HFLAV - charm

Jolanta Brodzicka (INP Krakow) for HFLAV Charm

CHARM2021 Workshop Mexico City, June 2021

HFLAV Charm - group (re)structure

Charm CP violation and oscillations

- D⁰ mixing [Marco Gersabeck, Alan Schwartz]
- CP violation [Jolanta Brodzicka, Marco Gersabeck, Alan Schwartz]
- T-violation [Jolanta Brodzicka]

Charm decays

- Properties of D** and D_{sI} states [Tara Nanut]
- Excited charm baryon properties [John Yelton]
- Semileptonic decays [Hai Bo Li, Aranza Oyanguren]
- Decay constants [Hai Bo Li]
- Hadronic branching fractions [Paras Naik, Lawrence Gibbons]
- Rare decays [Marco Gersabeck]

HFLAV 2018 Report

Eur. Phys. J. C (2021) 81:226 https://doi.org/10.1140/epjc/s10052-020-8156-7

THE EUROPEAN PHYSICAL JOURNAL C

Check for updates

Review

Averages of *b*-hadron, *c*-hadron, and τ -lepton properties as of 2018

Heavy Flavor Averaging Group (HFLAV)

9	Cha	rm physics
	9.1	D^0 - \overline{D}^0 mixing and <i>CP</i> violation
		9.1.1 Introduction
		9.1.2 Input observables
		9.1.3 Fit results
		9.1.4 Conclusions
	9.2	<i>CP</i> asymmetries
	9.3	<i>T</i> -odd asymmetries
	9.4	Interplay of direct and indirect <i>CP</i> violation .
	9.5	Semileptonic decays
		9.5.1 Introduction
		9.5.2 $D \rightarrow P \overline{\ell} \nu_{\ell}$ decays
		9.5.3 Form factor parameterizations
		9.5.4 Simple pole
		9.5.5 <i>z</i> expansion
		9.5.6 Three-pole formalism
		9.5.7 Experimental techniques and results
		9.5.8 Combined results for the $D \to K \ell \nu_{\ell}$
		and $D \to \pi \ell \nu_{\ell}$ channels
		9.5.9 Form factors of other $D_{(s)} \rightarrow P\ell\nu_{\ell}$ decays
		9.5.10 Determinations of $ V_{cs} $ and $ V_{cd} $
		9.5.11 Test of $e - \mu$ lepton flavour universality .
		9.5.12 $D \rightarrow V \ell \nu_{\ell}$ decays
		9.5.13 Vector form factor measurements
		9.5.14 $D \rightarrow S\ell^+ \nu_\ell$ decays

	9.5.15	$D \to A \ell^+ \nu_\ell$ decays
9.6	Leptor	nic decays
	9.6.1	$D^+ \to \ell^+ \nu_\ell$ decays and $ V_{cd} \ldots \ldots$
	9.6.2	$D_s^+ \to \ell^+ \nu_\ell$ decays and $ V_{cs} \ldots \ldots$
	9.6.3	Comparison with other determinations
		of $ V_{cd} $ and $ V_{cs} $
	9.6.4	Extraction of $D_{(s)}$ meson decay constants
9.7	Hadro	nic D^0 decays and final state radiation .
	9.7.1	Updates to the branching fractions
	9.7.2	Average branching fractions for $D^0 \rightarrow$
		$K^-\pi^+, D^0 \to \pi^+\pi^-$ and $D^0 \to K^+K^-$
	9.7.3	Average branching fraction for $D^0 \rightarrow$
		$K^+\pi^-$
	9.7.4	Consideration of PHOTOS++
9.8	Hadro	nic D_s decays
9.9	Excite	d $D_{(s)}$ mesons
9.10	Excite	d charm baryons
9.11	Rare a	nd forbidden decays

