

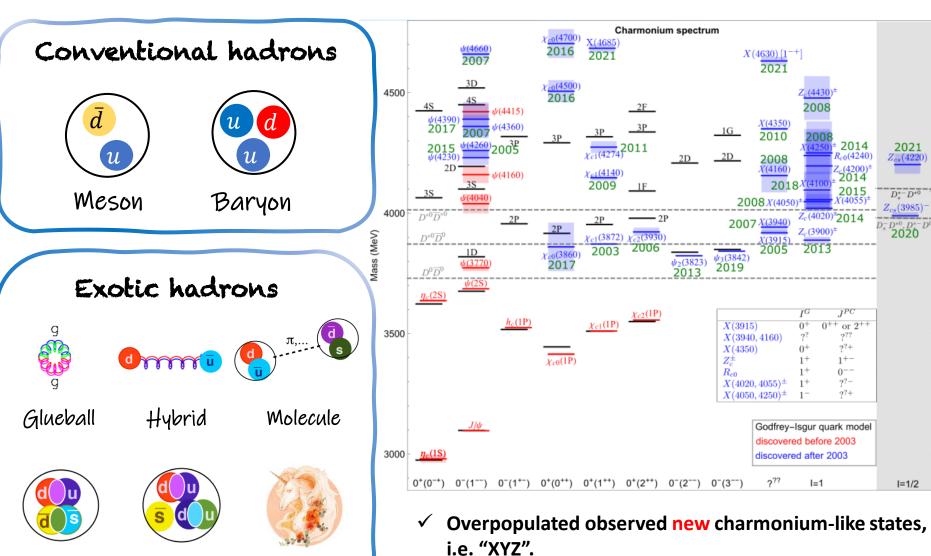
$Z_{cs}(398\overline{5})$ and Z_{c} studies at BESIII

Ziyi Wang

University of Chinese Academy of Sciences (UCAS)

(On behalf of the BESIII collaboration)

Outline


Brief look on charmonium spectrum

Introduction to BEPCII and BESIII

• Recent results on Z_{cs} and Z_c states

Summary

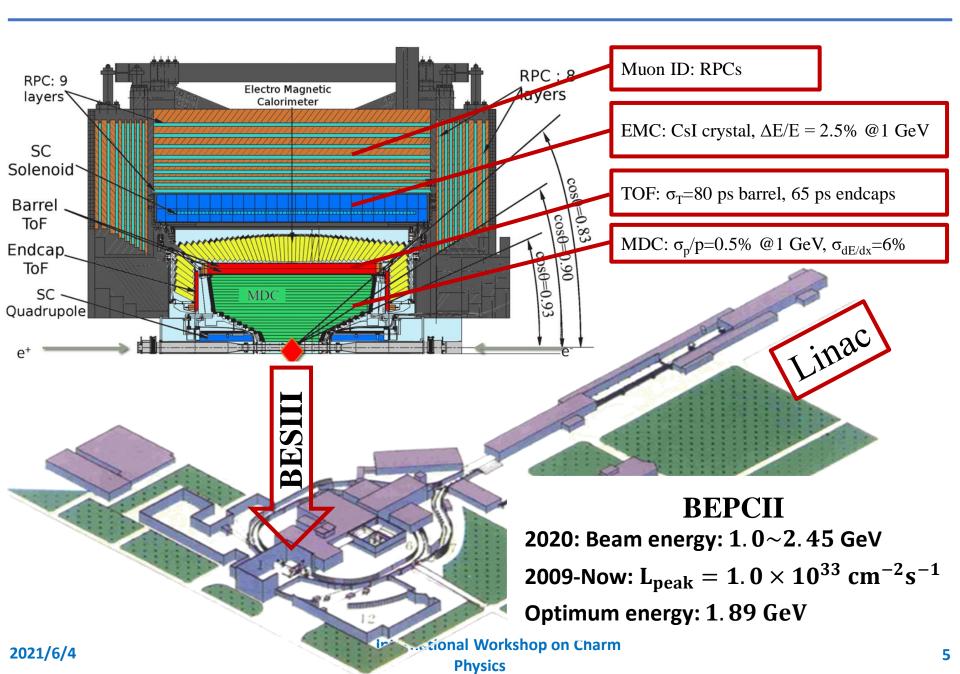
Hadrons and Exotic Hadrons

- Most of them are close to the mass thresholds of charmed meson pairs.

Tetraquark

Pentaguark

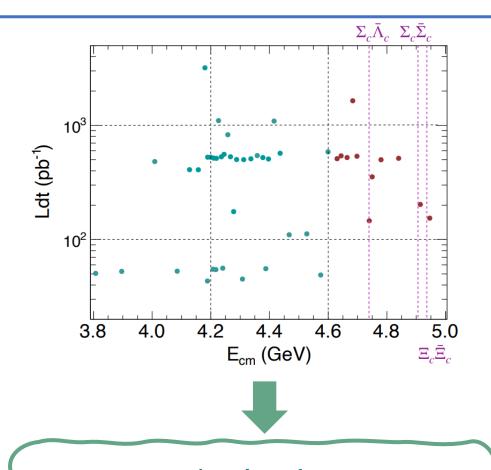
and ...


