Charm CP Violation

Stefan Schacht
University of Manchester

10th International Workshop on Charm Physics

National Autonomous University of Mexico
Mexico City, Mexico
June 2022

2019: Discovery of Charm Direct CP Violation by LHCb Among Physics World Top Ten Breakthrough 2019

$$\Delta A_{CP} \approx \Delta a_{CP}^{\rm dir} \equiv a_{CP}^{\rm dir}(D^0 \to K^+K^-) - a_{CP}^{\rm dir}(D^0 \to \pi^+\pi^-)$$

-0.010-0.008-0.006-0.004-0.002 0.000 0.002 0.004 0.006 a_{CP}^{ind}

CP Violation as Probe for New Physics

 Naturalness strongly suggests that new physics should be accompanied by beyond Standard Model CP-odd phases.

CP is not a symmetry of nature.
 Known since 1964. Found in B system in 2001.

⇒ No reason that new physics should respect CP.

The $\Delta U = 0$ rule

[Y. Grossman and StS, 1903.10952]

Direct CP Violaton is an Interference Effect

$$a_{CP}^{\rm dir}(f) \equiv \frac{|\mathcal{A}(D^0 \to f)|^2 - |\mathcal{A}(\overline{D}^0 \to f)|^2}{|\mathcal{A}(D^0 \to f)|^2 + |\mathcal{A}(\overline{D}^0 \to f)|^2} \approx 2(r_{\rm CKM} \sin \varphi_{\rm CKM}) (r_{\rm QCD} \sin \delta_{\rm QCD}).$$

 $f = \mathsf{CP}\text{-eigenstate}.$

The decay amplitude:

$$\mathcal{A} = 1 + r_{\text{CKM}} r_{\text{QCD}} e^{i(\varphi_{\text{CKM}} + \delta_{\text{QCD}})}$$

- r_{CKM}: real ratio of CKM matrix elements.
- φ_{CKM} : weak phase.
- rocp : real ratio of hadronic matrix elements.
- $\delta_{\rm QCD}$: strong phase.

Where does the interference come from?

$$D^0 \to \pi^+ \pi^-$$
$$D^0 \to K^+ K^-$$

$KK \leftrightarrow \pi\pi$ rescattering into same final state.

[Grossman StS 1903.10952]

7/29

$$D^{0} \xrightarrow{V_{cd}^{*} V_{ud}} \pi^{+} \pi^{-}$$

$$D^{0} \xrightarrow{V_{cs}^{*} V_{us}} K^{+} K^{-} \xrightarrow{\text{QCD}} \pi^{+} \pi^{-}$$

$$D^{0} \xrightarrow{V_{cd}^{*} V_{ud}} \pi^{+} \pi^{-} \xrightarrow{\text{QCD}} K^{+} K^{-}$$

$$D^{0} \xrightarrow{V_{cs}^{*} V_{us}} K^{+} K^{-}$$

Interference of trees with $V_{cs}^*V_{us}$ and $V_{cd}^*V_{ud}$.

Why was CP Violation so hard to find? Because it enters only via small non-unitarity!

- The external quarks involve only first two generations.
- 2x2 submatrix of CKM approximately unitary.

$$\begin{pmatrix} V_{ud} & V_{us} \\ V_{cd} & V_{cs} \end{pmatrix} \approx \begin{pmatrix} 1 & \lambda \\ -\lambda & 1 \end{pmatrix},$$
$$V_{cd}^* V_{ud} \approx -V_{cs}^* V_{us} \approx -\lambda.$$

• CP violation in charm from small nonunitarity of 2x2 submatrix:

Misalignment:
$$V_{cd}^* V_{ud} + V_{cs}^* V_{us} = \Delta$$
.

