036 \pm 0.624$	$0.44 \pm 0.02 \pm 0.03$	$6.61 \pm 0.15 \pm 0.37$
-3 ± 4500	-3	$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=1}$	$0.249 \pm 0.005 \pm 0.017$	$1.22 \pm 0.02 \pm 0.03$	$4.90 \pm 0.16 \pm 0.18$
0 4000 - LHCb		$D^0 \to K_1(1270)^- K^+$	$0.220 \pm 0.006 \pm 0.011$	$2.09 \pm 0.03 \pm 0.07$	$4.29 \pm 0.18 \pm 0.41$
2 3000		$D^0 \to [K^+ K^-]_{L=0} [\pi^+ \pi^-]_{L=0}$	$0.120 \pm 0.003 \pm 0.018$	$-2.49 \pm 0.03 \pm 0.16$	$3.14 \pm 0.17 \pm 0.72$
		$D^0 \to K_1(1400)^- K^+$	$0.236 \pm 0.008 \pm 0.018$	$0.04 \pm 0.04 \pm 0.09$	$2.82 \pm 0.19 \pm 0.39$
1000	1000	$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=0}$	$0.823 \pm 0.023 \pm 0.218$	$2.99 \pm 0.03 \pm 0.05$	$2.75 \pm 0.15 \pm 0.19$
$0\underbrace{E}_{-1} -0.5 0 0 0 0 0 0 0 0 0 $	0 = 1 = -0.5 = 0 = 0.5	$D^0 \to [\overline{K}^*(1680)^0 K^*(892)^0]_{L=1}$	$1.009 \pm 0.022 \pm 0.276$	$-2.76 \pm 0.02 \pm 0.03$	$2.70 \pm 0.11 \pm 0.09$
		$D^0 \to \overline{K}^* (1680)^0 [K^+ \pi^-]_{L=0}$	$1.379 \pm 0.029 \pm 0.373$	$1.06 \pm 0.02 \pm 0.03$	$2.41 \pm 0.09 \pm 0.27$
		$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=2}$	$1.311 \pm 0.031 \pm 0.018$	$0.54 \pm 0.02 \pm 0.02$	$2.29 \pm 0.08 \pm 0.08$
	Data	$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=2}$	$0.652 \pm 0.018 \pm 0.043$	$2.85 \pm 0.03 \pm 0.04$	$1.85 \pm 0.09 \pm 0.10$
T 5000 [[] [] [] [] [] [] [] [] [] [] [] [] [—— Total fit	$D^0 \to \phi(1020)[\pi^+\pi^-]_{L=0}$	$0.049 \pm 0.001 \pm 0.004$	$-1.71 \pm 0.04 \pm 0.37$	$1.49 \pm 0.09 \pm 0.33$
	Signal model	$D^0 \to [K^*(1680)^0 K^*(892)^0]_{L=1}$	$0.747 \pm 0.021 \pm 0.203$	$0.14 \pm 0.03 \pm 0.04$	$1.48 \pm 0.08 \pm 0.10$
	Background model	$D^0 \to [\phi(1020)\rho(1450)^0]_{L=1}$	$0.762 \pm 0.035 \pm 0.068$	$1.17 \pm 0.04 \pm 0.04$	$0.98 \pm 0.09 \pm 0.05$
		$D^0 \to a_0(980)^0 f_2(1270)^0$	$1.524 \pm 0.058 \pm 0.189$	$0.21 \pm 0.04 \pm 0.19$	$0.70 \pm 0.05 \pm 0.08$
φ [rad]		$D^0 \to a_1(1260)^+ \pi^-$	$0.189 \pm 0.011 \pm 0.042$	$-2.84 \pm 0.07 \pm 0.38$	$0.46 \pm 0.05 \pm 0.22$
C .		$D^0 \to a_1 (1260)^- \pi^+$	$0.188 \pm 0.014 \pm 0.031$	$0.18 \pm 0.06 \pm 0.43$	$0.45 \pm 0.06 \pm 0.16$
	$A_{i}(p) \mid^{2} dp$	$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=1}$	$0.160 \pm 0.011 \pm 0.005$	$0.28 \pm 0.07 \pm 0.03$	$0.43 \pm 0.05 \pm 0.03$
$F_{\cdot} - \frac{J}{}$		$D^0 \to [K^*(1680)^0 K^*(892)^0]_{L=2}$	$1.218 \pm 0.089 \pm 0.354$	$-2.44 \pm 0.08 \pm 0.15$	$0.33 \pm 0.05 \pm 0.06$
$I_i =$	12	$D^0 \to [K^+K^-]_{L=0}(\rho - \omega)^0$	$0.195 \pm 0.015 \pm 0.035$	$2.95 \pm 0.08 \pm 0.29$	$0.27 \pm 0.04 \pm 0.05$
		$D^0 \to [\phi(1020)f_2(1270)^0]_{L=1}$	$1.388 \pm 0.095 \pm 0.257$	$1.71 \pm 0.06 \pm 0.37$	$0.18 \pm 0.02 \pm 0.07$
	$A_i(p) \mid ap$	$D^0 \to [K^*(892)^0 K_2^*(1430)^0]_{L=1}$	$1.530 \pm 0.086 \pm 0.131$	$2.01 \pm 0.07 \pm 0.09$	$0.18 \pm 0.02 \pm 0.02$
· _				Sum of fit fractions	$129.32 \pm 1.09 \pm 2.38$
				χ^2/ndf	9242/8121 = 1.14