Overview of the Current $Z_{c(s)}$ States

State	$M \left(\mathrm{MeV}/c^2 \right)$	$\Gamma \text{ (MeV)}$	J^{PC}	Process	Experiment
$Z_c(3900)^{(\pm,0)}$	3888.4 ± 2.5	28.3 ± 2.5	1+-	$e^+e^- \to \pi^{(+,0)}(\pi^{(-,0)}J/\psi)$	BESIII, Belle
				$e^+e^- \to \pi^{(+,0)}(D\bar{D}^*)^{(-,0)}$	BESIII
				$H_b \to X \pi^+(\pi^- J/\psi)$	D0
				$e^+e^- \to \pi^+(\eta_c\rho^-)$	BESIII
$Z_c(4020)^{(\pm,0)}$	4024.1 ± 1.9	13 ± 5	$1^{+-}(?)$	$e^+e^- \to \pi^{(+,0)}(\pi^-h_c)$	BESIII, Belle
				$e^+e^- \to \pi^{(+,0)}(D^*\bar{D}^*)^{(-,0)}$	BESIII
$Z(4050)^{\pm}$	4051^{+24}_{-40}	82^{+50}_{-28}	??+	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle
$Z(4055)^{\pm}$ 3.5	$\sigma 4054 \pm 3.2$	45 ± 13	??-	$e^{+}e^{-} \to \pi^{+}(\pi^{-}\psi(2S))$	Belle
$Z(4100)^{\pm}$ 3.4	$\sigma 4096 \pm 28$	152^{+80}_{-70}	???	$B^0 \to K^+(\pi^-\eta_c)$	LHCb
$Z(4200)^{\pm}$	4196^{+35}_{-32}	370^{+100}_{-150}	1^{+-}	$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle, LHCb
$Z(4250)^{\pm}$	4248^{+190}_{-50}	$152_{-70}^{+80} \\ 370_{-150}^{+100} \\ 177_{-70}^{+320}$??+	$\bar{B}^0 \to K^-(\pi^+ \chi_{c1})$	Belle
$Z(4430)^{\pm}$	4478_{-18}^{-30}	181 ± 31	1^{+-}	$B^0 \to K^+(\pi^- \psi(2S))$	Belle, LHCb
first/2008				$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle
$R_{c0}(4240)$	4239_{-21}^{+50}	220^{+120}_{-90}	0	$B^0 \to K^+\pi^-\psi(2S)$	LHCb
$Z_{cs}(3985)^{\pm}$	$3982.5^{+2.8}_{-3.4}$	$12.8^{+6.1}_{-5.3}$?	$e^+e^- \to K^+(D_s^-D^{*0} + D_s^{*-}D^0)$	BESIII
$Z_{cs}(4000)^{\pm}$	4003^{+7}_{-15}	131 ± 30	1+	$B^+ \to \phi(J/\psi K^+)$	LHCb
$Z_{cs}(4220)^{\pm}$	4216_{-38}^{+49}	233^{+110}_{-90}	1+	$B^+ \to \phi(J/\psi K^+)$	LHCb

- ✓ Produced in e^+e^- annihilation or **b**-flavor hadron decays.
- ✓ Typically, in h + charmonium final states.
- ✓ Intrinsic nature unclear, exotic states? kinematic effects?

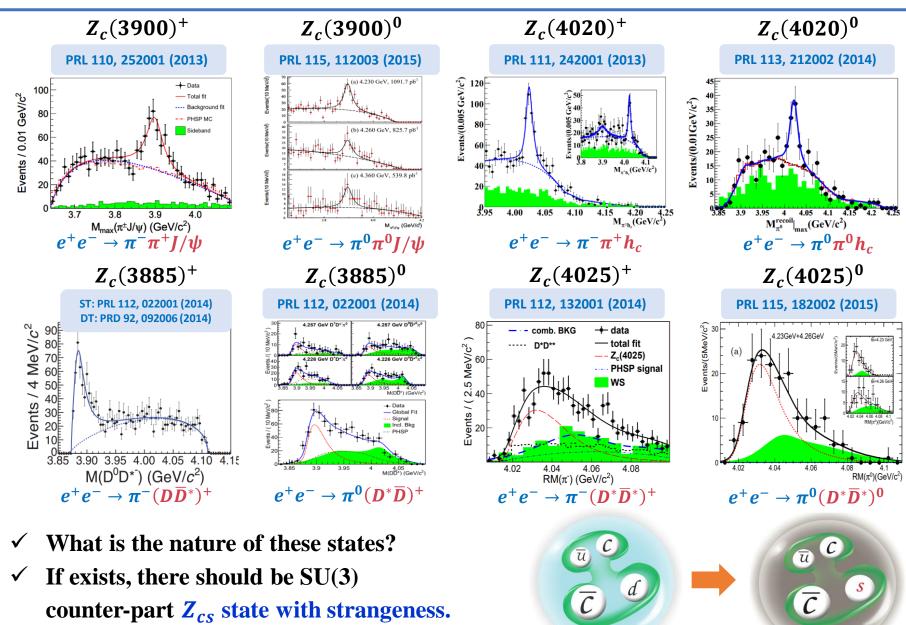
Spin-parity, Argand plot?
Production mechanism?
Different decay modes?
Partner states?
Interference?