~ 60 charm pages

• Already preparing for 2021 Report

Inputs to global mixing fit

Decay mode	Observables
$D^0 \to K^+ K^-, \pi^+ \pi^-$	y_{CP}, A_{Γ}
$D^0 \to K_S \pi^+ \pi^-$	$x, y, q/p , \phi$
$D^0 \to K_S K^+ K^-$	x, y
$D^0 \to \pi^+ \pi^- \pi^0$	x, y
$D^0 \to K^+ \pi^- \pi^0$	$x^{\prime\prime}, y^{\prime\prime}$
$D^0 \to K^+ \pi^-$	$x'^2, y', x'^{2\pm}, y'^{\pm}$
$D^0 \to K^+ \pi^- \pi^+ \pi^-$	$R_M = (x^2 + y^2)/2$
$D^0 \to K^+ l^- \bar{\nu}_l$	R_M
$D^0 \rightarrow K^+ \pi^-, \ K^- \pi^+$	$R_D = \Gamma_{DCS} / \Gamma_{CF}, \ R_D^{\pm}, \ A_D$
$D^0 \to K^+ K^-, \pi^+ \pi^-$	$A_{CP}, \Delta A_{CP}$
$\psi(3770) \to D\bar{D}$	$R_M, R_D, y, \sqrt{R_D} \cos \delta$

Observables and underlying parameters (I)

$$R_M = \frac{1}{2}(x^2 + y^2)$$

-

$$2 y_{CP} = (|q/p| + |p/q|) y \cos \phi - (|q/p| - |p/q|) x \sin \phi$$

$$2 A_{\Gamma} = (|q/p| - |p/q|) y \cos \phi - (|q/p| + |p/q|) x \sin \phi$$

$$\begin{pmatrix} x'' \\ y'' \end{pmatrix}_{K^{+}\pi^{-}\pi^{0}} = \begin{pmatrix} \cos \delta_{K\pi\pi} & \sin \delta_{K\pi\pi} \\ -\sin \delta_{K\pi\pi} & \cos \delta_{K\pi\pi} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\begin{pmatrix} x' \\ y' \end{pmatrix}_{K^{+}\pi^{-}} \begin{pmatrix} \cos \delta & \sin \delta \\ -\sin \delta & \cos \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$A_{M} \;=\; rac{|q/p|^{2}-|p/q|^{2}}{|q/p|^{2}+|p/q|^{2}}$$

$$\begin{aligned} \boldsymbol{x'}^{\pm} &= \left(\frac{1\pm A_M}{1\mp A_M}\right)^{1/4} (\boldsymbol{x'}\cos\phi\pm\boldsymbol{y'}\sin\phi) \\ \boldsymbol{y'}^{\pm} &= \left(\frac{1\pm A_M}{1\mp A_M}\right)^{1/4} (\boldsymbol{y'}\cos\phi\mp\boldsymbol{x'}\sin\phi) \end{aligned}$$

Observables and underlying parameters (II)

Latest experimental additions

- A_{Γ} from $D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$, LHCb Run2, arXiv:2105.09889 [submitted to PRD]
- Global fits including this result shown for the first time [thanks to Alan Schwartz and Marco Gersabeck]
- Note: fits with new $D^0 \rightarrow K_S \pi^+ \pi^-$ results not ready yet

A_{Γ} world average

• Average A_{Γ} used in the mixing fit

y_{CP} world average

- Average y_{CP} used in the mixing fit
- 2020

Fit w/o CPV

 $|q/p|=1, \phi=0, A_{K}=0, A_{\pi}=0, A_{D}=0$ ۲

۲

2020

Fit w/o direct CPV at tree level

- No direct CPV in DCS decays (A_D= 0)
- $\tan \phi = (1 |q/p|^2)/(1 + |q/p|^2)(x/y) \Rightarrow 3$ independent parameters
- $x_{12}, y_{12}, \phi_{12} \Rightarrow x, y, \phi$ relation in PRD 80, 076008 (2009)