- Charm can be described in an effective two-generational theory.
- In the SM, non-unitarity enters via 3rd generation:

$$\Delta = -V_{ch}^* V_{ub} , \qquad |\lambda| \gg |V_{ch}^* V_{ub}| .$$

Weak and strong factors

[Grossman StS 1903.10952]

$$\frac{\mathcal{A}(D \to \pi\pi \to KK)}{\mathcal{A}(D \to KK)} = \left(r_{\text{CKM}}e^{i\varphi_{\text{CKM}}}\right)\left(r_{\text{QCD}}e^{i\delta_{\text{QCD}}}\right)$$

- r_{OCD}: ratio of rescattering amplitudes.
- $\delta_{\text{OCD}} = O(1)$: strong phase.
- $r_{\text{CKM}} = 1$: ratio of CKM factors, $\left| V_{cd}^* V_{ud} / (V_{cs}^* V_{us}) \right|$
- $\varphi_{\text{CKM}} \approx 6 \cdot 10^{-4}$: deviation from 2×2 unitarity.

Prediction

$$\Delta a_{CP}^{dir} \sim 10^{-3} \times r_{QCD}$$

• *U*-spin decomposition: $r_{\rm QCD} = r_{\rm QCD}^{\Delta U=0} \equiv \mathcal{A}^{\Delta U=0}/\mathcal{A}^{\Delta U=1}$.

SU(3)_F Symmetry and Flavor Structure of Operators

- Approximate symmetry from $m_{u,d,s} \ll \Lambda_{\rm QCD}$.
- QCD approx. invariant under unitary rotations of (u, d, s).
- Correlations and sum rules between various charm decays.
- $SU(2) \subset SU(3)_F$ connecting u, d (Isospin) and d, s (U-spin).

States and operators = Representations under $SU(3)_F$

- $\left(D^0 = -|c\overline{u}\rangle, \quad D^+ = |c\overline{d}\rangle, \quad D_s = |c\overline{s}\rangle\right) = \overline{3}$
- Pions and kaons: $[(8) \otimes (8)]_S = (1) \oplus (8) \oplus (27)$
- $\bullet \mathcal{H} \sim \frac{\lambda}{\lambda} (15 + \overline{6}) + \frac{\lambda^5}{\lambda^5} (15 + 3)$

Strategies

- Analytical: Derive sum rules from group theory.
- Numerical: Extensive fits (HPC) to derive patterns.

10 / 29

Theory Challenge: Disentangle BSM Patterns from $SU(3)_F$ -breaking $\mathcal{H}_{break} \sim m_s \, \bar{s} \, s \propto 1 \oplus 8$

$$(15) \otimes (8) = (42) \oplus (24) \oplus (15_1) \oplus (15_2) \oplus (15') \oplus (\bar{6}) \oplus (3)$$

$$(\mathbf{\bar{6}}) \otimes (\mathbf{8}) = (\mathbf{24}) \oplus (\mathbf{15}) \oplus (\mathbf{\bar{6}}) \oplus (\mathbf{3})$$