$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ Amplitude Analysis

LHCb: JHEP 02 (2019) 126

Amplitude	Fit fraction [%]	Amplitude	Fit fraction	n [%]
$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=0}$	$23.82 \pm 0.38 \pm 0.50$	$D^0 \to [\phi(1020)(\phi_{10}, \phi_{10})^0]_{-1}$		0.40
$D^0 \to K_1(1400)^+ K^-$	$19.08 \pm 0.60 \pm 1.46$	$D \rightarrow [\phi(1020)(\rho - \omega)]_{L=0}$ $D^0 \rightarrow K_{\star}(1400) \pm K^{-}$	$24.12 \pm 10.24 \pm$	0.40 0.47
$D^0 \to [K^-\pi^+]_{L=0}[K^+\pi^-]_{L=0}$	$18.46 \pm 0.35 \pm 0.94$	$D^{0} \rightarrow K_{1}(1270)^{+}K^{-}$	$19.34 \pm 10.28 \pm$	0.47
$D^0 \to K_1(1270)^+ K^-$	$18.05 \pm 0.52 \pm 0.98$	$D^0 \rightarrow [K^-\pi^+]_{L^-} \circ [K^+\pi^-]_{L^-} \circ$	$19.20 \pm 19.20 \pm$	0.39
$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=0}$	$9.18 \pm 0.21 \pm 0.28$	$D^{0} \rightarrow [K^{*}(802)^{0}K^{*}(802)^{0}]_{L=0}$	$13.20 \pm 0.36 \pm$	0.00
$D^0 \to K^* (1680)^0 [K^- \pi^+]_{L=0}$	$6.61 \pm 0.15 \pm 0.37$	$D \rightarrow [K (052) \ K (052) \]L=0$ $D^0 \rightarrow K^* (1680)^0 [K^- \pi^+]_L = 0$	$9.30 \pm 6.22 \pm$	0.21 0.15
$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=1}$	$4.90 \pm 0.16 \pm 0.18$	$D \rightarrow \overline{K} (1000) [\overline{K} \times (202)0]_{\overline{K}}$	$0.22 \pm 4.81 \pm 1.81$	0.10
$D^0 \to K_1(1270)^- K^+$	$4.29 \pm 0.18 \pm 0.41$	$D \rightarrow [K (092) \ K (092) \]L=1$ $D^0 \rightarrow K_{\star} (1270)^{-} K^{+}$	$4.01 \pm 4.01 \pm 1.01$	0.10
$D^0 \to [K^+ K^-]_{L=0} [\pi^+ \pi^-]_{L=0}$	$3.14 \pm 0.17 \pm 0.72$	$D \rightarrow R_1(1270) R^+$ $D^0 \rightarrow [K^+ K^-]_{\pi^+ \pi^-}]_{\pi^+ \pi^-}$	$4.40 \pm$ $110 \pm$	0.10
$D^0 \to K_1(1400)^- K^+$	$2.82 \pm 0.19 \pm 0.39$	$D \rightarrow [K K] L=0[K K] L=0$ $D^0 \rightarrow K_1(1400) = K^+$	$4.10 \pm 2.04 \pm$	0.21 0.10
$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=0}$	$2.75 \pm 0.15 \pm 0.19$	$D^0 \rightarrow K_1(1400) K$ $D^0 \rightarrow [K^*(1680)^0 \overline{K^*(802)^0}]_{-}$	$2.94 \pm 2.70 \pm$	0.15
$D^0 \to [\overline{K}^*(1680)^0 K^*(892)^0]_{L=1}$	$2.70 \pm 0.11 \pm 0.09$	$D \rightarrow [K (1000) \ K (892)]L=0$ $D^0 \rightarrow [\overline{K}*(1680)^0 \ K*(802)^0]_{-}$	$2.19 \pm 2.64 \pm 100$	0.10
$D^0 \to \overline{K^*}(1680)^0 [K^+\pi^-]_{L=0}$	$2.41 \pm 0.09 \pm 0.27$	$D^{*} \rightarrow [K (1000)^{*} K (092)^{*}]L=1$ $D^{0} \rightarrow \overline{V}^{*} (1600)^{0} [V^{+}-1]$	$2.04 \pm$	0.11
