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Introduction

In the SM, CP violation (CPV) in D0 −D0 mixing and D decays enters at
O(VcbVub/VcsVus) ∼ 10−3, due to weak phase γ, yielding all 3 types of CPV:

direct CPV (dCPV)

CPV in pure mixing (CPVMIX): due to interference between dispersive and
absorptive mixing amps

CPV in the interference of decays with and without mixing (CPVINT)

Our interest here is in CPVMIX and CPVINT, both of which result from mixing, and
which we refer to as “indirect CPV"



Questions:

How large are the indirect CP asymmetries in the SM?

What is the appropriate minimal parametrization of indirect CPV?

How large is the current window for new physics (NP)?

Can this window be closed in the Belle-II / LHCb Precision Era ?



Answers:

obtained by describing CPVINT in terms of pairs of dispersive and absorptive
CPV phases φM

f and φΓ
f , for CP conjugate final states f , f̄

they parametrize CPVINT from interference of D0 decays with and without
dispersive mixing, and with and without absorptive mixing.

These are separately measurable effects.

simpler, physically transparent expressions for indirect CP asymmetries

can be used to extract an “intrinsic" pair of pure mixing absorptive and dispersive
phases φ2

M , φ2
Γ, with controlled errors

⇒ these two phases suffice to describe indirect CPV in the precision charm era

SM estimates for φ2
M , φ2

Γ follow from U -spin arguments



Absorptive and Dispersive CPV



Transition amplitudes for D0 −D0 mixing:

〈D0|H|D0〉 = M12 −
i

2
Γ12 , 〈D0|H|D0〉 = M∗

12 −
i

2
Γ∗
12

M12 is the dispersive mixing amplitude: due to long-distance exchange of off-shell
intermediate states; and short-distance effects

long distance dominates in SM

significant short distance would be new physics (NP)

Γ12 is the absorptive mixing amplitude: due to long distance exchange of on-shell
intermediate states



Mass eigenstates |D1,2〉 = p|D0〉± q|D
0
〉:

mass and width differences expressed in terms of parameters x, y

x =
m2 −m1

ΓD
, y =

Γ2 − Γ1

2ΓD

introduce three “theoretical" physical mixing parameters

x12 ≡ 2|M12|/ΓD , y12 ≡ |Γ12|/ΓD , φ12 ≡ arg(M12/Γ12)

φ12 is the CPV phase responsible for CPVMIX, e.g. semileptonic CP asymmetry

ASL =
2x12 y12
x2
12 + y212

sinφ12 .

|x| = x12 +O(CPV2), |y| = y12 +O(CPV2)



Time-evolved meson solutions, for t ! τD :

For D0(0) = D0, the mixed component at time t,

〈D0|D0(t)〉 = e
−i

(

MD−i
ΓD
2

)

t
(

e−iπ/2M∗
12 − 1

2Γ
∗
12

)

t, ...

the phase π/2 is a CP-even “dispersive strong phase”

it is the CP-even phase difference between the interfering dispersive and
absorptive mixing amplitudes required to obtain CPVMIX

It contributes to the CP-even “strong phase” differences required for CPVINT



The dispersive and absorptive CPV phases φM
f , φ

Γ
f in hadronic decays

Hadronic D0(t), D0(t) decay amplitudes sum over contributions with/without mixing:

A(D0(t) → f) = Af 〈D0|D0(t)〉+ Āf 〈D0|D0(t)〉

Af ≡ 〈f |H|D0〉 , Āf ≡ 〈f |H|D̄0〉 are the decay ampltiudes

φM
f and φΓ

f are the CPV phase differences between the two interfering amplitudes:



Relation to “phenomenological” CPVINT parameters

The more familiar “phenomenological" CPV observables are

CPVMIX :
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Relation to absorptive and dispersive CPVINT phases
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x2
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+O(CPV3), where φ12 = φM
f − φΓ
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sin 2φλf
= −

(

x2
12 sin 2φM

f + y212 sin 2φΓ
f

x2
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+O(CPV3)

φλf
is a sum over φM

f and φΓ
f , weighted by the dispersive and absorptive

contributions to the CP averaged mixing probability, x2
12/(x

2
12 + y212) and

y212/(x
2
12 + y212)



Note φ12 = φM
f − φΓ

f ⇒ same number of CPV quantities in each description

The LHCb parametrization∆x, ∆y (introduced in the D0 → KSπ+π− analyses):

2∆xf = x cosφλf
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2∆yf = y cosφλf
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In terms of the dispersive and absorptive phases:

∆xf = −y12 sinφΓ
f , ∆yf = x12 sinφM

f

⇒ ∆xf and ∆yf are equivalent to the absorptive and dispersive CPVINT phases, up
to the corresponding mixing factors