$$(3) \otimes (8) = (15) \oplus (\overline{\mathbf{6}}) \oplus (3)$$

Decay d	$B_1^{3_1}$	$B_1^{3_2}$	$B_8^{3_1}$	$B_8^{3_2}$	$B_8^{\bar{6}_1}$	$B_8^{\bar{6}_2}$	$B_8^{15_1}$	
$D^0 \to K^+K^-$	$\frac{1}{4\sqrt{10}}$	$\frac{1}{8}$	$\frac{1}{10\sqrt{2}}$	$\frac{1}{4\sqrt{5}}$	$\frac{1}{10}$	$-\frac{1}{10\sqrt{2}}$	$-\frac{7}{10\sqrt{122}}$	
$D^0 \to \pi^+\pi^-$	$\frac{1}{4\sqrt{10}}$	$\frac{1}{8}$	$\frac{1}{10\sqrt{2}}$	$\frac{1}{4\sqrt{5}}$	$-\frac{1}{10}$	$\frac{1}{10\sqrt{2}}$	$-\frac{11}{10\sqrt{122}}$	
$D^0 \to \bar{K}^0 K^0$	$-\frac{1}{4\sqrt{10}}$	$-\frac{1}{8}$	$\frac{1}{5\sqrt{2}}$	$\frac{1}{2\sqrt{5}}$	0	0	$-\frac{9}{5\sqrt{122}}$	
$D^0 \to \pi^0 \pi^0$	$-\frac{1}{8\sqrt{5}}$	$-\frac{1}{8\sqrt{2}}$	$-\frac{1}{20}$	$-\frac{1}{4\sqrt{10}}$	$\frac{1}{10\sqrt{2}}$	$-\frac{1}{20}$	$\frac{11}{20\sqrt{61}}$	
$D^+ \to \pi^0 \pi^+$	0	0	0	0	0	0	0	
$D^+ o \bar{K}^0 K^+$	0	0	$\frac{3}{10\sqrt{2}}$	$\frac{3}{4\sqrt{5}}$	$\frac{1}{10}$	$-\frac{1}{10\sqrt{2}}$	$\frac{7}{10\sqrt{122}}$	
$D_s \to K^0 \pi^+$	0	0	$\frac{3}{10\sqrt{2}}$	$\frac{3}{4\sqrt{5}}$	$-\frac{1}{10}$	$\frac{1}{10\sqrt{2}}$	$\frac{11}{10\sqrt{122}}$	
$D_s \to K^+ \pi^0$	0	0	$-\frac{3}{20}$	$-\frac{3}{4\sqrt{10}}$	$\frac{1}{10\sqrt{2}}$	$-\frac{1}{20}$	$-\frac{11}{20\sqrt{61}}$	

[Table: Hiller Jung StS 1211.3734]

U-spin Flavor Structure of Hamiltonian for SCS Decays

- Approximate symmetry from $m_{u,d,s} \ll \Lambda_{\rm QCD}$.
- QCD approx. invariant under unitary rotations of (u, d, s).
- Correlations and sum rules between various charm decays.
- $SU(2) \subset SU(3)_F$ connecting u, d (Isospin) and d, s (U-spin).

$$Q^{\bar{s}s} = (\bar{s}u)(\bar{c}s) \qquad Q^{dd} = (\bar{d}u)(\bar{c}d)$$

$$Q^{\Delta U=1} = \frac{Q^{\bar{s}s} - Q^{\bar{d}d}}{2} \qquad Q^{\Delta U=0} = \frac{Q^{\bar{s}s} + Q^{\bar{d}d}}{2}$$

$$\mathcal{H}_{\text{eff}} \sim \underbrace{\frac{V_{cs}^* V_{us} - V_{cd}^* V_{ud}}{2}}_{\approx \lambda} Q^{\Delta U=1} + \underbrace{\frac{V_{cs}^* V_{us} + V_{cd}^* V_{ud}}{2}}_{=\frac{\Delta}{2}} Q^{\Delta U=0}$$

$\Delta I = 1/2$ and $\Delta U = 0$ rules

"
$$\Delta I = 1/2$$
 rules" for isospin in $P^+ \to \pi^+ \pi^0$, $P^0 \to \pi^+ \pi^-$, $P^0 \to \pi^0 \pi^0$

• Relevant ratio of strong isospin matrix elements:

$r_{QCD}^{\Delta I=1/2} \equiv A^{\Delta I=1/2}/A^{\Delta I=3/2}$	Kaon	Charm	Beauty
Data	22	2.5	1.5
Enhancement	<i>O</i> (10)	O (1)	$O(\alpha_s)$

[D: Franco Mishima Silvestrini 2012, B: Grinstein Pirtskhalava Stone Uttayarat 2014]

 Rescattering most important in K decays, less important but still significant in D decays, and small in B decays.

" $\Delta U = 0$ rule"

[Grossman StS 1903.10952]

- We claim $\Delta U = 0$ follows a similar pattern: $r_{\text{OCD}}^{\Delta U = 0} \sim 1$.
- Both due to low energy QCD, rescattering.

Comparison of Mechanisms of CP Violation

[Grossman StS 1903.10952]

14 / 29

Beauty	Charm		
Tree + Penguin	Tree + Rescattering		

In charm: Loop/Tree = O(1) (non-perturbative)

Stefan Schacht (Manchester) CHARM 2020

Comparison of approaches: What is r_{QCD} ?

