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Motivation to do this study

I There is a 2.8 σ discrepancy between the τ+ → π+Ks ν̄τ rate
asymmetry measured by BaBar
(Aτ,exp

CP = −3.6(2.3)(1.1)× 10−3) 2 and the one coming from
the expected value due to K 0 − K̄ 0 mixing
(Aτ,SM

CP = 3.6(1)× 10−3) 3, where

AτCP =
Γ(τ+ → π+KS ν̄τ )− Γ(τ− → π−KSντ )

Γ(τ+ → π+KS ν̄τ ) + Γ(τ− → π−KSντ )

I The Ksπ
− spectrum, particularly the first few Belle data

points cannot be explained within the SM.

2J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 85, 031102 (2012)
Erratum: [Phys. Rev. D 85, 099904 (2012)].

3I. I. Bigi and A. I. Sanda, Phys. Lett. B 625, 47 (2005).
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τ− → KSπ
−ντ spectrum

Figure: Distribution of τ− → KSπ
−ντ events measured by Belle4

5

4Belle Collaboration, Phys. Lett. B 654 (2007) 65.
5A. Pich, Prog. Part. Nucl. Phys. 75, 41 (2014)
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Motivation to do this study

I See if the bounds of NP coming from the effective couplings
are competitive with the bounds coming from Kaon and
Hyperon decays6.

6M. González-Alonso and J. Martin Camalich, JHEP 1612, 052 (2016).
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Effective theory analysis of τ− → ντ ūs

The effective lagrangian density constructed with dimension six
operators and invariant under the SU(2)L ⊗ U(1) group has the
following form,

L(eff ) = LSM +
1

Λ2

∑
i

αiOi

5/36



Effective theory analysis of τ− → ντ ūs

We can explicitly construct the low-scale O(1GeV) effective
lagrangian for semi-leptonic transitions as follows:

Lcc = −GFVus√
2

(1 + εL + εR)

×
[
τ̄ γµ(1− γ5)ντ · ū[γµ − (1− 2ε̂R)γµγ5]s

+ τ̄(1− γ5)ντ · ū[ε̂s − ε̂pγ5]s

+ 2ε̂T τ̄σµν(1− γ5)ντ · ūσµνs
]

+ h.c ,

where ε̂i = εi/(1 + εL + εR) for i = R,S ,P,T .
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Amplitude
Due to the parity of pseudoscalar mesons, only the vector, scalar
and tensor currents give a non-zero contribution to the decay
amplitude 7

M =MV +MS +MT

=
GFVus

√
SEW√

2
(1 + εL + εR)

× [LµH
µ + ε̂SLH + 2ε̂TLµνH

µν ] ,

where the leptonic currents have the following structure,

Lµ = ū(p
′
)γµ(1− γ5)u(p) ,

L = ū(p
′
)(1 + γ5)u(p) ,

Lµν = ū(p
′
)σµν(1 + γ5)u(p) ,

7E. A. Garcés, M. Hernández Villanueva, G. López Castro and P. Roig,
JHEP 1712, 027 (2017).
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Amplitude

The Hadronic matrix elements for τ− → K̄ 0π−ντ are given as
follows,

Hµ =〈π−K̄ 0|s̄γµu|0〉 = QµF+(s) +
∆Kπ

s
qµF0(s) ,

H =〈π−K̄ 0|s̄u|0〉 = Fs(s) ,

Hµν =〈π−K̄ 0|s̄σµνu|0〉 = iFT (s)(pµKp
ν
π − pµπp

ν
K ) ,

where qµ = (pπ + pK )µ, Qµ = (pK − pπ)µ − ∆Kπ
s qµ, s = q2, and

∆ij = m2
i −m2

j .
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Amplitude

Similarly for the τ− → K−π0ντ decay we have,√
2FK−π0

0,+,T (s) = F K̄ 0π−
0,+,T (s).
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Simplifications in the leptonic part

The vector and the scalar currents are related through the Dirac
equation in the following way,

L =
Lµq

µ

Mτ
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Simplifications in the Hadronic part

Similarly one can find a relation between the scalar and the vector
hadronic matrix elements by taking the four-divergence of the
vector matrix element,

Fs(s) =
∆Kπ

ms −mu
F0(s)
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Total simplification

We conclude that the scalar and vector contributions can be
treated jointly by doing the convenient replacement:

∆Kπ

s
→ ∆Kπ

s

[
1 +

s ε̂s

Mτ (ms −mu)

]
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Squared amplitude

The unpolarized spin-averaged squared amplitude is given by:

¯|M|2 =
G 2

F |Vus |2SEW

2
(1 + εL + εR)2

× (M0+ + MT + + MT 0 + M00 + M++ + MTT )
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Vector and Scalar Form Factors

Here we benefit from previous works for the VFF and SFF cases.
The VFF is taken from ref. 8 and the SFF is taken from ref. 9.