BEPCII and **BESIII**

BESIII Data Samples

```
2009: 106M \psi(2S)
           225M J/\psi
2010: 975 pb<sup>-1</sup> at \psi(3770)
2011: 2.9 fb<sup>-1</sup> (total) at \psi(3770)
          482 pb<sup>-1</sup> at 4.01 GeV
2012: 0.45B (total) \psi(2S)
           1.3B (total) J/\psi
2013: 1092 pb<sup>-1</sup> at 4.23 GeV
              826 pb<sup>-1</sup> at 4.26 GeV
              540 pb<sup>-1</sup> at 4.36 GeV
             10 \times 50 \text{ pb}^{-1} \text{ scan } 3.81 - 4.42 \text{ GeV}
2014: 1029 pb<sup>-1</sup> at 4.42 GeV
           110 pb<sup>-1</sup> at 4.47 GeV
           110 pb<sup>-1</sup> at 4.53 GeV
            48 pb<sup>-1</sup> at 4.575 GeV
            567 pb<sup>-1</sup> at 4.6 GeV
           0.8 \text{ fb}^{-1} \text{ R-scan } 3.85 - 4.59 \text{ GeV}
2015: R-scan 2 - 3 \text{ GeV} + 2.175 \text{ GeV}
2016: \sim3fb<sup>-1</sup> at 4.18 GeV (for D<sub>s</sub>)
2017: 7 \times 500 \text{ pb}^{-1} \text{ scan } 4.19 - 4.27 \text{ GeV}
2018: more J/\psi (and tuning new RF cavity)
2019: 10B (total) J/ψ
        8 \times 500 \text{ pb}^{-1} \text{ scan } 4.13, 4.16, 4.29 - 4.44 \text{ GeV}
2020: 3.8 fb<sup>-1</sup> scan 4.61-4.7 GeV
```

2021: 2 fb⁻¹ scan 4.74-4.946 GeV

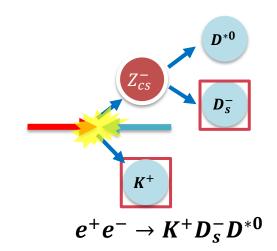

For 'XYZ' analyses

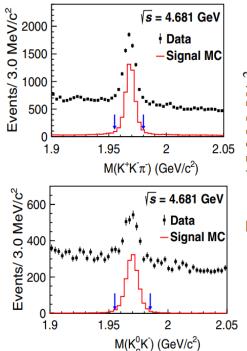
46 points above 3.8 GeV, L_{tot} ~21. 9 fb⁻¹

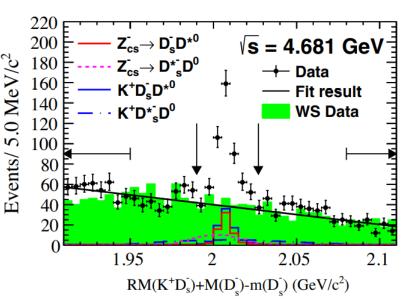
29 energy points with $L_i > 0.4 {\rm ~fb^{-1}}$

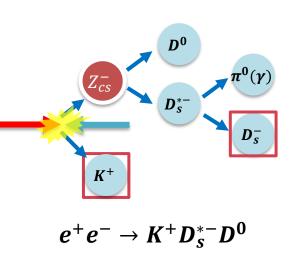
Z_c Family at BESIII

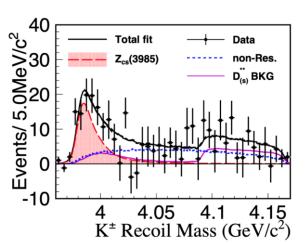
2021/6/4

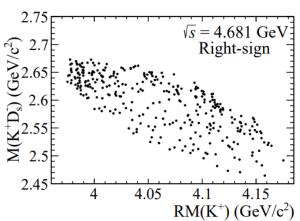


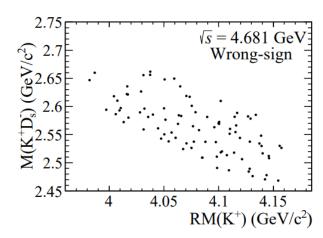

Observation of the charged $Z_{cs}(3985)^-$


PRL 126, 102001 (2021)

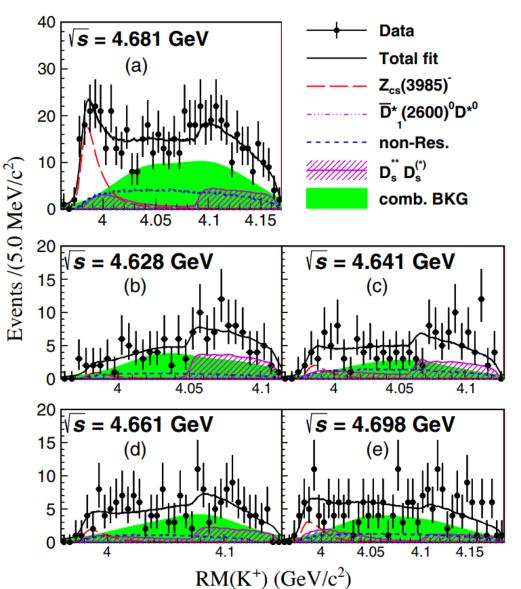

•
$$e^+e^- \to K^+(D_s^-D^{*0} + D_s^{*-}D^0)$$

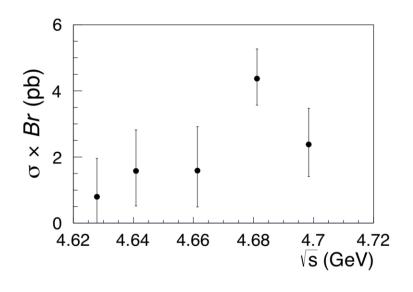

- ✓ 3.7fb⁻¹ data accumulated at 4.628, 4.641, 4.661, 4.681 and 4.698GeV in 2020.
- \checkmark Partial reconstruction of K^+ and D_s^- .
- ✓ Signature in the **recoil mass spectrum of** $K^+D_s^-$ to identify the process of $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$.





✓ Conventional charmed mesons can not describe the enhancement below 4.0 GeV/c^2 .


(With a sufficient study for all possible $D_{(s)}^{**}$ background and their interference effect, see Appendix.)