Time dependent CPV
phenomenology



I. Phenomenology of SCS decays to CP eigenstates

The phases φM
f , φΓ

f enter the decay widths via the dimensionless observables λM
f , λΓ

f :

for SCS decays to CP -eigenstate final states, e.g. f = K+K−, π+π−:

f̄ = ηCP
f f , where ηCP

f = +(−) for f a CP-even (odd) final state

λM
f ≡

M12

|M12|

Af

Af
= ηCP

f
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f .

recall CP asymmetries require both a CPV phase difference (φ), and a CP-even
phase difference (δ), between interfering amplitudes ⇒ ACP ∝ sinφ sin δ

Trivial strong phase difference between Af , Af ⇒ the only CP-even phase
available for generation of CP asymmetries is the dispersive phase π/2

Therefore, for CP -eigenstate final states, in general, CPVINT is
purely dispersive and ∝ x12 sinφM

f



time-dependent decay widths for SCS decays to CP eigenstates (τ ≡ ΓDt),
e.g. f = K+K−, π+π−, ρ0π0, K∗+K∗−, ρ+ρ−

Γ(D0(t) → f) = e−τ |Af |
2
(

1 + c+f τ + c′+f τ2
)

.ADD±!!!.

The time-dependent CPVINT asymmetry:

∆Yf ≡
(c+f − c−f )

2
=

Γ̂
D0

→f
− Γ̂D0→f

2

CPVINT is indeed purely dispersive (up to dCPV effects):

∆Yf = ηfCP (−x12 sinφM
f + adf y12)

In usual parametrization:

∆Yf =
y

2
cosφλf
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physical interpretation is obscured by combination of CPVMIX and CPVINT
contributions



II. Phenomenology of CF/DCS Decays toK±X

For CF/DCS decays to K±X, e.g. K+π− , K+π−π0 (and SCS decays to non-CP
eigenstates), have two pairs of observables: one for f , one for f̄ ADD second eq:

λM
f ≡

M12

|M12|

Af
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= −
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∣
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∣
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∣

∣

∣

∣

ei(φ
M
f −∆f ) , λΓ

f ≡
Γ12

|Γ12|
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= −
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∣

∣
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∣

∣

∣

∣

∣

ei(φ
Γ
f−∆f )

.

,

∆f = strong phase difference between Af (DCS) and Af (CF), and
between Af̄ (DCS) and Af̄ (CF)

the total CP-even phase difference between decays with and without mixing is
∆f − π/2 (dispersive) and ∆f (absorptive)

⇒ time dependent CPVINT asymmetries

∝ x12 sinφM
f cos∆f (dispersive mixing)

∝ y12 sinφΓ
f sin∆f (absorptive mixing)



The time-dependent decay widths for the “wrong sign” decays D0 → f̄ and D0 → f ,
e.g. f̄ = K+π−, are:

Γ(D0(t) → f̄) = e−τ |Af |
2
(

R+
f +

√

R+
f c+WS,f τ + c′+WS,f τ2

)

,

Γ(D0(t) → f) = e−τ |Āf̄ |
2
(

R−

f +
√

R−

f c−WS,f τ + c′−WS,f τ2
)

where R+
f = |Af̄/Af |2, R−

f = |Āf/Āf̄ |
2

In the SM, and in NP models with negligible dCPV in CF/DCS decays,
obtain the wrong sign CP asymmetry at linear order in τ :

δcWS,f ≡ 1
2 (c

+
WS,f − c−WS,f ) = x12 sinφM

f cos∆f − y12 sinφΓ
f sin∆f

expected∆f dependence for dispersive and absorptive CPV

non-CP eigenstate final states (non-trivial∆f ) yield sensitivity to φΓ
f



Intrinsic Mixing Phases and
Approximate Universality



To arrive at a minimal parametrization of indirect CPV effects in the precision era, we
need to understand the final state dependence of φM

f , φΓ
f

accomplished via a U -spin flavor symmetry decomposition of the SM mixing
amplitudes. Using CKM unitarity:

ΓSM
12 =

(λs − λd)2

4
Γ2 +

(λs − λd)λb

2
Γ1 +

λ2
b

4
Γ0

Γ2,1,0 are the ∆U3 = 0 elements of ∆U= 2, 1, 0 multiplets. Can be seen from
their flavor structures

Γ2 = Γss + Γdd − 2Γsd ∼ (s̄s− d̄d)2 = O(ε2) ,

Γ1 = Γss − Γdd ∼ (s̄s− d̄d)(s̄s+ d̄d) = O(ε) ,

Γ0 = Γss + Γdd + 2Γsd ∼ (s̄s+ d̄d)2 = O(1) .

the orders in the U -spin breaking parameter ε are shown

MSM
12 is analogous (except for small internal b quark contributions inM1,M0)



small |λb/λs| ∼ 0.7× 10−3 ⇒ mass and width differences (x12 , y12) are
due toM2 and Γ2, even though O(ε2)

Therefore, U -spin breaking is large, e.g. large phase space effects Falk et al.