$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=2}$	$2.29 \pm 0.08 \pm 0.08$	$D^{\circ} \rightarrow K^{\circ}(1080)^{\circ}[K^{+}\pi^{-}]L=0$	$2.44 \pm$	0.09
$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=2}$	$1.85 \pm 0.09 \pm 0.10$	$D^{\circ} \rightarrow [\varphi(1020)(\rho - \omega)^{\circ}]_{L=2}$ $D^{0} \rightarrow [K^{*}(\rho \rho \rho)(\overline{K^{*}}(\rho \rho \rho))]$	$2.20 \pm$	0.08
$D^0 \to \phi(1020)[\pi^+\pi^-]_{L=0}$	$1.49 \pm 0.09 \pm 0.33$	$D^{\circ} \rightarrow [K^{+}(892)^{\circ}K^{+}(892)^{\circ}]_{L=2}$	$1.73 \pm$	0.09
$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=1}$	$1.48 \pm 0.08 \pm 0.10$	$D^{\circ} \rightarrow \phi(1020)[\pi^{+}\pi^{-}]L=0$ $D^{0} \rightarrow [K^{*}(1000)]\overline{K^{*}}(000)]$	$1.43 \pm$	0.09
$D^0 \to [\phi(1020)\rho(1450)^0]_{L=1}$	$0.98 \pm 0.09 \pm 0.05$	$D^{0} \rightarrow [K^{*}(1680)^{\circ}K^{*}(892)^{\circ}]_{L=1}$	$1.30 \pm$	0.08
$D^0 \to a_0(980)^0 f_2(1270)^0$	$0.70 \pm 0.05 \pm 0.08$	$D^{\circ} \rightarrow [\phi(1020)\rho(1450)^{\circ}]_{L=1}$	$0.98 \pm$	0.09
$D^0 \to a_1(1260)^+ \pi^-$	$0.46 \pm 0.05 \pm 0.22$	$D^{\circ} \rightarrow a_0(980)^{\circ} f_2(1270)^{\circ}$	$0.70 \pm$	0.05
$D^0 \to a_1(1260)^- \pi^+$	$0.45 \pm 0.06 \pm 0.16$	$D^{0} \rightarrow a_{1}(1260) + \pi$	$0.50 \pm$	0.06
$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=1}$	$0.43 \pm 0.05 \pm 0.03$	$D^{0} \rightarrow a_{1}(1260) \pi^{-1}$	$0.45 \pm$	0.06
$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=2}$	$0.33 \pm 0.05 \pm 0.06$	$D^{0} \rightarrow [K^{*}(1680)^{0}K^{*}(892)^{0}]_{L=2}$	$0.45 \pm$	0.06
$D^0 \to [K^+ K^-]_{L=0} (\rho - \omega)^0$	$0.27 \pm 0.04 \pm 0.05$	$D^{0} \rightarrow [\phi(1020)(\rho - \omega)^{0}]_{L=1}$	$0.44 \pm$	0.05
$D^0 \rightarrow [\phi(1020) f_2(1270)^0]_{L=1}$	$0.18 \pm 0.02 \pm 0.07$	$D^0 \rightarrow [K^+K^-]_{L=0}(\rho - \omega)^0$	$0.30 \pm$	0.04
$D^0 \rightarrow [K^*(892)^0 \overline{K}_2^*(1430)^0]_{L=1}$	$0.18 \pm 0.02 \pm 0.02$	$D^0 \to [\phi(1020)f_2(1270)^0]_{L=1}$	$0.19 \pm$	0.03
	$190.29 \pm 1.00 \pm 9.29$	$D^{0} \rightarrow [K^{*}(892)^{0}K_{\underline{2}}^{*}(1430)^{0}]_{L=1}$	$0.15 \pm$	0.02
	$129.32 \pm 1.09 \pm 2.38$	$D^0 \to [K_2^*(1430)^0 K_2^*(1430)^0]_{L=0}$	0.11 \pm	0.02
	9242/8121 = 1.14	$D^0 \to [f_2(1270)^0 f_2(1270)^0]_{L=0}$	$0.08~\pm$	0.02
		$D^0 \to [\overline{K}^*(892)^0 K_2^*(1430)^0]_{L=2}$	0.05 \pm	0.01
		$D^0 \to [\phi(1020)f_2(1270)^0]_{L=2}$	0.04 \pm	0.01