- ✓ Assume the structure as a $D_s^- D^{*0}/D_s^{*-} D^0$ resonance, denoting it as the $Z_{cs}(3985)^-$.
- ✓ A fit of $J^P = 1^+$ S-wave Breit-Wigner with mass dependent width returns:

$$M = 3985.2^{+2.1}_{-2.0} \pm 1.7 \text{ MeV/c}^2$$

 $\Gamma = 13.8^{+8.1}_{-5.2} \pm 4.9 \text{ MeV}$

✓ Global significance: $> 5.3 \sigma$

First candidate of the hidden-charm tetraquark with strangeness

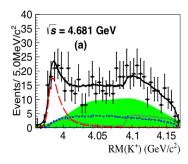
- ✓ Simultaneous fit to the five energy points.
- ✓ Largest cross sections around 4.681 GeV.

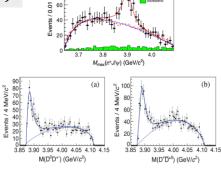
The $Z_{cs}(3985)^-$ and $Z_c(3885)^-$

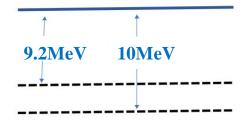
1643/pb data @4.681 GeV

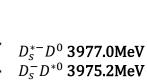
525/pb data @4.26 GeV

	$Z_{cs}(3985)^{\pm}$	$Z_c(3900)^{\pm}$	$Z_c(3885)^{\pm}$
Mass (MeV/c ²)	$3985.2^{+2.1}_{-2.0} \pm 1.7$	3899.0±3.6±4.9	$3883.9 \pm 1.5 \pm 4.2$
Width (MeV)	$13.8^{+8.1}_{-5.2} \pm 4.9$	46±10±26	24.8±3.3±11.0
$\sigma^{Born}\cdot \mathfrak{B}$ (pb)	$4.4^{+0.9}_{-0.8} \pm 1.4$	13.5±2.1±4.8	83.5±6.6±22.0

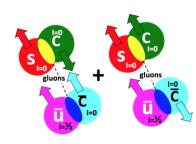

~10 MeV above D_sD^*/D_sD thresholds similar to $Z_c(3900) \& Z_b(10,610)$ (DD*) (BB*)

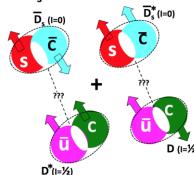

from Marek Karliner in Nov. 2020


two general comments about charm-tau factory program

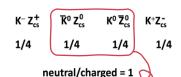

• J/ψ K^{\pm} resonances: $Z_c(3900)$ analogue? $Z_c(3900)^+ = (c\bar{c}u\bar{d}); d \rightarrow s: (c\bar{c}u\bar{s}) \sim D_s\bar{D}^*$ no natural molecular binding, so if discovered, would indicate Tq or a novel mechanism

SU(3) partner of Z_c (3900)?





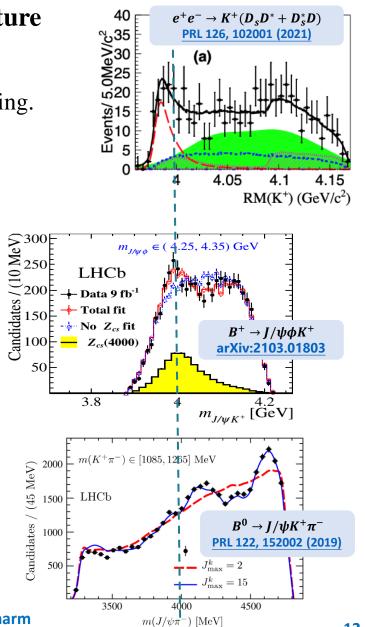
Zcs: 3985.2MeV

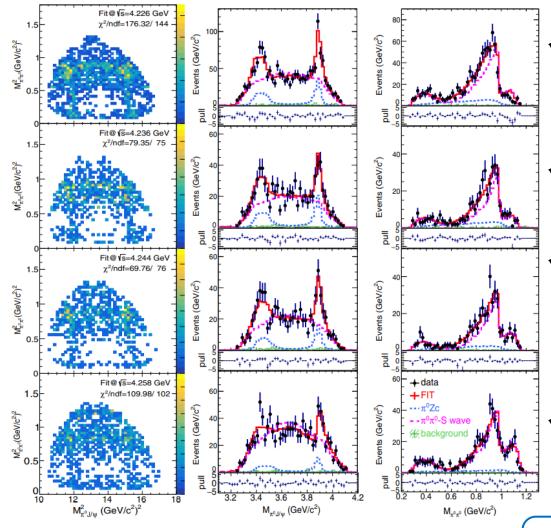

diquark-antidiquark?

$D^*\overline{D}_s$ + cc molecule?

Z_{cs}(3985)

$Z_c(3900)$


$\pi^{\text{-}} \textbf{Z}_{\text{c}}^{ \textbf{+}}$	π^0 Z_c^0	$\pi^+ \mathbf{Z}_c^-$
1/3	1/3	1/3


neutral/charged = 1/2

Discussions on the nature of $Z_{cs}(3985)^-$

Various interpretations are possible for the structure

- ✓ Molecule.
- $\checkmark D_{s2}^*(2573)^+D_s^{*-}$ threshold kinematic effects / reflecting.
- ✓ Re-scattering / Triangle singularity.
- ✓ Mixture of molecular and tetraquark.
- **√** ...
- $Z_{cs}(3985)$ from e^+e^- annihilations and $Z_{cs}(4000)$ from B decays.
 - ✓ their masses are close, but widths are different.
 - ✓ If they are same, why width so different?
 - ✓ If they are not same, is there the corresponding wide $Z_c(3900)$?
 - ✓ Looking for more channels will be useful.