8D. R. Boito, R. Escribano and M. Jamin, Eur. Phys. J. C 59, 821 (2009).
9M. Jamin, J. A. Oller and A. Pich, Phys. Rev. D 74, 074009 (2006).
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Tensor Form Factor

For the TFF we obtain its normalization at zero momentum
transfer using χPT with tensor sources 10 and Lattice data 11 and
its energy dependence using a dispersion relation12.

i〈π−K̄ 0| δL
δt̄αβ
|0〉 =

Λ2

F 2

(
pαKp

β
0 − pα0 p

β
K

)
.

FT (s)

FT (0)
= exp

[
s

π

∫ scut

sπK

ds
′ δT (s

′
)

s ′(s ′ − s − iε)

]
,

where sπK = (mK̄ 0 + mπ−)2.

10O. Cata and V. Mateu, JHEP 0709, 078 (2007).
11I. Baum, V. Lubicz, G. Martinelli, L. Orifici and S. Simula, Phys. Rev. D

84, 074503 (2011).
12J. A. Miranda and P. Roig, JHEP 1811, 038 (2018).
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Tensor Form Factor

Figure: Modulus and phase, |FT (s)| (left) and δT (s) = δ+(s) (right), of
the tensor form factor, FT (s). On the left plot, the dotted line
corresponds to scut = 9 GeV2, the dashed one to scut = 4 GeV2, and the
solid one to scut = M2

τ .
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Dalitz Plots
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Figure: Dalitz plot distribution |M|200 in the SM: Differential decay
distribution for τ− → KSπ

−ντ in the (s, t) variables (left), and in the
(s, cosθ) variables (right)
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Dalitz Plots
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Figure: Dalitz plot distribution ∆̃(ε̂S , ε̂T ) in the τ− → KSπ
−ντ decays:

left-hand side corresponds to the (s, t) variables and the right-hand side
corresponds to the differential decay distribution in the (s, cosθ)
variables, both with (ε̂S = 0, ε̂T = 0.6).

In the previous plot we have defined,

∆̃(ε̂S , ε̂T ) =

∣∣∣|M(ε̂S , ε̂T )|2 − |M(0, 0)|2
∣∣∣

|M(0, 0)|2
.
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Forward-backward asymmetries

AKπ(s) =

∫ 1
0 dcosθ d2Γ

dsdcosθ −
∫ 0
−1 dcosθ

d2Γ
dsdcosθ∫ 1

0 dcosθ d2Γ
dsdcosθ +

∫ 0
−1 dcosθ

d2Γ
dsdcosθ

.

AKπ =
3
√
λ(s),m2

π,m
2
K )

2s2[XVA + ε̂SXS + ε̂TXT + ε̂2
SXS2 + ε̂2

TXT 2 ](
1 +

s ε̂S

Mτ (ms −mu)

)
∆πK

[
−Re[F0(s)F ∗

+(s)] +
2s ε̂T

Mτ
Re[FT (s)F ∗

0 (s)]

]
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Forward-backward asymmetries

Figure: FB asymmetries: SM (solid line), ε̂S = −0.5, ε̂T = 0 (dashed
line) and ε̂S = 0, ε̂T = 0.6 (dotted line).
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Limits on ε̂S and ε̂T

∆ ≡ Γ− Γ0

Γ0
= αε̂S + βε̂T + γε̂2

S + δε̂2
T ,

where we obtained the following results for the coefficients:
α ∈ [0.30, 0.34], β ∈ [−2.92,−2.35], γ ∈ [0.95, 1.13] and
δ ∈ [3.57, 5.45].
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Limits on ε̂S and ε̂T

Figure: ∆ as a function of ε̂S for ε̂T = 0 (left hand) and of ε̂T for ε̂S = 0
(right hand) for τ− → KSπ

−ντ decays. Horizontal lines represent the
values of ∆ according to the current measurement and theory errors (at
three standard deviations) of the branching ratio (dashed line) and in the
hypothetical case where the measured branching ratio at Belle-II has a
three times reduced uncertainty (dotted line).
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Limits on ε̂S and ε̂T