•11

Fit with CPV allowed

• 2021

2020 fit with CPV allowed

• 2020

Disentangle direct & indirect CPV

• Both contribute to asymmetries measured for $D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$

$$\Delta A_{CP} \simeq \Delta a_{CP}^{dir} \left(1 + y_{CP} \frac{\overline{\langle t \rangle}}{\tau} \right) + a_{CP}^{ind} \frac{\Delta \langle t \rangle}{\tau} \qquad A_{\Gamma} \simeq -a_{CP}^{ind} - a_{CP}^{dir} y_{CP}$$

•
$$\Delta A_{CP} \equiv A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4} [5.3\sigma]$$

LHCb combination PRL122 231802 (2019) **CPV discovery**

Recent progress in A_{CP} for SCS decays [I]

- A_{CP} measured in time-independent manner
- For D⁰ decays includes indirect contribution [negligible at current precision]
- $D^0 \rightarrow K_S K_S$

Year	Experiment	$[\Gamma(D0)-\Gamma(D0bar)]/[\Gamma(D0)+\Gamma(D0bar)]$
2021	LHCb	$-0.031 \pm 0.012 \pm 0.004 \pm 0.002$
2017	Belle	$-0.0002 \pm 0.0153 \pm 0.0002 \pm 0.0017$
2015	LHCb	$-0.029 \pm 0.052 \pm 0.022$
2001	CLEO	-0.23 ± 0.19
	HFLAV	average -0.019 ± 0.010

• $D^+ \rightarrow \pi^+ \pi^0$

Year	Experiment	$[\Gamma(D+)-\Gamma(D-)]/[\Gamma(D+)+\Gamma(D-)]$	
2021	LHCb	$-0.013 \pm 0.009 \pm 0.006$	
2018	BELLE	$+0.0231 \pm 0.0124 \pm 0.0023$	
2010	CLEO	$+0.029 \pm 0.029 \pm 0.003$	
	HFLAV	average +0.004 ± 0.008	

Recent progress in A_{CP} for SCS decays [II]

• $D^+ \rightarrow \pi^+ \eta$

Year	Experiment	$[\Gamma(D+)-\Gamma(D-)]/[\Gamma(D+)+\Gamma(D-)]$
2021	LHCb	$-0.002 \pm 0.008 \pm 0.004$
2011	BELLE	$+0.0174 \pm 0.0113 \pm 0.0019$
2010	CLEO	$-0.020 \pm 0.023 \pm 0.003$
	HFLAV	average +0.003 ± 0.007

Year	Experiment	$[\Gamma(Ds+)-\Gamma(Ds-)]/[\Gamma(Ds+)+\Gamma(Ds-)]$	
2021	LHCb	$-0.008 \pm 0.039 \pm 0.012$	
2021	BELLE	$+0.064 \pm 0.044 \pm 0.011$ $-0.266 \pm 0.238 \pm 0.009$	
2010	CLEO		
	HFLAV	average +0.020 ± 0.030	

•	$D_s^+ \rightarrow K^+ \eta$	
	3	

• $D_s^+ \rightarrow K^+ \pi^0$

2021BELLE $+0.021 \pm 0.0$ 2021LHCb $+0.009 \pm 0.0$	$\Gamma(Ds+)+\Gamma(Ds-)$]
2021 LHCb $+0.009 + 0.00$	21 ± 0.004
	37 ± 0.011
2010 CLEO +0.093 ± 0.1	52 ± 0.009
HFLAV average +0.019	- 0.019

Testing sum rule for $D \rightarrow \pi \pi$ (I)

- Proposed by Grossman, Kagan, Zupan in PRD85 114036 (2012)
- First experimental test by Belle in PRD97 011101 (2018)
- Isospin decomposition of $D \rightarrow \pi \pi$ decay amplitudes:

 $A_{\pi^{+}\pi^{-}} = \sqrt{2}\mathcal{A}_{3} + \sqrt{2}\mathcal{A}_{1},$ $A_{\pi^{0}\pi^{0}} = 2\mathcal{A}_{3} - \mathcal{A}_{1},$ $A_{\pi^{+}\pi^{0}} = 3\mathcal{A}_{3},$

$$\frac{1}{\sqrt{2}}A_{\pi^+\pi^-} + A_{\pi^0\pi^0} - A_{\pi^+\pi^0} = 0$$

 A_1 , A_3 isospin amplitudes of Δ I=1/2 and 3/2 transitions

• In terms of differences between decay rates:

$$|A_{\pi^{+}\pi^{-}}|^{2} - |\overline{A}_{\pi^{+}\pi^{-}}|^{2} + |A_{\pi^{0}\pi^{0}}|^{2} - |\overline{A}_{\pi^{0}\pi^{0}}|^{2} - \frac{2}{3}(|A_{\pi^{+}\pi^{0}}|^{2} - |\overline{A}_{\pi^{-}\pi^{0}}|^{2}) = 3(|\mathcal{A}_{1}|^{2} - |\overline{\mathcal{A}}_{1}|^{2}).$$

• SM tests:

- if sum is non-zero \Rightarrow CPV in Δ I=1/2 (e.g. SM penguin)
- if sum is zero and individual asymmetries non-zero \Rightarrow NP in Δ I=3/2

Testing sum rule for $D \rightarrow \pi \pi$ (II)

•
$$|A_{\pi^+\pi^-}|^2 - |\overline{A}_{\pi^+\pi^-}|^2 + |A_{\pi^0\pi^0}|^2 - |\overline{A}_{\pi^0\pi^0}|^2$$

- $\frac{2}{3}(|A_{\pi^+\pi^0}|^2 - |\overline{A}_{\pi^-\pi^0}|^2) = 3(|\mathcal{A}_1|^2 - |\overline{\mathcal{A}}_1|^2).$

• To facilitate experimental test, left-hand side rewritten as:

$$R = \frac{A_{CP}(D^{0} \to \pi^{+}\pi^{-})}{1 + \frac{\tau_{D^{0}}}{\mathcal{B}_{+-}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^{0}}} + \frac{2}{3}\frac{\mathcal{B}_{+0}}{\tau_{D^{+}}}\right)} + \frac{A_{CP}(D^{0} \to \pi^{0}\pi^{0})}{1 + \frac{\tau_{D^{0}}}{\mathcal{B}_{00}} \left(\frac{\mathcal{B}_{+-}}{\tau_{D^{0}}} + \frac{2}{3}\frac{\mathcal{B}_{+0}}{\tau_{D^{+}}}\right)}{-\frac{A_{CP}(D^{+} \to \pi^{+}\pi^{0})}{1 + \frac{3}{2}\frac{\tau_{D^{+}}}{\mathcal{B}_{+0}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^{0}}} + \frac{\mathcal{B}_{+-}}{\tau_{D^{0}}}\right)},$$

• HFLAV averages of A_{CP} and PDG averages for BFs and lifetimes

 $A_{CP}(D^0 \to \pi^+ \pi^-) = (+0.12 \pm 0.14) \times 10^{-2}$ $A_{CP}(D^0 \to \pi^0 \pi^0) = (-0.03 \pm 0.64) \times 10^{-2}$ $A_{CP}(D^+ \to \pi^+ \pi^0) = (+0.43 \pm 0.79) \times 10^{-2}$

$$R = (+0.06 \pm 2.44) \times 10^{-3}$$

• other sums e.g. for $D \rightarrow KK$ require SU(3) considerations

Rare D⁰ decays

Jolanta-HFLAV@CHARM2021

•19

Rare and forbidden D⁺ decays

20

Summary

• More HFLAV charm on:

https://hflav.web.cern.ch/content/charm-cpv-and-oscillations https://hflav.web.cern.ch/content/charm-decays

• Stay tuned for a significant-x mixing fit!

Backups

•

Rare and forbidden D_s^+ decays

Jolanta-I

•23