- ✓ Simultaneous PWA fit of $e^+e^- \rightarrow \pi^0\pi^0 J/\psi$ to the four energy points
- ✓ The spin-parity of $Z_c(3900)^0$ is determined to be 1^+
- ✓ The nominal fit includes the intermediate process $\sigma J/\psi$, $f(980)J/\psi$, $f(1370)J/\psi$ and π^0 $Z_c(3900)^0$.
- ✓ Mass and width of $Z_c(3900)^0$ is measured:

 $M(Z_c(3900)^0) = (3893.0 \pm 2.3 \pm 3.2) \text{ MeV/c}^2,$ $\Gamma(Z_c(3900)^0) = (44.2 \pm 5.4 \pm 8.3) \text{ MeV.}$

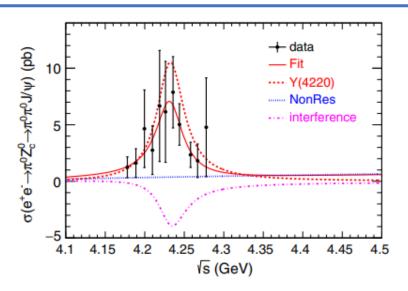
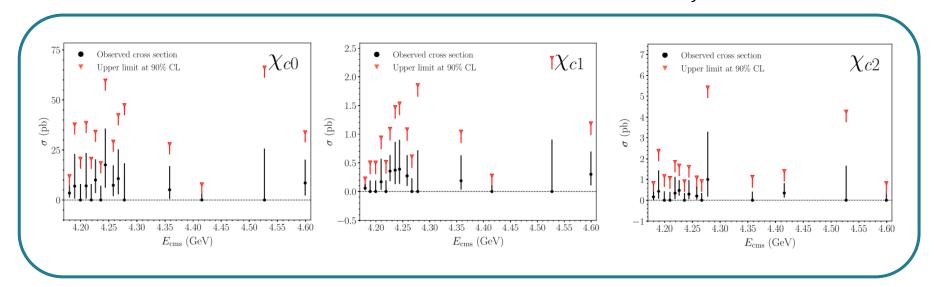


TABLE VI. Summary of the fit results to the measured cross sections of $e^+e^- \to \pi^0 Z_c(3900)^0 \to \pi^0 \pi^0 J/\psi$. The uncertainties are statistical only.

Parameters	Solution I	Solution II	
$p_0(c^2/\text{MeV})$	0.0 ± 11.3		
p_1	(1.8 ± 1.9)	$() \times 10^{-2}$	
$M(R) (\mathrm{MeV}/c^2)$	4231.9	± 5.3	
$\Gamma_{\text{tot}}(R)$ (MeV)	41.2 ± 16.0		
$\Gamma_{\text{ee}}\mathcal{B}_{R\to\pi^0Z_c(3900)^0}$ (eV)	0.53 ± 0.15	0.22 ± 0.25	
$\phi(R)$	$(-103.9 \pm 33.9)^{\circ}$	$(112.7 \pm 43.0)^{\circ}$	

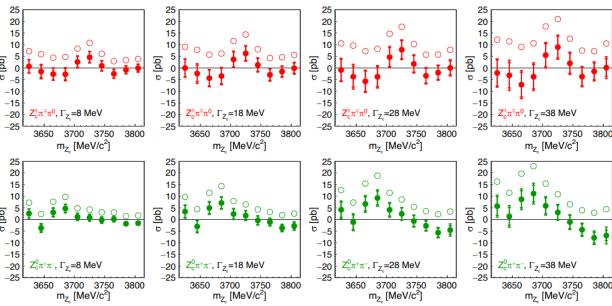
- ✓ Based on the PWA results, the Born cross sections for the process $e^+e^- \rightarrow$ $\pi^0 Z_c(3900)^0 \rightarrow \pi^0 \pi^0 I/\psi$ are measured.
- \checkmark The parameters of Y- states are consistent with Y(4220).


$$M = 4231.9 \pm 5.3 \pm 4.9 \text{ MeV}/c^2$$
, $\Gamma = 41.2 \pm 16.0 \pm 16.4 \text{ MeV}$

- ✓ Establish the relationship between Y(4220) and $Z_c(3900)^0$.
- ✓ Due to the lack of data around 4.3 GeV, the existence of Y(4230) in $Z_c(3900)^0$ production cannot be ruled out.

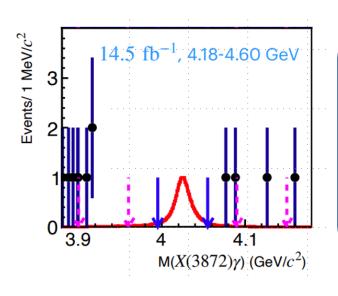
Search for $Z_c^+ o \pi^+ \chi_{cI}$

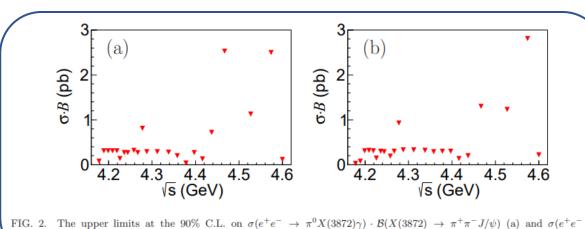
- ✓ Belle reported the results of $Z_c(4050)^+$ and $Z_c(4025)^+$ in $\bar{B}^0 \to K^- Z_c^+$, $Z_c^+ \to \pi^+ \chi_{cJ}$ [PRD 78, 072004], while BaBar did not confirm them.
- ✓ BESIII studies $e^+e^- \rightarrow \pi^+\pi^-\chi_{cI}$, $\chi_{cI} \rightarrow \gamma J/\psi$ from 4.178 GeV to 4.600 GeV
- ✓ None of the process are observed and upper limits of the production cross sections are determined.
- ✓ Hence, they can be the upper limits of the product cross sections of