Figure: Constraints on the scalar and tensor couplings obtained from
∆(τ− → KSπ

−ντ ) using theory and the measured value reported in the
PDG, with their corresponding uncertainties at three standard deviations
(solid line). The dashed line ellipse corresponds to the case where the
measurements error was reduced to a third of the current uncertainty.
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Limits on ε̂S and ε̂T

∆ limits ε̂S (ε̂T = 0) ε̂T (ε̂S = 0) ε̂S ε̂T

Current bounds [−0.57, 0.27] [−0.059, 0.052] ∪ [0.60, 0.72] [−0.89, 0.58] [−0.07, 0.72]

Future bounds [−0.52, 0.22] [−0.047, 0.036] ∪ [0.62, 0.71] [−0.87, 0.56] [−0.06, 0.71]

Table: Constraints on the scalar and tensor couplings obtained through
the limits on the current branching ratio at three standard deviations
using the current theory and experimental errors and assuming the latter
be reduced to a third (’Future bounds’).
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Limits on ε̂S and ε̂T

When we make the fit to the whole spectrum we obtain,

Best fit values ε̂S ε̂T χ2 χ2 in the SM

No i = 5, 6, 7 bins (1.3± 0.9)× 10−2 (0.7± 1.0)× 10−2 [72, 73] [74, 77]

i = 5, 6, 7 bins (0.9± 1.0)× 10−2 (1.7± 1.7)× 10−2 [83, 86] [91, 95]

Table: Best fit values to the Belle spectrum and branching ratio of the
τ− → KSπ

−ντ decays

13 The previous limits translate into bounds of the corresponding
NP scale Λ ≈ [2, 5]Tev, while Kaon physics may reach O(500)Tev
14

Λ ∼ v(Vus ε̂S,T )−1/2

13D. Epifanov et al. [Belle Collaboration], Phys. Lett. B 654, 65 (2007).
14M. González-Alonso and J. Martin Camalich, JHEP 1612, 052 (2016).
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Limits on ε̂S and ε̂T

15
15M. González-Alonso and J. Martin Camalich, JHEP 1612, 052 (2016).
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What about CP violation?

ABSM
CP =

2sinδW
T |ε̂T |G 2

F |Vus |2SEW

256π3M2
τ Γ(τ → KSπντ )

×∫ M2
τ

sπK

ds|f+(s)||FT (s)|sin (δ+(s)− δT (s))
λ3/2(s,m2

π,m
2
K )(M2

τ − s)2

s2
,

In agreement with Ref. 16 we confirmed that it is not possible to
understand the BaBar ACP measurement.

ABSM
CP . 8 · 10−7 , (1)

which is a slightly weaker bound than the one reported in the
previous reference (ABSM

CP . 3 · 10−7)

16V. Cirigliano, A. Crivellin and M. Hoferichter, Phys. Rev. Lett. 120, no.
14, 141803 (2018).
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Conclusions

I Both the BaBar ACP anomaly and the i = 5, 6, 7 Belle data
points cannot be explained by heavy NP contributions.

I Using tau decays we have set bounds on ε̂S and ε̂T similar to
those on hyperon decays (a few Tev NP energy scale) but not
competitive with (semi)leptonic Kaon decays (O(500) Tev).

I However Tensor interactions are probed with similar NP
energy reach than in (semi)leptonic Kaon decays and
LHC data.
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Backup

Estimation of inelasticities in the phase of the TFF 17

17V. Cirigliano, A. Crivellin and M. Hoferichter, Phys. Rev. Lett. 120, no.
14, 141803 (2018)
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Effective theory analysis of τ− → ντ ūD (D = d , s)

We can explicitly construct the low-scale O(1GeV) effective
lagrangian for semi-leptonic transitions as follows: 18 19:

LCC = −GFVuD√
2

[
(1 + ετL)τ̄ γµ(1− γ5)ντ · ūγµ(1− γ5)D

+ετR τ̄ γµ(1− γ5)ντ · ūγµ(1 + γ5)D

+τ̄(1− γ5)ντ · ū(ετS − ετPγ5)D

+ετT τ̄σµν(1− γ5)ντ ūσ
µν(1− γ5)D

]
+ h.c . , (2)

18T. Bhattacharya, V. Cirigliano, S. D. Cohen, A. Filipuzzi,
M. Gonzalez-Alonso, M. L. Graesser, R. Gupta and H. W. Lin, Phys. Rev. D
85, 054512 (2012).

19S. González-Soĺıs, A. Miranda, J. Rendón and P. Roig, Phys. Lett. B 804,
135371 (2020).
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One-meson decay modes τ− → P−ντ (P = π,K ).

