Sensitivity for four-body tau-lepton decays at Belle and Belle II experiments

M.C. David Rodríguez Pérez, Dr. Pedro L. M. Podesta Lerma, Dra. Isabel Domínguez Jiménez

Universidad Autónoma de Sinaloa

10th International Workshop on Charm Physics (CHARM 2020)

June 2021

イロト イヨト イヨト イ

1 Introduction

- 2 Four-body $|\Delta L| = 2$ decays of τ lepton
- 3 Experimental sensitivity
- 4 Bounds on the parameter space $(m_N, |V_{\ell N}|^2)$

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー わらぐ

Introduction

In the charged lepton sector Lepton Flavor Violation (LFV) is heavy suppress in the Standard Model

$$\ell_{lpha}
ightarrow \ell_{eta} < 10^{-54}$$

Example of lepton flavor conservation is a muon decay

$$\mu^- \to e^- \bar{\nu}_e \nu_\mu$$

Example of charged lepton flavor violation is a neutrinoless muon decay

 $\mu^-
ightarrow e^- \gamma$

But we can also consider LFV from the Lepton Number Violation $(|\Delta \mathcal{L}|=2)$

$$au^-
ightarrow h^+ \ell^- \ell^-
u_ au$$

(3)

Looking for lepton-number-violating (LNV) signals to prove that neutrinos are their antiparticles (or not), i.e. elucidate if neutrinos are Majorana particles (or Dirac ones).

June 2021

2/14

Four-body $|\Delta L| = 2$ decays of the τ lepton^[2], with an intermediate on-shell Majorana neutrino N with a kinematically allowed mass $(m_h + m_\ell) \le m_N \le (m_\tau - m_\ell)$ (We consider the N lifetime of $\tau_N = 40, 300$ ps).

Figure 2: Event diagram.

² Castro, G. López and Quintero, N., Lepton number violating four-body tau lepton decays 🕨 < 🗄 🕨 📢

This allows us to extract the limits on $|V_{\ell N}|^2$ without any additional assumption on the relative size of the mixing matrix elements. Based in the sensitivity of Belle II we can constrain the parameter space $(m_N, |V_{\ell N}|^2)$.

Figure 3: Mixing parameter, $|V_{\ell N}|^2$.

These processes occur via the intermediate on-shell Majorana neutrino through the leptonic decay $\tau^- \rightarrow \nu_\tau \ell^- N$ followed by the subsequent semileptonic decay $N \rightarrow \ell^- h^+$. Then, the decays are splitted into two subprocesses and the corresponding branching fraction can be expressed in the factorized form

$$BR(\tau^{-} \to h^{+} \ell^{-} \ell^{-} \nu_{\tau}) = BR(\tau^{-} \to \nu_{\tau} \ell^{-} N) \times \Gamma(N \to \ell^{-} h^{+}) \tau_{N} / \hbar$$
(1)

Where we can provide a rough estimation of the expected number of events at the SuperKEKB^[3], namely Belle II experiment and its predecessor Belle^[4] for $h = \pi$),

$$BR(\tau^{-} \to h^{+} \ell^{-} \ell^{-} \nu_{\tau}) = BR(\tau^{-} \to \nu_{\tau} \ell^{-} N) \times \Gamma(N \to \ell^{-} h^{+}) \tau_{N} / \hbar$$
(2)

M.C. David Rodríguez Pérez (UAS)

CHARM 2020

^[3] Abe, T., Belle II Technical Design Report

Bevan, A. J., The Physics of the B Factories

The Belle Collaboration has measured the detection efficiency of τ decay modes to be 2.73 \pm 0.10% for $\tau^- \rightarrow \pi^- e^+ e^- \nu_{\tau}$ and 4.14 \pm 0.16% for $\tau^- \rightarrow \pi^- \mu^+ \mu^- \nu_{\tau}$ ^[5]. This measurement includes

- Trigger
- Tracking
- Reconstruction
- Particle identification, and
- Selection efficiency

In the case of $\tau^- \rightarrow \pi^+ \mu^- \mu^- \nu_\tau$ detection efficiency we consider the same as $\tau^- \rightarrow \pi^- \mu^+ \mu^- \nu_\tau$ decays.

Expected experimental sensitivity at Belle and Belle II

$$N_{\exp}^{\text{Belle/Belle II}} = \sigma(ee \to \tau\tau) \text{BR}(\tau^- \to \pi^+ \ell^- \ell^- \nu_\tau)$$
(3)
 $\times \epsilon_D^{\text{Belle}}(\tau^- \to \pi^+ \ell^- \ell^+ \nu_\tau)$
 $\times \mathcal{L}_{\text{int}}^{\text{Belle/Belle II}},$

Figure 4: $BR(\tau^- \rightarrow \pi^+ e^- e^- \nu_{\tau})$. Figure 5: $BR(\tau^- \rightarrow \pi^+ \mu^- \mu^- \nu_{\tau})$.