 132.92 ± 0.98

9092/8113 = 1.12

Jonas Rademacker (University of Bristol)

_

Currently, we enter fit-fractions as branching ratios.

Currently, we enter fit-fractions as branching ratios.

Don't do that. Ever. Individual amplitudes and thus fit-fractions are meaningful only in the context of the amplitude model.

PDG on Charm

Summary

- Charm is an amazingly active field. A huge number of new results keeps the PDG authors on their toes.
- Charm is full of surprises.
- Only had time to show a small subset of results since CHARM 2018:
 - We found CP violation in charm!!
 - Lots of new particles.
 - Charm for precision B physics
 - How should we encode amplitude analyses? We welcome suggestions: (Jonas.Rademacker@bristol.ac.uk)

PDG on Charm

Backup slides

Bad things

D2 KK pi pi

Pull

Pull

4000

3000

2500 2000

1500 1000

Pull

100

Candidates / 0.04 3200 200 200

LHCb: JHEP 02 (2019) 126

 $A_{\mathcal{F}_{k}}$ [%]

 $-1.8 \pm 1.5 \pm 0.2$

 $-4.5 \pm 2.1 \pm 0.3$

 $-2.6 \pm 1.7 \pm 0.2$

 $-4.3 \pm 2.2 \pm 0.5$

 $-2.6 \pm 3.2 \pm 0.3$

 $2.6 \pm 2.2 \pm 0.4$

 $3.3 \pm 3.5 \pm 0.5$

 $5.1 \pm 5.1 \pm 3.1$

 $6.2 \pm 5.2 \pm 1.5$

 $2.4 \pm 3.7 \pm 1.1$

 $-1.3 \pm 6.0 \pm 1.0$

 $-2.5 \pm 3.9 \pm 0.4$

 $-0.1 \pm 3.3 \pm 0.5$

 $-3.0 \pm 5.0 \pm 0.7$

 $5.8 \pm 6.1 \pm 0.8$

 $1.3 \pm 5.3 \pm 0.6$

 $7.5 \pm 8.5 \pm 1.1$

 $1.5 \pm 7.2 \pm 1.3$

 $-10.6 \pm 11.7 \pm 7.0$

 $-8.7 \pm 13.7 \pm 2.9$

 $2.4 \pm 11.0 \pm 1.4$

 $8.5 \pm 14.3 \pm 3.5$

 $21.3 \pm 12.5 \pm 2.8$

 $3.6 \pm 13.3 \pm 3.0$

 $6.1 \pm 10.8 \pm 1.8$

 $2.0 \pm 1.8 \pm 0.7$

BaBar & BELLE: <u>Phys.Rev.D 98</u> (2018) 11, 112012

LHCb: JHEP 04 (2019) 063
How to encode amplitude analyses

New website

NEWS: 2021 update of Listin	ngs and Summary Tables available
PDC particle data group	SHORTCUTS - CITATION CONTACT ABOUT -
The Review of Partic	cle Physics (2021)
P.A. Zyla <i>et al.</i> (Particle Data Group), Prog. Theor. Exp. P	Phys. 2020, 083C01 (2020) and 2021 update.
pdgLive - Interactive Listings	Order PDG Products
Summary Tables	Topical Index
Reviews, Tables, Plots (2020)	Downloads
Particle Listings	Prev. Editions (& Errata) 1957-2020
Errata	PDG Outreach
٩	Non-PDG Resources
Results provided by Google The publication of the <i>Review of Particle Physics</i> is suppor <u>INFN (Italy</u>). Individual collaborators receive support for agencies. All pages © 2021 Regents of the University of C	rted by <u>US DOE, CERN, MEXT (Japan),</u> and their PDG activities from their respective funding California. See <u>LBNL disclaimers</u>

Jonas Rademacker (University of Bristol)

2 year schedule

Taking into account the *DD*^{*} threshold: Flatté

[PRD102(2020)092005]

Adding external information on branching • $J/\psi \pi \pi$ data alone cannot fractions from Belle and BaBar distorts the distinguish line shapes lineshape [prd80(2009)074004]. Flatté narrower than BW by Shape parameters: factor 5 Mode [MeV] Mean [MeV] FWHM [MeV] **Resolve lineshape** 3871.69 + 0.00 + 0.05 - 0.04 - 0.13 3871.66 + 0.07 + 0.11 - 0.06 - 0.13 0.22 + 0.06 + 0.25- 0.08 - 0.17See K. Götzen talk tomorrow [a.u.] Systematic uncertainties of Breit-Wigner Flatté ${dR(J/\psi \, \pi^+ \pi^-) \over dm_{J/\psi \, \pi^+ \pi^-}}$ equal importance: 350 300 Resolution+Bkg model 250 200 Momentum scale 150 100 E Threshold mass 50 Small effect: D^{0*} width 3.868 3.87 3.872 The PANDA project at FAIR $m_{J/\psi \pi^{+}\pi^{-}}$

Taking into account the DD* threshold: Flatté [PRD102(2020)092005] Adding external information on branching • $J/\psi \pi \pi$ data alone cannot fractions from Belle and BaBar distorts the distinguish line shapes lineshape [PRD80(2009)074004]. Flatté narrower than BW by Shape parameters: factor 5 FWHM [MeV] Mode [MeV] Mean [MeV] $3871.69^{+0.00+0.05}_{-0.04-0.13}$ $3871.66^{+0.07+0.11}_{-0.06-0.13}$ $0.22^{+0.06+0.25}_{-0.08-0.17}$ [a.u.] Systematic uncertainties of Incl. resolution and background Events/(1.6 MeVBreit-Wigner 400 7000 ····· Breit–Wigner Flatté equal importance: LHCb $dR(J/\psi \,\pi^+\pi^-)$ 350 Flatté 6000 300 5000 Resolution+Bkg model $dm_{J/\psi}$ 250 4000 200 Momentum scale 3000 150 2000 100 Threshold mass 1000 50 Small effect: D^{0*} width ſ 3.9 3.87 3.874 3.84 3.86 3.88 3.868 3.872 [GeV] [GeV] $m_{J/\psi \pi^+\pi^-}$ $m_{J/\psi \pi^+\pi^-}$

Breit-Wigner parameters

[PRD102(2020)092005][JHEP08(2020)123]

Comparison between inclusive and exclusive analysis and previous measurements

First time a width was established for this state.