CPV in mixing arises at O(ε), due to Γ1 andM1 (λb ∝ ei γ )

Introduce the “intrinsic" pure mixing phases

φΓ
2 ≡ arg

[

Γ12
1
4 (λs − λd)2 Γ2

]

, φM
2 ≡ arg

[

M12
1
4 (λs − λd)2 M2

]

,

φ2 ≡ arg

[

q

p

(λs − λd)2

4
Γ2

]

φΓ
2 , φM

2 , φ2 are the intrinsic analogs of φM
f , φΓ

f , φλf
, respectively

defined w.r.t the direction of the dominant∆U = 2 mixing amplitudes

in principle, can be measured on the lattice



rough SM estimates of φΓ
2 and, similarly, φM

2 :

φΓ
2 ≈ Im

(

2λb

λs − λd

Γ1

Γ2

)

∼

∣

∣

∣

∣

λb

θc

∣

∣

∣

∣

sin γ ×
1

ε
,

CKM fits yield

φΓ
2 ∼ φM

2 ∼ (2.2× 10−3)×

[

0.3

ε

]

a robust SM upper bound on |φΓ
2 |, via the relation |Γ2| ∼= |y|ΓD/λ2

s :

|φΓ
2 | =

∣

∣

∣

∣

λb λs sin γ

y

∣

∣

∣

∣

|Γ1|

ΓD
< 0.005

(

0.66%

|y|

)

ε1[1 +O(ε)]

where ε1 ≡ |Γdd − Γss|/|Γsd| = O(ε). It is conservatively< 1.

used the upper bound (details in A.K., L. Silvestrini, to appear)

Γsd/ΓD < 1 +O(ε)

The O(ε) correction is expected to be small - it does not depend on U -spin
breaking from phase space effects - those enter at O(ε2)



Approximate Universality in the SM

the misalignments δφf between the measured phases φM
f , φΓ

f , φλf
, and their intrinsic

counterparts are equal in magnitude,

δφf = φΓ
f − φΓ

2 = φM
f − φM

2 = φ2 − φλf
,

in general, up to strong phases, δφf = arg

[

Af

Af
(λs − λd)2

]

what are the misalignments in the various classes of decays? or, what is the
uncontrolled theoretical error on measurements of φM

2 , φΓ
2?

CF/DCS decays to K±X, e.g. K+π−, K+π−π0:

δφf = arg

[

−
V ∗
csVud

VcdV ∗
us

(λs − λd)
2
]

= O

(

λ2
b

λ2
s

)

∼ 4× 10−5

the misalignment is negligible, i.e. δφf ∼ 10−2 φM,Γ
2



SCS decays, e.g. K+K−, π+π−: for CP eigenstate final states

δφf = −2rf cos δf sin γ = −adf cot δf ∼ adf

In the SM, rf = |P/T | is the relative magnitude of the subleading QCD penguin
amplitude, while φf = −γ and δf are the weak and strong phase differences

formally, δφf/φ
M,Γ
2 = O(ε), but U -spin ⇒ δφK+K− ∼ −δφπ+π− , or

1

2
(φM,Γ

K+K−
+ φM,Γ

π+π−
) = φM,Γ

2 [1 +O(ε2)]

ε could be large, but O(ε2) suppression of QCD penguin pollution in the average
is welcome, if theK+K− and π+π− modes are included in global fits to φM

2 , φΓ
2 .



CPVINT inD0 → KSπ+π−

Two-step transitionsD0 → [KS,L → π+π−] +X. The CP conjugate final states
f = [π+π−]X, f̄ = [π+π−]X related by interchanging Dalitz plot variables

Including kaon CPV, the misalignment satisfies (εK ∼= (1.62 + i 1.53)× 10−3)

δφf = 2 εI +

∣

∣

∣

∣

λb

λs

∣

∣

∣

∣

sin γ = 3.7× 10−3,

O(0.1 φM,Γ
2 ) corrections, due to the DCS amplitudes and ε′/ε, can be neglected

Incorporating εK effects in the KSπ+π− time dependent CP asymmetries, obtain for
example (t′ is the time at which KS,L decay following their production)

Γf − Γf̄ ∝ e−τ
{

εR F0(t
′) +

√

Rf τ

[

(x12 cos∆f + y12 sin∆f ) εI F1(t
′)

