Tau-muon lepton flavor universality in Upsilon(3S) decays

Swagato Banerjee

On behalf of the **BABAR** collaboration

Lepton Universality in Y decays

Width of a spin-1 $q\bar{q}$ bound state (mass M) decaying into $\ell^+\ell^-$:

$$\Gamma_{\Upsilon \to \ell^+ \ell^-} = 4\alpha^2 e_q^2 \frac{|\Psi(0)|^2}{M^2} \left(1 + 2\frac{m_\ell^2}{M^2}\right) \sqrt{1 - 4\frac{m_\ell^2}{M^2}}$$

Hadronic corrections cancel in the ratio:

$$R_{\tau\mu} = \frac{\Gamma_{\Upsilon \to \tau^+ \tau^-}}{\Gamma_{\Upsilon \to \mu^+ \mu^-}} = \frac{M^2 + 2m_\tau^2}{M^2 + 2m_\mu^2} \sqrt{\frac{M^2 - 4m_\tau^2}{M^2 - 4m_\mu^2}}$$

Such ratios are very well known in the Standard Model (SM):

 $\begin{array}{|c|c|c|c|}\hline V(nS) & \text{SM prediction} \\ \hline \Upsilon(1S) & 0.9924 \pm \mathcal{O}(10^{-5}) \\ \Upsilon(2S) & 0.9940 \pm \mathcal{O}(10^{-5}) \\ \Upsilon(3S) & 0.9948 \pm \mathcal{O}(10^{-5}) \end{array}$

Aloni, Efrati, Grossman & Nir JHEP 06 (2017) 019

Lepton Universality in Y decays

Excellent probe for new physics:

- Light CP-odd Higgs (A⁰) in 2HDM (Type-II) models with large $\tan\beta$ can increase $R_{\tau\mu}$ [Sanchis-Lozano, Int.J.Mod.Phys.A 19 (2004) 2183]
- New physics contribution in b \rightarrow c $\tau\nu$ decays that resolves the existing tension in R(D*) measurements can modify R_{$\tau\mu$} [Aloni, Efrati, Grossman & Nir, JHEP 06 (2017) 019]

Di-muon production cross-section

• MCGPJ, a high precision (<0.2%) generator, shows at Y(3S) the resonance production is a factor of 30 larger than continuum production [Arbuzov, Fedotovich, Ignatov, Kuraev, Sibidanov, Eur.Phys.J.C46 (2006) 689]

• However, after smearing with realistic beam spread at $\Upsilon(3S)$, $\frac{\sigma(e^+e^- \to \Upsilon(3S) \to \mu^+\mu^-)}{\sigma(\sigma(e^+e^- \to \gamma^* \to \mu^+\mu^-))} = 1.136$

The PEP-II Accelerator

Datasets used in this analysis:

		√s	e⁻	e+	On-peak Luminosity	Off-peak Luminosity	Year
	Y(3S)	10.355 GeV	8.6 GeV	3.1 GeV	27.96 fb ⁻¹	2.62 fb ⁻¹	2008
	Ƴ(4S)	10.58 GeV	9.0 GeV	3.1 GeV	78.3 fb ⁻¹	7.72 fb ⁻¹	2007
wagato Banerjee		5			Tau-mu universality in Y(3S) decays		

Sn

The BABAR Detector

Analysis overview

Select µµ events

- 2 high-momentum & back-to-back tracks identified as muons
- Invariant mass close to \sqrt{s} used as the discriminating fit variable
- Parameterize the shape of $\Upsilon(3S)$ and continuum contributions

Select *τ*τ events

- 2 tracks in the event which are not back-to-back; one track identified as an electron and the other track fails electron identification
- Total reconstructed energy used as the discriminating fit variable
- Parameterize the shape of $\Upsilon(3S)$ and continuum contributions

Measure yields of $\mu\mu$ and $\tau\tau$ events

- Simultaneous binned maximum likelihood fit to data
- Blind analysis strategy: 2.41 fb⁻¹ of on-peak data at $\Upsilon(3S)$ as well as the off-peak data at $\Upsilon(3S)$ and $\Upsilon(4S)$ used to optimize analysis

Event Selection

$\mu^+\mu^-$ selections

- Two and only two charged particles with opposite charges
- 2 $P_{\text{high}}^{\text{cm}} > 4 \,\text{GeV}/c$ and $P_{\text{low}}^{\text{cm}} > 2 \,\text{GeV}/c$
- 3 2.8 rad $< \theta_{-}^{cm} + \theta_{+}^{cm} < 3.5$ rad
- 5 0.65 rad $< \theta_{-}^{cm} < 2.5$ rad and 0.58 rad $< \theta_{+}^{cm} < 2.56$ rad

$$\ \, \mathbf{0} \ \, \psi^{\mathsf{cm}} = \arccos \frac{\vec{P}_{+}^{\mathsf{cm}} \cdot \vec{P}_{-}^{\mathsf{cm}}}{|\vec{P}_{+}^{\mathsf{cm}}| \cdot |\vec{P}_{-}^{\mathsf{cm}}|} > 160^{\circ}$$

- $0.8 < M_{\mu\mu}/\sqrt{s} < 1.1$
- At least one particle having IFR response

99.9% purity

$au^+ au^-$ selections

- Two and only two charged particles with opposite charges
- 2 $41^{\circ} < \theta_{\pm}^{\rm cm} < 148^{\circ}$.
- $\bigcirc \ \psi^{\rm cm} > 110^\circ$
- One of the particles must be an electron and the other not electron
- **()** $||\phi_+ \phi_-| 180^\circ| > 3^\circ$
- $\bigcirc |M_{\rm miss}^2| > 0.01 \times s$
- $|\cos\theta_{\rm miss}| < 0.85$
- 𝔅 $P_{\pm}^{⊥} ∉ γ^*γ^*$ region
- $\begin{array}{|c|c|c|c|} \textcircled{10} & |\Delta\phi| = ||\phi_{e\gamma} \phi_{\not e}| 180^{\circ}| > 2^{\circ} \\ & |\Delta\theta| = |\theta_{e\gamma} + \theta_{\not e} 180^{\circ}| > 2^{\circ} \end{array}$

99% purity

All selections are designed to be beam-energy insensitive.