Data

Assuming the SM, and $\delta_{\rm QCD} = O(1)$, the data implies $r_{\rm QCD}^{\Delta U=0} \sim 1$.

Ref.	Theory Method/Assumptions	$r_{QCD}^{\Delta U=0}$	SM/NP
[Grossman StS 1903.10952]	Analogy to $\Delta I = 1/2$ rules	<i>O</i> (1)	SM
	Low energy QCD, rescattering is $O(1)$		
[Brod Kagan Zupan 1111.5000]	Phenomenological analysis	<i>O</i> (1)	SM
[Soni 1905.00907, StS Soni 2106.xxxx]	Resonance model	<i>O</i> (1)	SM
[Petrov Khodjamirian 1706.07780]	Light Cone Sum Rules	$O(\alpha_s/\pi)$	NP
[Chala Lenz Rusov Scholtz 1903.10490]			

Test case: Apply methods to $\Delta I = 1/2$ rule in charm.

15 / 29

What do we learn?

Assumption of large rescattering at low energy agrees with the data.

It is hard to argue that the LHCb result requires BSM.

• Yet, BSM can still be present.

• $\Delta I = 1/2$ in D decays also requires O(1) rescattering.

Probing the $\Delta U = 0$ Rule in Three-Body Charm Decays

[A. Dery, Y. Grossman, StS, A. Soffer: 2101.02560]

Parameters and Observables of $D^0 \to \rho^{\pm} \pi^{\mp}$

$$\mathcal{A}(D^0 \to \pi^+ \rho^-) = -\lambda \, T^{P_1 V_2} - V_{cb}^* V_{ub} \, R^{P_1 V_2}$$

$$\mathcal{A}(D^0 \to \pi^- \rho^+) = -\lambda \, T^{P_2 V_1} - V_{cb}^* V_{ub} \, R^{P_2 V_1}$$

In overlap region of two resonances

Amplitude

$$\begin{split} \mathcal{A}(D^0 \to \pi^+ \pi^- \pi^0) &= \mathcal{A}\left(D^0 \to \pi^- (\rho^+ \to \pi^0 \pi^+)\right) + \mathcal{A}\left(D^0 \to (\rho^- \to \pi^- \pi^0) \pi^+\right) \\ &= \text{Breit Wigner} \times \textbf{\textit{T}}^{P_2 V_1} \times \left(-1 - \widetilde{\lambda}_b \, \widetilde{\textbf{\textit{R}}}^{P_2 V_1}\right) + \\ &\quad \text{Breit Wigner} \times \textbf{\textit{T}}^{P_1 V_2} \times \left(-1 - \widetilde{\lambda}_b \, \widetilde{\textbf{\textit{R}}}^{P_1 V_2}\right) \,, \end{split}$$

- $T^{P_iV_j}$ from $\Gamma(D^0 \to \pi^+\pi^-\pi^0)$ Dalitz plot (CP-limit excellent approx).
- $R_0^{P_iV_j}$ and their relative phase from CP difference:

$$\begin{split} &\frac{|\mathcal{A}|^2 - |\overline{\mathcal{A}}|^2}{-4|\Sigma|^2 \mathrm{Im}(\widetilde{\lambda_b})} = \text{Breit Wigners (BWs)} \times |\widetilde{R}^{P_1 V_2}| \sin(\delta_{\widetilde{R}^{P_1 V_2}}) - \\ & \text{BWs} \times |\widetilde{R}^{P_1 V_2}| \sin\left(\text{BW phases} - \delta_{\overline{R}^{P_1 V_2}}\right) + \\ & \text{BWs} \times |\widetilde{R}_0^{P_2 V_1}| \sin\left(\text{BW phases} + \delta_{\overline{R}_0^{P_2 V_1}}\right) + \\ & \text{BWs} \times |\widetilde{R}_0^{P_2 V_1}| \sin(\delta_{\widetilde{R}^{P_2 V_1}}) \end{split}$$

Conceptual difference between 2- and 3-body decays

Time-integrated CP asym. of 2-body decays give only combinations

$$|\widetilde{R}^{P_1V_2}|\sin(\delta_{P_1V_2})$$
 and $|\widetilde{R}^{P_2V_1}|\sin(\delta_{P_2V_1})$,

but not magnitudes and phases separately.