< □ > < □ > < □ > < □ >

In the analysis of the next section, we will take a branching fraction of the order of 10^{-9} as the conservative and accessible to Belle II and the limit for Belle. We explore the constraints on the $(m_N, |V_{\ell N}|^2)$ plane that can be achieved from the experimental searches on $\tau^- \to X^+ \ell^- \ell^- \nu_{\tau}$.

$$|V_{\ell N}|^{2} = \left[\frac{BR(\tau^{-} \to X^{+}\ell^{-}\ell^{-}\nu_{\tau})\hbar}{\overline{BR}(\tau^{-} \to \nu_{\tau}\ell^{-}N) \times \overline{\Gamma}(N \to \ell^{-}X^{+})\tau_{N}}\right]^{1/2}$$
(4)

The experimental non-observation of $|\Delta L| = 2$ processes can be reinterpreted as bounds on the parameter space of a heavy sterile neutrino $(m_N, |V_{\ell N}|^2)$.

We will consider the heavy neutrino lifetime of $\tau_N = 40$ ps, which corresponds to an average flight distance of up to 12 mm, well inside the Belle II vertex detector^[1].

< 3 > < 3</p>

We will consider the heavy neutrino lifetime of $\tau_N = 300$ ps, which corresponds to an average flight distance of up to 90 mm, just inside the Belle II vertex detector^[1].

글 🕨 🖌 글

Summary

We have explored a τ search to track the possible signals of lepton-number-violation at the Belle and Belle II experiments (four-body $|\Delta L| = 2$ decays of the τ lepton).

We performed an exploratory study on the potential sensitivity that Belle II experiment that could achieve for these $|\Delta L| = 2$ processes as well as the limit for Belle experiment.

This to extract the limits on $|V_{\ell N}|^2$ without any additional assumption on the relative size of the mixing matrix elements.

June 2021

12/14

Backup

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The decay width for $\tau \rightarrow \nu \ell N$ can be written as

$$\Gamma(\tau \to \nu_{\tau} \ell N) = \frac{1}{4} \frac{G_F^2}{64m_{\tau}^3 (2\pi)^3} |V_{\ell N}|^2 \int_{s_{12}^-}^{s_{12}^+} \int_{s_{13}^-}^{s_{13}^+} 64(s_{12} - m_{\ell}^2 - m_{\nu}^2)(m_N^2 + m_{\tau}^2 - s_{12}) \, ds_{13} \, ds_{12}, \tag{5}$$

and the $BR(\tau^- \rightarrow \nu_\tau \ell^- N)$ is then obtained dividing (5) by the total decay width of τ lepton, taken from *PhysRevD.98.030001*.

Table 1: Mass and decay constant mesons.

Particle	Mass[MeV]	$f_h \; [{ m MeV}]$
π^{\pm}	139.57	130.41
K^{\pm}	493.67	156.2
$ ho^{\pm}$	775.49	220
$K^{*\pm}$	891.66	217

The result for pseudoscalar mesons $(h = \pi, K)$ is

$$\Gamma(N \to \ell^{-} h^{+}) = \frac{G_{F}^{2}}{16\pi} |V_{\nu q}^{CKM}|^{2} |V_{\ell N}|^{2} f_{h}^{2} m_{N} \\
\times \sqrt{\lambda(m_{N}^{2}, m_{\ell}^{2}, m_{h}^{2})} \left[\left(1 - \frac{m_{\ell}^{2}}{m_{N}^{2}} \right)^{2} \\
- \frac{m_{h}^{2}}{m_{N}^{2}} \left(1 + \frac{m_{\ell}^{2}}{m_{N}^{2}} \right) \right],$$
(6)

by the other hand, for vector mesons $(h =
ho, K^*)$ we have

$$\begin{split} \Gamma(N \to \ell^{-} h^{+}) &= \frac{G_{F}^{2}}{16\pi} |V_{uq}^{CKM}|^{2} |V_{\ell N}|^{2} f_{h}^{2} m_{N} \\ &\times \sqrt{\lambda(m_{N}^{2}, m_{\ell}^{2}, m_{h}^{2})} \bigg[\left(1 - \frac{m_{\ell}^{2}}{m_{N}^{2}}\right)^{2} \\ &+ \frac{m_{h}^{2}}{m_{N}^{2}} \left(1 + \frac{m_{\ell}^{2}}{m_{N}^{2}}\right) - 2 \left(\frac{m_{h}^{2}}{m_{N}^{2}}\right)^{2} \bigg], \end{split}$$

where f_h is the hadron decay constant, see Table 1.

(7)