$$e^+e^- \to \pi^- Z_c(4050)^+ + c.c., Z_c(4050)^+ \to \pi^+ \chi_{cl}$$

- ✓ LHCb reported an evidence of $Z_c(4100)^+ \to \pi^+ \eta_c$ in $\bar{B}^0 \to K^- Z_c(4100)^+$. with $M = 4096 \pm 20^{+18}_{-22}$ MeV/c², $\Gamma = 152 \pm 58^{+60}_{-35}$ MeV and $J^P = 0^+/1^-$. [EPJC 78 12, 1019]
- ✓ Studies of $e^+e^- \to \pi^+\pi^-\pi^0\eta_c$, $\pi^+\pi^-\eta_c$, $\gamma\pi^0\eta_c$ at 6 energy points from 4.178 GeV to 4.600 GeV.
- ✓ Only evidence of $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta_c$ @ 4.226 GeV (4.1 σ).
- ✓ No significant for $Z_c \to \pi \eta_c$.
- ✓ Different mass and width assumptions in the vicinity of $D\overline{D}$ mass are tested for $Z_c^+ \to \pi^+ \eta_c$ and $Z_c^0 \to \pi^0 \eta_c$ in $e^+ e^- \to \pi^+ \pi^- \pi^0 \eta_c$ @ 4.226 GeV and found to be not significant.

Physics


1600 1400 1400 1000 9W 1000 9W 1000 9W 1000 200 2.8 3 3.2 m [GeV/c²]



arXiv: 2102.00644

- ✓ Connection between Z_c sates and X states in molecule picture.
- ✓ Branching fraction of $Z_c(4020)^0 \rightarrow \gamma X(3872)$ and $Z_c(4020)^{\pm} \rightarrow \pi^{\pm} X(3872)$ is quite different. [PRD 99, 054028]
- ✓ Studies of $e^+e^- \to \pi^0 X(3872) \gamma$ at center-of mass energies from 4.178 to 4.600 GeV.
- ✓ No significant signal for $e^+e^- \to \pi^0 Z_c(4020)^0$, $Z_c(4020)^0 \to \gamma X(3872)$:

$$\frac{\mathcal{B}\big[Z_c(4020)^0 \to \gamma X(3872)\big] \cdot \mathcal{B}[X(3872) \to \pi^+\pi^-J/\psi]}{\mathcal{B}[Z_c(4020)^0 \to (D^*\overline{D}^*)^0]} < 0.24\% \ (@4.23 \ GeV)$$

 $\pi^0 Z_c(4020)^0 \cdot \mathcal{B}(Z_c(4020)^0 \to X(3872)\gamma) \cdot \mathcal{B}(X(3872) \to \pi^+\pi^- J/\psi)$ (b) for each energy point.

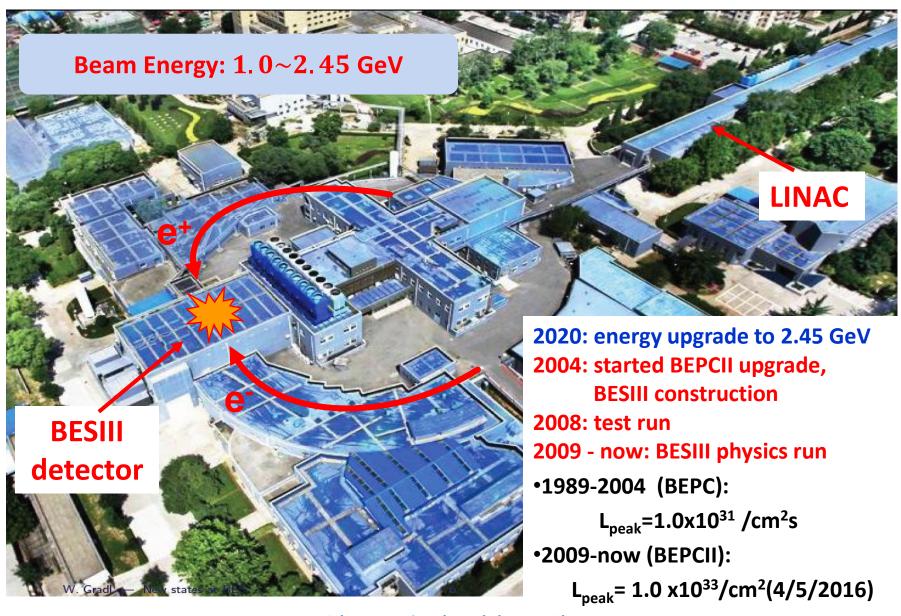
Proposal of the upgrade BEPCII

- ✓ Following up with the beam energy and top-up upgrade, we are planning the next generation of upgrade BEPCII, to be implemented around 2022:
 - the optimized energy is 2.35 GeV with luminosity 3 times higher than current BEPCII.
- ✓ Detailed studies of the known $Z_{c(s)}$ states and search for `black swans` in the higher energy region within a considerable amount of data sets.