4

	Particle	Spin	Mass (Errors represent standard deviation) (Mev)	Mass difference (Mev)		Mean life (sec)	De (nu	cay rate imber per cond)
Photon	¥	1	0			stable	0	
5	۰.	ł	0			stable	0	
ž.		1 t	105.70 ±0.06 (a)			(2.22 ±0.02) ×10-6	0	.45 × 10 ⁶
Mercos	** *0 K* K ⁰	0 0 0 0	139.63 ±0.06 (a) 135.04 ±0.16 (a) 494.0 ±0.2 (g) 494.4 ±1.8 (i)	<pre>4.6 (a) } 0.4±1.8</pre>	к ₁ : к ₂ :	$\begin{array}{ccc} (2.56 \times 0.05) \times 10^{-8} \\ < 4 & \times 10^{-16} \\ (1.224 \pm 0.013) \times 70^{-8} \\ (0.95 \pm 0.08) \times 10^{-10} \\ (4 < \tau < 13) & \times 10^{-8} \end{array}$	(a) 0 (d) > 2 (h) 0 (e) 1 (c) (0	.39 × 10 ⁸ .5 × 10 ¹⁵ .815 × 10 ⁸ .05 × 10 ¹⁰ .07 < 7 < 0.25) × 10 ⁸
Baryone	P n A E+ E ⁰ H ⁰	1 1 1 1 1 1 1 1 1 1 7 7	938.213 \pm 0.01 (a) 939.506 \pm 0.01 (a) 1115.2 \pm 0.14 (j) 1189.4 \pm 0.25 (l) 1196.5 \pm 0.5 (n) 1190.5 ^{+0.9} _{-1.4} (p) 1320.4 \pm 2.2 (q) 7	$\left.\begin{array}{c} 7.1 \pm 0.4 \\ 6.0^{+1.4}_{-0.9} \end{array}\right.$		stable $(1.04 \pm 0.13) \times 10^{+3}$ $(2.77 \pm 0.15) \times 10^{-10}$ $(0.83 \pm 0.06) \times 10^{-10}$ $(1.67 \pm 0.17) \times 10^{-10}$ $(<0.1) \times 10^{-10}$ theoretically ~10^{-19} $(4.6 < \tau < 200) \times 10^{-10}$ 7	(a) 0 (k) 0 (m) 1 (o) 0 (b) >1 t (f) (>	0.0 1.96 $\times 10^{-3}$ 1.36 $\times 10^{10}$ 1.21 $\times 10^{10}$ 1.60 $\times 10^{10}$ 1.0 $\times 10^{10}$ 1.60 $\times 10^{10}$ 1.60 $\times 10^{10}$ 1.60 $\times 10^{10}$ 1.61 $\times 10^{10}$ 1.62 $\times 10^{10}$ 1.63 $\times 10^{10}$ 1.64 $\times 10^{10}$ 1.65 \times

Barkas and Rosenfeld UCRL-8030 Table I

Masses and mean lifetimes of elementary particles, as shown in Table I of the first wallet card issued in 1957. Image credit: Barkas and Rosenfeld, UCRL-8030.

Browsing through the D^0 listings

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

D⁰ MASS

 $I(J^P) = \frac{1}{2}(0^-)$

The fit includes D^{\pm} , D^{0} , D_{s}^{\pm} , $D^{*\pm}$, D^{*0} , $D_{s}^{*\pm}$, $D_{1}(2420)^{0}$, $D_{2}^{*}(2460)^{0}$, and $D_{s1}(2536)^{\pm}$ mass and mass difference measurements.

Given the recent addition of much more precise measurements, we have omitted all those masses published up through 1990. See any Review before 2015 for those earlier results.

VALUE (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT
1864.83 ±0.05	OUR FIT					
1864.84 ±0.05	OUR AVE	RAGE				
1864.845±0.025	± 0.057	63k	¹ TOMARADZE	14		$D^0 \rightarrow K^- 2\pi^+ \pi^-$
1864.75 ± 0.15 :	± 0.11		AAIJ	13V	LHCB	$D^0 \rightarrow K^+ 2K^- \pi^+$
1864.841±0.048	± 0.063	4.3k	² LEES	13S	BABR	e^+e^- at $\Upsilon(4S)$
1865.30 ± 0.33 :	± 0.23	0.1k	ANASHIN	10A	KEDR	$e^+ e^-$ at $\psi(3770)$
1864.847±0.150	± 0.095	0.3k	CAWLFIELD	07	CLEO	$D^0 \rightarrow K^0_{\alpha}\phi$

 1 Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration. The largest source of error in the TOMARADZE 14 value is from the uncertainties in the K^- and K_0^0 masses. The systematic error given above is the addition in quadrature of $\pm 0.022 \pm 0.053$ MeV, where the second error is from those mass uncertainties. 2 The largest source of error in the LEES 133 value is from the uncertainty of the K^+

mass. The quoted systematic error is in fact \pm 0.043 + 3 (m_{K^+} – 493.677), in MeV.

$m_{D^{\pm}} - m_{D^{0}}$

The fit includes D^{\pm} , D^{0} , D_{s}^{\pm} , $D^{*\pm}$, D^{*0} , $D_{s}^{*\pm}$, $D_{1}^{(2420)^{0}}$, $D_{2}^{*}^{(2460)^{0}}$, and $D_{s1}^{(2536)^{\pm}}$ mass and mass difference measurements.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
4.822±0.015 OUR FIT				
4.76 ±0.12 ±0.07	AAIJ	13V	LHCB	$D^+ \rightarrow K^+ K^- \pi^+$

D⁰ MEAN LIFE

Measurements with an error $> 10 \times 10^{-15} \mbox{ s have been omitted from the average.}$

VALUE (10 ⁻¹⁵ s)	EVTS	DOCUMENT ID		TECN	COMMENT
410.1 ± 1.5 OUR AVE	RAGE				
$409.6 \pm \ 1.1 \pm \ 1.5$	210k	LINK	02F	FOCS	γ nucleus, \approx 180 GeV
$407.9 \pm \ 6.0 \pm \ 4.3$	10k	KUSHNIR	01	SELX	$K^{-}\pi^{+}$, $K^{-}\pi^{+}\pi^{+}\pi^{-}$
413 \pm 3 \pm 4	35k	AITALA	99E	E791	$K^{-}\pi^{+}$
$408.5 \pm \ 4.1 {+}{-} \ \begin{array}{c} 3.5 \\ 3.4 \end{array}$	25k	BONVICINI	99	CLE2	$e^+e^-\approx~\Upsilon(4S)$
$413 ~\pm~ 4 ~\pm~ 3$	16k	FRABETTI	94 D	E687	$K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{+}\pi^{-}$
HTTP://PDG.LBL	.GOV	Page 1		Cre	ated: 6/1/2020 08:33