+

(

x12 sin

(

φM
2 +

∣

∣

∣

∣

λb

λs

∣

∣

∣

∣

sin γ

)

cos∆f + y12 sin

(

φΓ
2 +

∣

∣

∣

∣

λb

λs

∣

∣

∣

∣

sin γ

)

sin∆f ) e
−ΓSt′

]}

,

The F0 term is associated with dCPV Grossman, Nir 2012

The F1 term includes the KS −KL interference effects
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Shown are F0(t), F1(t), and exp[−ΓSt], plotted over a short time interval of relevance to
LHCb (left), and a longer time interval of relevance to Belle-II (right)

over the time scale for observedK0’s at LHCb, e.g. t′ ! 0.5τS , cancelations suppress
F1 to the few percent level, while e−ΓSt′ = O(1)

εK effects in the CPVINT asymmetries can be neglected at LHCb

over the Belle-II time scale, e.g. t′ ! 10τS , the cancelation in F1 subsides, and εK
ultimately dominates the SM CPVINT asymmetries.



Approximate universality generalizes beyond the SM under conservative assumptions
regarding subleading decay amplitudes containing new weak (CPV) phases:

they can be neglected in CF/DCS decays: exotic flavor structure would be
required to evade εK constraint

in SCS decays, they are of similar magnitude to, or smaller than SM QCD
penguins, as hinted at by ∆ACP

these assumptions can ultimately be tested via dCPV measurements

Significant short distance NP in φM
2 would be consistent with approximate universality



Current Status

Superweak Approximation: in the past, sensitivity to φ12 of O(100) mrad probed
short-distance NP

it was appropriate to neglect the effects of weak phases in subleading decay
amplitudes in indirect CPV observables. In this limit,

φM
f = φM

2 = φ12, φΓ
f = 0 , φλf

= φ2

the superweak global fit is highly constrained, since there is only one CPV phase
controlling all indirect CPV phenomena

Prior to the new LHCb ∆Yf measurements (for experimental inputs mostly from
HFLAV), we obtained φM

2 = (−0.5± 2.2)% at 1σ

similar to the HFLAV result, φM
2 = (−0.4± 1.6)%

comparison with the SM estimate, φM
2 = O(0.2%), implies an order of magnitude

window for NP



Approximate Universality global fit

the approximate universality global fit is less constrained, given there are now two
CPVINT phases, φM

2 and φΓ
2 . Includes new LHCb ∆Yf measurements:

0.4− 0.2− 0 0.2 0.4

2

Γφ

0.4−
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0.2−

0.1−

0

0.1

0.2

0.3

0.42M
φ

φΓ
2 vs. φM

2 at 68% CL, 95% CL

φM
2 = (2.5± 2.8)%, φΓ

2 = (−1.2± 10.2)% at 1σ

error on φM
2 is approximately a factor of 3-4 smaller than on φΓ

2 , and not much
larger than superweak

largely due to ∆Yf , which only depends on φM
2



Future projections

Naively estimated experimental uncertainties for the LHCb Phase II Upgrade era, for three
CF/DCS decay modes: D0 → KSπ+π−, K+π−,K+π−π+π−

δ(xCP) δ(yCP) δ(∆x) δ(∆y) 1903.03074, scaled
3.8 · 10−5 8.6 · 10−5 1.7 · 10−5 3.8 · 10−5 by luminosity
δ(y′+)Kπ δ(y′−)Kπ δ(x′

+)2Kπ δ(x′
−)2Kπ 1712.03220, scaled

3.2 · 10−5 3.2 · 10−5 1.7 · 10−6 1.7 · 10−6 by luminosity
δ(xKπππ) δ(yKπππ) δ(|q/p|Kπππ) δ(φKπππ) 1812.07638 (Yellow Rept)
2 · 10−5 2 · 10−5 2 · 10−3 0.1◦

0.01− 0.005− 0 0.005 0.01

2

Γφ

0.01−
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0
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2M
φ



Conclusion
Description of indirect CPV in terms of the absorptive and dispersive phases φM

f , φΓ
f

is simpler, and more physically transparent than φλf
, |q/p|− 1

ultimately, the goal is to measure the two intrinsic mixing phases φM
2 , φΓ

2

approximate universality: minimal uncontrolled pollution from the decay amplitudes

CF/DCS decays: to excellent approximation, it is negligible in the CF/DCS decays
in the SM, and in models with negligible new weak phases in these decays

SCS decays: there is uncontrolled final state dependent pollution, formally of O(ε)

for individual modes, but of O(ε2) for the sum φM,Γ
K+K−

+ φM,Γ
π+π−

in the future, it will be instructive to compare the SCS and CF/DCS measurements

φM
2 and φΓ

2 can, in principle, be measured on the lattice - this will be crucial for a
precision test of the SM

There is currently an O(10) window for NP in mixing CPV. Based on very naive
projections, SM sensitivity may be achieved during the LHCb Phase II era, particularly
if φM

2 , φΓ
2 lie on the high end of the U -spin based estimates