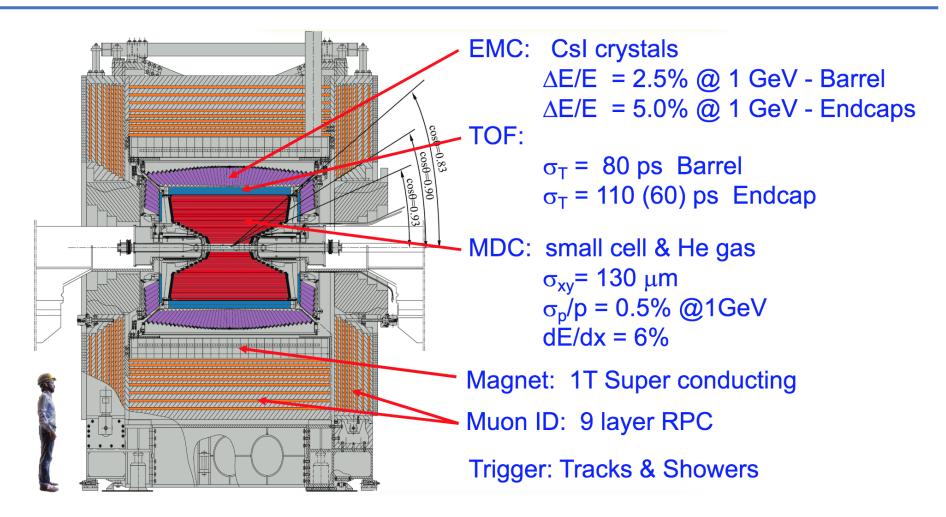
Table 7.1. List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples for the remainder of the physics program. The right-most column shows the number of required data taking days with the current (T_C) and upgraded (T_U) machine. The machine upgrades include top-up implementation and beam current increase.

Energy	Physics motivations	Current data	Expected final data	$T_{\rm C}$ / $T_{\rm U}$
1.8 - 2.0 GeV	R values Nucleon cross-sections	N/A	0.1 fb ⁻¹ (fine scan)	60/50 days
2.0 - 3.1 GeV	R values Cross-sections	Fine scan (20 energy points)	Complete scan (additional points)	250/180 days
J/ψ peak	Light hadron & Glueball J/ψ decays	3.2 fb ⁻¹ (10 billion)	3.2 fb ⁻¹ (10 billion)	N/A
$\psi(3686)$ peak	Light hadron & Glueball Charmonium decays	0.67 fb ⁻¹ (0.45 billion)	4.5 fb ⁻¹ (3.0 billion)	150/90 days
$\psi(3770)$ peak	D^0/D^{\pm} decays	2.9 fb^{-1}	20.0 fb^{-1}	610/360 days
3.8 - 4.6 GeV	R values XYZ /Open charm	Fine scan (105 energy points)	No requirement	N/A
4.180 GeV	D_s decay XYZ /Open charm	3.2 fb^{-1}	6 fb^{-1}	140/50 days
4.0 - 4.6 GeV	XYZ/Open charm Higher charmonia cross-sections	16.0 fb ⁻¹ at different \sqrt{s}	30 fb ⁻¹ at different \sqrt{s}	770/310 days
4.6 - 4.9 GeV	Charmed baryon/XYZ cross-sections	0.56 fb ⁻¹ at 4.6 GeV	15 fb ⁻¹ at different \sqrt{s}	1490/600 days
4.74 GeV	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	N/A	1.0 fb^{-1}	100/40 days
4.91 GeV	$\Sigma_c \bar{\Sigma}_c$ cross-section	N/A	1.0 fb^{-1}	120/50 days
4.95 GeV	Ξ_c decays	N/A	1.0 fb^{-1}	130/50 days

Future Physics Programme of BESIII [Chin.Phys.C 44, 040001 (2020)]


Summary

- BESIII is successfully operating since 2008 and will continue to run for 5-10 years.
- Unique data samples from 3.8 GeV to 4.95 GeV. Many exciting results have been published covering many aspects on $Z_{c(s)}$ states.
 - ✓ Observation of the $Z_{cs}(3985)$
 - \checkmark PWA on $Z_c(3900)$
 - ✓ More results about the production & decay of $Z_{c(s)}$, structure properties are in process
- Future on $Z_{c(s)}$ studies (looking forward to upgrade BEPCII): With high-luminosity, fine scan samples above 3.8 GeV, many programs deserver more dedicated effort.



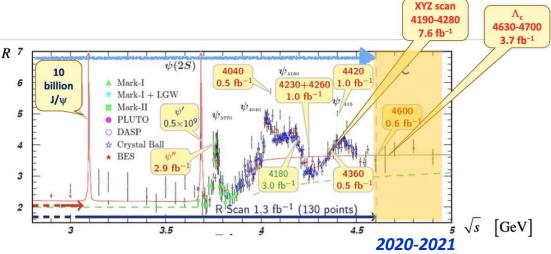
Backup

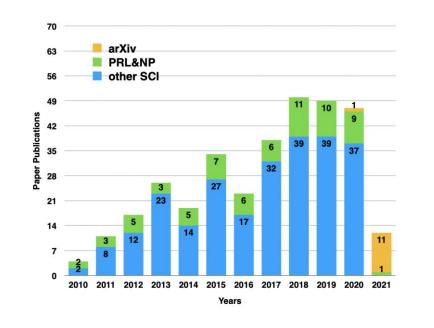
Appendix - Beijing Electron Positron Collider (BEPCII)