Continuum modeling

Template fit exploits differences in shapes of $\Upsilon(3S)$ and continuum, where the latter is described by high-statistics $\Upsilon(4S)$ & off-peak data

Cascade contributions

Model prompt di-lepton production from $\Upsilon(3S)$ decays as well as contributions from cascade $\Upsilon(2S)$ & $\Upsilon(1S)$ decays:

Monte Carlo (MC) based templates used:

• $\Upsilon(3S) \to \mu^+ \mu^-$ and $\Upsilon(3S) \to \tau^+ \tau^-$ are taken from KKMC • $\Upsilon(2S) \to \ell^+ \ell^-$ and $\Upsilon(1S) \to \ell^+ \ell^-$ are from EvtGen MC

Swagato Banerjee

Fit results

- Simultaneous fit to distributions of $M_{\mu\mu}/\sqrt{s}$ and $E_{\tau\tau}/\sqrt{s}$
- Fit yields number of $\Upsilon(3S) \to \mu^+ \mu^-$ events $(N_{\mu\mu})$ and the ratio $(\tilde{R}_{\tau\mu})$ of number of $\Upsilon(3S) \to \tau^+ \tau^-$ events $(N_{\tau\tau})$ to $N_{\mu\mu}$

 $N_{\mu\mu} = (2.02 \pm 0.02) \times 10^6, \tilde{R}_{\tau\mu} = 0.10778 \pm 0.00091$

Swagato Banerjee

Tau-mu universality in Y(3S) decays

Fit results (continuum subtracted)

- Dominant contribution to the above fit comes from continuum
- When the continuum background is subtracted, $\Upsilon(3S)$ signal & "cascade" backgrounds can be seen in $M_{\mu\mu}/\sqrt{s}$ distribution

Correction factors & systematics

$$R_{\tau\mu}^{\Upsilon(3S)} = \tilde{R}_{\tau\mu} \frac{\varepsilon_{\mu\mu}}{\varepsilon_{\tau\tau}} \frac{1}{C_{MC}} \left(1 + \delta_{B\bar{B}}\right)$$

= 0.9662 ± 0.0084_{stat} ± 0.0135_{syst} = 0.9662 ± 0.0159_{tot}
$$\frac{\varepsilon_{\mu\mu}}{\varepsilon_{\tau\tau}} = 0.11041 \pm 0.00015_{stat} \text{ is the ratio of MC efficiencies}$$

$$C_{MC} = 1.0146 \pm 0.0016_{stat} \text{ is the data/MC correction factor}$$

• $\delta_{B\bar{B}} = (0.4 \pm 0.2) \%$ corrects for a small amount of $B\bar{B}$ in the $\tau\tau$ sample

Summary of systematic uncertainties

Source	Uncertainty (%)		
Particle identification	0.9		
Cascade decays	0.6		
Two-photon production	0.5		
$\Upsilon(3S) \rightarrow \text{hadrons}$	0.4		
MC shape	0.4		
$B\bar{B}$ contribution	0.2		
ISR subtraction	0.2		
Total	1.4		

3

Comparison with previous measurement

$$R_{\tau\mu}^{\Upsilon(3S)} = \tilde{R}_{\tau\mu} \frac{\varepsilon_{\mu\mu}}{\varepsilon_{\tau\tau}} \frac{1}{C_{MC}} \left(1 + \delta_{B\bar{B}}\right)$$

= 0.9662 ± 0.0084_{stat} ± 0.0135_{syst} = 0.9662 ± 0.0159_{tot}

• This result is 6 times more precise than the only previous measurement:

$$R_{\tau\mu}^{\Upsilon(3S)} = 1.05 \pm 0.08 \pm 0.05$$

D. Besson et. al. (CLEO) PRL 98 (2007) 052002

- CLEO analysis used 1.2 fb⁻¹ of data at the $\Upsilon(3S)$ resonance
- *BABAR* statistical uncertainty is 2 times more precise, which scales as:

$$\sigma_{stat}^{BABAR} = \frac{\sigma_{stat}^{CLEO}}{\sqrt{\mathcal{L}_{BABAR}}/\mathcal{L}_{CLEO}}} = \frac{0.08}{\sqrt{27.96/1.2}} = 0.0166$$

• Careful modeling of continuum using $\Upsilon(4S)$ and off-peak data and radiative returns allowed inclusion of low mass tail in the *BABAR* fit, whereas the CLEO analysis suppressed the backgrounds using cuts

Summary

- The *BABAR* datasets of $\Upsilon(nS)$ decays are excellent probes of new physics
- Using 27.96 fb⁻¹ of data collected at the Υ(3S) resonance and 78.3 fb⁻¹ of data collected at the Υ(4S) resonance as well as off-peak data, a precise measurement of the following ratio is obtained:

$$R_{\tau\mu}^{\Upsilon(3S)} = \frac{\Gamma_{\Upsilon \to \tau^+ \tau^-}}{\Gamma_{\Upsilon \to \mu^+ \mu^-}} = 0.966 \pm 0.008_{\text{stat}} \pm 0.014_{\text{syst}}$$
J.P. Lees et. al. (*BABAR*)
PRL 125 (2020) 241801

- The result agrees with the SM prediction of 0.9948 within $\pm\,2\sigma$
- Almost an order of magnitude more precise than previous measurement