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

• • We do not use the following data for averages, fits, limits, etc. • • •

					· ·			
424	± 11	\pm 7	5118	FRABETTI	91	E687	$K^{-}\pi^{+}$, $K^{-}\pi^{+}\pi^{+}\pi^{-}$	
417	± 18	± 15	890	ALVAREZ	90	NA14	$K^{-}\pi^{+}$, $K^{-}\pi^{+}\pi^{+}\pi^{-}$	
388	$^{+23}_{-21}$		641	¹ BARLAG	90c	ACCM	π^- Cu 230 GeV	
480	± 40	± 30	776	ALBRECHT	881	ARG	e^+e^- 10 GeV	
422	\pm 8	± 10	4212	RAAB	88	E691	Photoproduction	
420	± 50		90	BARLAG	87B	ACCM	K^- and π^- 200 GeV	
¹ BARLAG 90C estimate systematic error to be negligible.								

See the related review(s):

 $D^0 - \overline{D}^0$ Mixing

10

 $\left|m_{D_{1}^{0}}-m_{D_{2}^{0}}
ight|=x\ \Gamma$

The D_1^0 and D_2^0 are the mass eigenstates of the D^0 meson, as described in the note on " $D^0-\overline{D}^0$ Mixing," above. The experiments usually present $x \equiv \Delta m/\Gamma$. Then $\Delta m = x \Gamma = x \hbar/\tau$.

"OUR EVALUATION" comes from CPV allowing averages provided by the Heavy Flavor Averaging Group, see the note on " D^0 - \overline{D}^0 Mixing."

VALUE (1010 h s 1)	CL%	DOCUMENT ID		TECN	COMMENT
$0.95 + 0.41_{-0.44}$ OUR E	VALUATIO	N			
0.7 ±0.4 OUR A	VERAGE	Error includes sc	ale fa	ctor of 1	.4. See the ideogram
0.66 ^{+0.41} -0.37	:	^l aaij	19X	LHCB	$D^0 \rightarrow \kappa^0_S \pi^+ \pi^-$
$\begin{array}{rrrr} -& 2.10 \pm 1.29 \pm 0.41 \\ & 3.7 \ \pm 2.9 \ \pm 1.5 \end{array}$		² AAIJ ³ AAIJ ⁴ LEES ⁵ KO	18K 16V 16D 14	LHCB LHCB BABR BELL	pp at 7, 8, 13 TeV pp at 7 TeV $e^+ e^-$, 10.6 GeV $e^+ e^- \rightarrow \Upsilon(nS)$
$1.37 \pm 0.46 {+0.18 \atop -0.28}$	6	⁵ PENG	14	BELL	$e^+e^- ightarrow ~\Upsilon(nS)$
0.39±0.56±0.35 • • We do not use th	following	⁷ AALTONEN ³ DEL-AMO-SA data for averages	13AE 10D . fits.	CDF BABR limits. e	$p\overline{p}$ at 1.96 TeV e^+e^- , 10.6 GeV etc. • • •
	10 11	LIAA LIAA LIAA	17A0 13CE 13N	LHCB LHCB LHCB	Repl. by AAIJ 18K Repl. by AAIJ 17A0 Repl. by AAIJ 13CE
$6.4 \ ^{+1.4}_{-1.7} \ \pm 1.0$	12	² AUBERT	09AN	BABR	e^+e^- at 10.58 GeV
-2 +7 -6	13	³ LOWREY	09	CLEO	e^+e^- at $\psi(3770)$
$1.98 \pm 0.73 \substack{+0.32 \\ -0.41}$	14	¹ ZHANG	07в	BELL	Repl. by PENG 14
< 7 -11 to +22 < 11	95 15 14 90	ZHANG ASNER BITENC	06 05 05	BELL CLEO BELL	e^+e^- e^+e^-pprox 10 GeV
HTTP://PDG.LBL.0	GOV	Page 2		Crea	ited: 6/1/2020 08:33

L

I.

Browsing through the D^0 listings

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

D⁰ MASS

 $I(J^P) = \frac{1}{2}(0^-)$

The fit includes D^{\pm} , D^{0} , D_{s}^{\pm} , $D^{*\pm}$, D^{*0} , $D_{s}^{*\pm}$, $D_{1}(2420)^{0}$, $D_{2}^{*}(2460)^{0}$, and $D_{s1}(2536)^{\pm}$ mass and mass difference measurements.

Given the recent addition of much more precise measurements, we have omitted all those masses published up through 1990. See any Review before 2015 for those earlier results.

VALUE (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT
1864.83 ±0.05	OUR FIT					
1864.84 ±0.05	OUR AVE	RAGE				
1864.845 ± 0.025	± 0.057	63k	¹ TOMARADZE	14		$D^0 \rightarrow K^- 2\pi^+ \pi^-$
1864.75 ± 0.15	± 0.11		AAIJ	13V	LHCB	$D^0 \rightarrow K^+ 2K^- \pi^+$
1864.841 ± 0.048	± 0.063	4.3k	² LEES	13S	BABR	e^+e^- at $\Upsilon(4S)$
$1865.30\ \pm 0.33$	± 0.23	0.1k	ANASHIN	10A	KEDR	e^+e^- at $\psi(3770)$
1864847 ± 0150	+0.095	0.36	CAW/LEIELD	07	CLEO	$D^0 \rightarrow \kappa^0 \phi$

 1 Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration. The largest source of error in the TOMARADZE 14 value is from the uncertainties in the K^- and K_0^0 masses. The systematic error given above is the addition in quadrature of $\pm 0.022 \pm 0.053$ MeV, where the second error is from those mass uncertainties. 2 The largest source of error in the LEES 135 value is from the uncertainty of the K^+

mass. The quoted systematic error is in fact $\pm 0.043 + 3 (m_{K^+} - 493.677)$, in MeV.