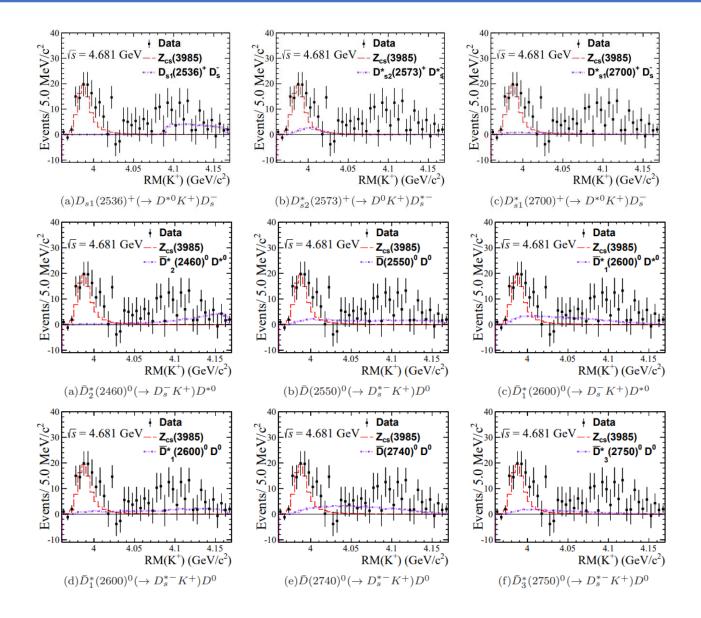
Appendix - The BESIII Detector

The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

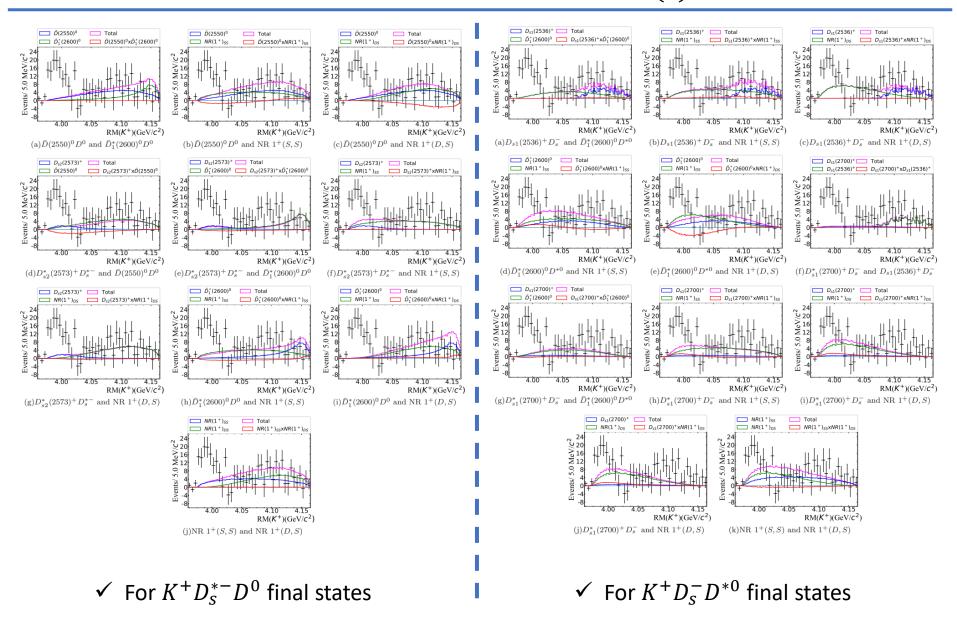

Appendix - The BESIII Collaboration



Appendix - BESIII Data Samples


```
2009: 106M \psi(2S)
           225M J/ψ
2010: 975 pb<sup>-1</sup> at \psi(3770)
                                                                R^{7}
2011: 2.9 fb<sup>-1</sup> (total) at \psi(3770)
                                                                          10
                                                                   6
          482 pb<sup>-1</sup> at 4.01 GeV
                                                                         J/W
                                                                   5
2012: 0.45B (total) \psi(2S)
           1.3B (total) J/\psi
2013: 1092 pb<sup>-1</sup> at 4.23 GeV
                                                                   3
              826 pb<sup>-1</sup> at 4.26 GeV
              540 pb<sup>-1</sup> at 4.36 GeV
             10 \times 50 \text{ pb}^{-1} \text{ scan } 3.81 - 4.42 \text{ GeV}
2014: 1029 pb<sup>-1</sup> at 4.42 GeV
           110 pb<sup>-1</sup> at 4.47 GeV
           110 pb<sup>-1</sup> at 4.53 GeV
            48 pb<sup>-1</sup> at 4.575 GeV
            567 pb<sup>-1</sup> at 4.6 GeV
           0.8 \text{ fb}^{-1} \text{ R-scan } 3.85 - 4.59 \text{ GeV}
2015: R-scan 2 - 3 GeV + 2.175 GeV
2016: \sim3fb<sup>-1</sup> at 4.18 GeV (for D<sub>s</sub>)
2017: 7 \times 500 \text{ pb}^{-1} \text{ scan } 4.19 - 4.27 \text{ GeV}
2018: more J/\psi (and tuning new RF cavity)
2019: 10B (total) J/\psi
        8 \times 500 \text{ pb}^{-1} \text{ scan } 4.13, 4.16, 4.29 - 4.44 \text{ GeV}
2020 3.8 fb<sup>-1</sup> scan 4.61-4.7 GeV
```

2021 2 fb⁻¹ scan 4.74-4.946 GeV



Appendix - $Z_{cs}(3985)$: All possible $D_{(s)}^{**}$ backgrounds

Appendix - $Z_{cs}(3985)$: Interference of $D_{(s)}^{**}$ states