- Three body decay changes 2 things:
 - We have additional kinematic dependences.
 - Only in a three-body decay we have interference between $D^0 \to \pi^+(\rho^- \to \pi^-\pi^0)$ and $D^0 \to \pi^-(\rho^+ \to \pi^+\pi^0)$.
 - Extraction of all parameters from time-integrated CP meas.

Numerical Example in overlap region of ρ^{\pm} resonances

$$\widetilde{R}^{P_1V_2} = \exp(i\pi/2), \quad \widetilde{R}^{P_2V_1} = \frac{1}{4}\exp(i\pi/3)$$

Stefan Schacht (Manchester) CHARM 2020 21 / 29

The $\Delta U = 0$ Rule and Three-Body Decays

• $D^0 \to V^{\pm}P^{\mp}$ from Dalitz analysis of time-integrated three-body decays probe similar ratios as $D^0 \to P^{\pm}P^{\mp}$.

• Advantage: No time-dependent CPV measurements or employing correlated $D^0-\overline{D}^0$ states necessary to solve complete system, including the strong phases.

Enhancement of charm CPV due to nearby resonances

[StS and A. Soni, 2106.soon]

Scalar Resonances

- Nearby scalar resonances to $m_{D^0} = 1864.83 \pm 0.05$ MeV.
- $f_0(1710)$ and $f_0(1790)$ could cause CPV enhancements within SM.

Resonance R	$I^G(J^{PC})$	mass m [MeV]	Γ [MeV]	Ref.
$f_0(1710)$	$0^{+}(0^{++})$	1704 ± 12	123 ± 18	[PDG2020]
$f_0(1790)$	$0^+(0^{++})$	1790^{+40}_{-30}	270^{+60}_{-30}	[LHCb 1402.6248]
				[BESII hep-ex/0411001]

- Note: $f_0(1790)$ not yet fully established (not listed in PDG). Seen by BESII and LHCb.
- Experimental information on scalar resonances rather sparse:
 Limiting factor for our predictions.
 - Further data on these resonances is strongly advocated.

Modelling Rescattering with Scalar Resonances

$$D^{0} \xrightarrow{V_{cd}^{*} V_{ud}} \pi^{+} \pi^{-}$$

$$D^{0} \xrightarrow{V_{cs}^{*} V_{us}} K^{+} K^{-} \xrightarrow{\text{QCD}} \pi^{+} \pi^{-}$$

- Breit-Wigner ansatz for $f_0(1710)$ and $f_0(1790)$.
- Additional model assumptions due to lack of data.

Stefan Schacht (Manchester)

Comparison of data and theory scenarios

[preliminary results]

Comparison of data and theory scenarios, contd.

[preliminary results]

What will charm reveal next?

- Will the global charm fit give a consistent picture?
- Sum rules for baryon decays, including fully general $SU(3)_F$ breaking.
- How to define $\triangle A_{CP}$ for 4-body decays in an advantageous way?
- Optimal observable for detecting CPV in multibody decays?
 Smart binning?
- How to describe SU(3)_F-breaking effects from Dalitz phase space?
- How good is charm described by Light-Cone Sum Rules (LCSR) ?
- How good is charm described by QCD factorization (BBNS)?
- What can we learn about $\eta \eta'$ -mixing from charm decays?
- Isospin-breaking and electroweak corrections to nulltest isospin relations like $A_{CP}(D^+ \to \pi^0 \pi^+) = 0$.
- What more can correlated $D^0 \overline{D}^0$ states tell us, e.g. at a future τ -charm factory?

Conclusion

- Charm CP violation discovered in 2019.
 - New research field. So much to learn.
- Charm has potential for discovery of BSM physics.
- Will also teach us about QCD.