$m_{D^{\pm}} - m_{D^{0}}$

The fit includes D^{\pm} , D^{0} , D_{s}^{\pm} , $D^{*\pm}$, D^{*0} , $D_{s}^{*\pm}$, $D_{1}^{(2420)0}$, $D_{2}^{*}^{(2460)0}$, and $D_{s1}^{(2536)\pm}$ mass and mass difference measurements.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
4.822±0.015 OUR FIT				
4.76 ±0.12 ±0.07	AAIJ	13V	LHCB	$D^+ \rightarrow K^+ K^- \pi^+$

D⁰ MEAN LIFE

Measurements with an error $> 10 \times 10^{-15} \mbox{ s have been omitted from the average.}$

VALUE (10 ⁻¹⁵ s)	EVTS	DOCUMENT ID		TECN	COMMENT
410.1 ± 1.5 OUR AV	ERAGE				
$409.6 \pm \ 1.1 \pm \ 1.5$	210k	LINK	02F	FOCS	γ nucleus, $\approx 180~{\rm GeV}$
$407.9 \pm \ 6.0 \pm \ 4.3$	10k	KUSHNIR	01	SELX	$K^{-}\pi^{+}$, $K^{-}\pi^{+}\pi^{+}\pi^{-}$
413 \pm 3 \pm 4	35k	AITALA	99E	E791	$K^{-}\pi^{+}$
$408.5 \pm \ 4.1 {+} {+} {-} {3.5} {-} {3.4}$	25k	BONVICINI	99	CLE2	$e^+e^-pprox \Upsilon(4S)$
$413 ~\pm~ 4 ~\pm~ 3$	16k	FRABETTI	94D	E687	$K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{+}\pi^{-}$
HTTP://PDG.LBL	GOV	Page 1		Cre	ated: 6/1/2020 08:33

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Doubly Charmed baryons

- New cc stats
- New charmed baryons
- Sometimes you get both: New doubly-charmed baryons: Ξ_{cc}^{++}

LHCb: <u>PRL 121 (2018) 16, 162002,</u> <u>Chin.Phys.C 44 (2020) 2, 022001,</u> <u>JHEP 02 (2020) 049</u> $\Lambda_c^+ (\to p K^- \pi^+) K^- \pi^+ \pi^+ \qquad m = 3621.40 \pm 0.72 (\text{stat}) \pm 0.27 (\text{syst}) \pm 0.14 (\Lambda_c^+)$

Doubly Charmed baryons

- New cc stats
- New charmed baryons
- Sometimes you get both: New doubly-charmed baryons: Ξ_{cc}^{++}

LHCb: <u>PRL 121 (2018) 16, 162002</u>, <u>Chin.Phys.C 44 (2020) 2, 022001</u>, <u>JHEP 02 (2020) 049</u>

PDG and PuRe

DOE Science @doescience

The 2,000+ page book of particle physics reference data managed by the Particle Data Group started in 1957 as a simple wallet card. Since then, it's grown to be the reference guide for particle physicists. Get to know this #SCPuReData resource: pdg.lbl.gov

9:56 pm · 26 May 2021 · Sprout Social

. . .

PDG

Booklet survey

Virtual PDG Mini Collaboration Meeting, November 5, 2020

Juerg Beringer (LBNL), Page 13

Booklet survey

Jonas Rademacker (University of Bristol)

Booklet Survey

Do you currently have a copy of either the 2018 or the 2016 Booklet?

4,629 responses

Booklet Survey

How often have you used a printed PDG Booklet - either your own or someone else's - in the past 12 months?

4,629 responses

Booklet survey

On a scale of 1 to 5, how important will the PRINTED version of the Booklet be for you in the future?

4,629 responses

$D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$ Coherence factor then

Use interference effects in charm as input to $\boldsymbol{\gamma}$

$$\begin{split} \Gamma \left(\mathsf{B}^{-} \to \left(\mathsf{K}^{+} 3\pi \right)_{\mathsf{D}} \mathsf{K}^{-} \right) \propto r_{B}^{2} + \left(r_{D}^{K3\pi} \right)^{2} + 2 R_{K3\pi} r_{B} r_{D}^{K3\pi} \cdot \cos \left(\delta_{B} + \delta_{D}^{K3\pi} - \gamma \right) \\ \text{from D-}\overline{\mathsf{D}} \\ \text{superpositions} \end{split}$$

at CLEO-c

Phys.Lett. B757 (2016) 520-527

 CLEO-c input theory:
 Atwood, Soni:
 Phys.Rev. D68 (2003) 033003

 CLEO-c input:
 Phys.Rev.D80:031105,2009, update

 mixing/gamma theory
 JHEP 1503 (2015) 169
 Phys.Lett. B728 (2014) 296-302

S. Harnew & JR: Phys.Lett. B728 (2014) 296-302

$D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$ Coherence factor then

Use interference effects in charm as input to γ

 $Re^{-i\delta_D} = c_i + is_i$

 $\Gamma \left(\mathsf{B}^{-} \to \left(\mathsf{K}^{+} 3\pi\right)_{\mathsf{D}} \mathsf{K}^{-}\right) \propto r_{B}^{2} + \left(r_{D}^{K3\pi}\right)^{2} + 2\frac{R_{K3\pi}}{R_{K3\pi}} r_{B} r_{D}^{K3\pi} \cdot \cos\left(\delta_{B} + \frac{\delta_{D}^{K3\pi}}{D} - \gamma\right)$