Γ(τ− → π−ντ ) =
G 2

F |Ṽ e
ud |2f 2

πm
3
τ

16π

(
1− m2

π

m2
τ

)2

× (1 + δτπem + 2∆τπ +O(ετi )2 +O(δτπemε
τ
i )) ,

(3)

where fπ is the pion decay constant, the quantity δτπem accounts for
the EM radiative corrections and the term ∆τπ contains the
tree-level NP corrections that arise from Leff that are not absorbed
in Ṽ e

ud .
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One-meson decay modes τ− → P−ντ (P = π,K ).

The product GFVuD in Leff denotes that its determination from
the superallowed nuclear Fermi β decays carries implicitly a
dependence on εe

L and εe
R that is given by 20

GF Ṽ
e
uD = GF (1 + εe

L + εe
R)VuD , (4)

For the channel τ− → K−ντ , the decay rate is that of Eq. (3) but
replacing Ṽ e

ud → Ṽ e
us , fπ → fK , mπ → mK , and δτπem and ∆τπ by

δτK
em and ∆τK , respectively.

20M. González-Alonso and J. Martin Camalich, JHEP 12, 052 (2016)
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New Physics bounds from ∆S = 0 decays

from the τ− → π−ντ decay rate alone, we obtain the following
constraint,

ετL−εe
L−ετR−εe

R−
m2
π

mτ (mu + md )
ετP = (−0.12± 0.68)×10−2 , (5)

The bounds for the non-SM effective couplings resulting from the
global fit are found to be (in the MS scheme at scale µ = 2 GeV)

ετL − εe
L + ετR − εe

R

ετR + m2
π

2mτ (mu+md )ε
τ
P

ετS

ετT

 =


0.5± 0.6+2.3

−1.8
+0.2
−0.1 ± 0.4

0.3± 0.5+1.1
−0.9

+0.1
−0.0 ± 0.2

9.7+0.5
−0.6 ± 21.5 +0.0

−0.1 ± 0.2

−0.1± 0.2+1.1
−1.4

+0.0
−0.1 ± 0.2

×10−2,

(6)
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New Physics bounds from |∆S | = 1 decays

from the τ− → K−ντ decay rate alone, we obtain the following
constraint,

ετL−εe
L−ετR−εe

R−
m2

K

mτ (mu + ms)
ετP = (−0.41± 0.93)×10−2 . (7)

In this case, the limits for the NP effective couplings are found to
be (in the MS scheme at scale µ = 2 GeV)

ετL − εe
L + ετR − εe

R

ετR +
m2

K
2mτ (mu+ms )ε

τ
P

ετS

ετT

 =


0.5± 1.5± 0.3

0.4± 0.9± 0.2

0.8+0.8
−0.9 ± 0.3

0.9± 0.7± 0.4

 × 10−2, (8)
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New Physics bounds from a global fit to both ∆S = 0 and
|∆S | = 1

The resulting limits for the NP effective couplings are found to be
(in the MS scheme at scale µ = 2 GeV)

ετL − εe
L + ετR − εe

R

ετR
ετP
ετS
ετT

 =



2.9 ±0.6 +1.0
−0.9 ±0.6 ±0.0 ±0.4 +0.2

−0.3

7.1 ±4.9 +0.5
−0.4

+1.3
−1.5

+1.2
−1.3 ±0.2 +40.9

−14.1

−7.6 ±6.3 ±0.0 +1.9
−1.6

+1.7
−1.6 ±0.0 +19.0

−53.6

5.0 +0.7
−0.8

+0.8
−1.3

+0.2
−0.1 ±0.0 ±0.2 +1.1

−0.6

−0.5 ±0.2 +0.8
−1.0 ±0.0 ±0.0 ±0.6 ±0.1


× 10−2 ,

(9)
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Conclusions

I This work highlights that hadronic tau lepton decays remain to be
not only a privileged tool for the investigation of the hadronization
of QCD currents but also offer an interesting scenario as New
Physics probes.

I In general, our bounds on the NP couplings, are competitive. This
is specially the case for the combination of couplings
ετL − εe

L + ετR − εe
R , which is found to be in accord with 21 and ετT ,

that can even compete with the constraints set by the theoretically
cleaner K`3 decays.

I As for ετS , it is impossible to compete with the limits coming from
K`3 decays (the decay τ− → π−ηντ has not been taken into
account because the lack of data).

21V. Cirigliano, A. Falkowski, M. González-Alonso and
A. Rodŕıguez-Sánchez, Phys. Rev. Lett. 122, no.22, 221801 (2019).
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