 CLEO-c input theory: Atwood, Soni: Phys.Rev. D68 (2003) 033003

 CLEO-c input: Phys.Rev.D80:031105,2009, update

 mixing/gamma theory
 JHEP 1503 (2015) 169

 Phys.Lett. B728 (2014) 296-302

PDG on Charm

$D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$ Coherence factor then

Use interference effects in charm as input to $\boldsymbol{\gamma}$

$$\begin{split} \Gamma \left(\mathsf{B}^{-} \to \left(\mathsf{K}^{+} 3\pi \right)_{\mathsf{D}} \mathsf{K}^{-} \right) \propto r_{B}^{2} + \left(r_{D}^{K3\pi} \right)^{2} + 2 R_{K3\pi} r_{B} r_{D}^{K3\pi} \cdot \cos \left(\delta_{B} + \delta_{D}^{K3\pi} - \gamma \right) \\ \text{from D-}\overline{\mathsf{D}} \\ \text{superpositions} \end{split}$$

at CLEO-c

Phys.Lett. B757 (2016) 520-527

 CLEO-c input theory: Atwood, Soni: Phys.Rev. D68 (2003) 033003

 CLEO-c input: Phys.Rev.D80:031105,2009, update

 mixing/gamma theory
 JHEP 1503 (2015) 169

 Phys.Lett. B728 (2014) 296-302

$D^0 \to K^+ \pi^- \pi^+ \pi^-$ Coherence factor then

Use interference effects in charm as input to γ

$$\Gamma \left(\mathsf{B}^{-} \to \left(\mathsf{K}^{+} 3\pi \right)_{\mathsf{D}} \mathsf{K}^{-} \right) \propto r_{B}^{2} + \left(r_{D}^{K3\pi} \right)^{2} + 2 R_{K3\pi} r_{B} r_{D}^{K3\pi} \cdot \cos \left(\delta_{B} + \frac{\delta_{D}^{K3\pi}}{D} - \gamma \right)$$

from D-D superpositions at CLEO-c

Input from charm mixing (LHCb)

Phys.Lett. B757 (2016) 520-527

PRL 116 (2016) no.24, 241801

 CLEO-c input theory: Atwood, Soni: Phys.Rev. D68 (2003) 033003

 CLEO-c input: Phys.Rev.D80:031105,2009, update

 mixing/gamma theory
 JHEP 1503 (2015) 169

 Phys.Lett. B728 (2014) 296-302

$D^0 \to K^+ \pi^- \pi^+ \pi^-$ Coherence factor then

Use interference effects in charm as input to γ

$$\Gamma \left(\mathsf{B}^{-} \to \left(\mathsf{K}^{+} 3\pi \right)_{\mathsf{D}} \mathsf{K}^{-} \right) \propto r_{B}^{2} + \left(r_{D}^{K3\pi} \right)^{2} + 2 R_{K3\pi} r_{B} r_{D}^{K3\pi} \cdot \cos \left(\delta_{B} + \frac{\delta_{D}^{K3\pi}}{D} - \gamma \right)$$

Phys.Lett. B757 (2016) 520-527

PRL 116 (2016) no.24, 241801

 CLEO-c input theory:
 Atwood, Soni:
 Phys.Rev. D68 (2003) 033003

 CLEO-c input:
 Phys.Rev.D80:031105,2009, update

 mixing/gamma theory
 JHEP 1503 (2015) 169
 Phys.Lett. B728 (2014) 296-302

Jonas Rademacker (University of Bristol)

PDG on Charm

Combination:CLEO-c

and mixing.

84. Charmed Baryons

Charmed Baryons

Revised in part June 2020 by D.J. Robinson (LBNL).

Coherence factors: average only model-independent measurements.

$D^0 \rightarrow K^- \pi^- 2\pi^+$ COHERENCE FACTOR $R_{K3\pi}$

See the note on ${}^{0}-\overline{D}{}^{0}$ Mixing' for the definition. $R_{K3\pi}$ can have any value between 0 and 1. A value near 1 indicates the decay is dominated by a few intermediate states with limited interference.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$0.53 \begin{array}{c} +0.18 \\ -0.21 \end{array}$	1	^{,2,3} EVANS	16		$e^+e^- ightarrow D^0 \overline{D}{}^0$ at $\psi(3770), \ p p$ at 7,8 TeV
$\bullet \bullet \bullet$ We do not use th	e followir	ng data for averages	, fits,	limits, e	etc. ● ● ●
$0.458\!\pm\!0.010\!\pm\!0.023$	0.9M,3k	⁴ AAIJ	18AI	LHCB	amplitude models
$0.32 \begin{array}{c} +0.20 \\ -0.28 \end{array}$		^{1,3} LIBBY	14		Repl. by EVANS 16
$0.36 \begin{array}{c} +0.24 \\ -0.30 \end{array}$		⁵ LOWREY	09	CLEO	Repl. by LIBBY 14

Charm input to CPV in B

 $m^2(K_s\pi^+)/GeV^2$

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

Charm input to CPV in B

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

