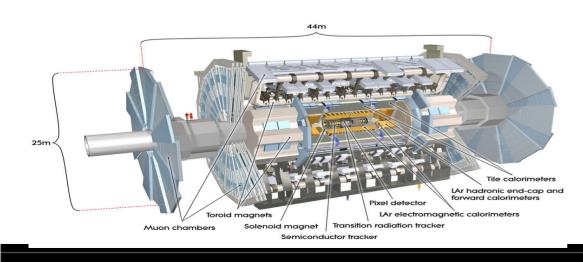
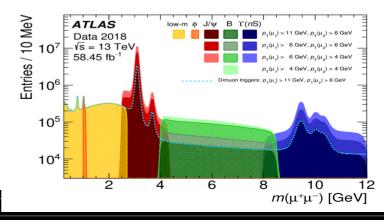

ATLAS measurements of CP Violation and Rare decays processes with Beauty mesons


Oleg Meshkov (MSU & Lebedev PI)

10th International Workshop on Charm Physics (Charm 2020)


On behalf of the ATLAS Collaboration

B-physics at ATLAS

- ATLAS Run 2: 139 fb⁻¹ of pp collisions at \sqrt{s} = 13 TeV collected in 2015-2018
- Producing ~2.5 million $b\overline{b}$ pairs/second, B_s , B_c , Λ_b , etc. available
- Program focused mostly on muonic final states, fully reconstructable
- Typical trigger: low- p_T di-muons at low invariant mass, using information from inner tracker(pT > 0.4 GeV, $|\eta| < 2.5$) and muon detectors(triggering ($|\eta| < 2.4$), precision tracking ($|\eta| < 2.7$)).
- In Run2: Insertable B-Layer (IBL) resolution in b-hadron proper decay time was \sim 70 fs
- B-physics trigger rate up to ~ 200 Hz

ATLAS Run-1 analysis: CP-violation:JHEP 08 (2016) 147 Rare decays: Eur. Phys. J. C 76 (2016) 513

Latest results on rare decays and CP-violation

- Measurement of CP-violating phase ϕ_s (and other parameters) in the $B_s \to J/\psi \varphi$ decay using 2015-2017 data (80.5 fb^-1)
 - Eur. Phys. J. C 81 (2021) 342
- Measurement of the branching ratio of $B_s \rightarrow \mu\mu$ decays using 2015-2016 data (26.3 fb⁻¹), combination with CMS and LHCb (ATLAS-CONF-2020-049)
 - JHEP 04 (2019) 098

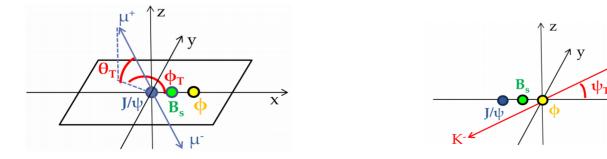
Measurement of the CP-violating phase ϕ_s in $B_s \rightarrow J/\psi\phi$ decays in ATLAS at 13 TeV

CP violation in $B_s \rightarrow J/\psi\phi$

• Interference of direct decay and decay with mixing into the same final state of $B_s \rightarrow J/\psi \phi$ decay gives rise to time-dependent CP violation (CPV)

- CPV phase ϕ_s is weak phase difference between the $B_s \overline{B}_s$ mixing amplitude and the b $\rightarrow c\overline{c}s$ decay amplitude
- In the SM the phase φ_s is small and is related to CKM quark matrix: $\varphi_s \equiv -2\beta_s = -2\arg(\frac{-V_{ts}V_{*_{cb}}}{V_{cs}V_{*_{cb}}}) = -0.03696 \frac{+0.00072}{-0.00082} rad$ Phys. Rev. D 91 (2015) 073007
- New Physics (NP) processes could contribute to the mixing box diagrams, potentially allowing for large deviations in ϕ_s from the SM prediction
- Alongside ϕ_s , other quantities are describing the differential decay rate:
 - Decay widths of the two mass eigenstates
 - CP even/odd state amplitudes and phases

Data Analysis

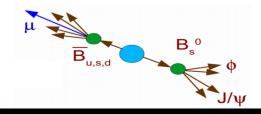

Data:

Eur. Phys. J. C 81 (2021) 342

- Using 80.5 fb⁻¹ of pp 2015-17 data, 13 TeV
- Statistically combined with Run1 ATLAS results:
 - 4.9 fb⁻¹ (7 TeV, pp 2011)
 - 14.3 fb⁻¹(8 TeV, pp 2012) statistically combined with 7 TeV
- Collected by triggers based on identification of J/ ψ with pT(μ) threshold (mainly 4 and 6 GeV)
 - Including MC samples for $B_s \to J/\psi \varphi$ and dedicated backgrounds $B_d \to J/\psi K^*, B_d \to J/\psi K\pi$ and $\Lambda_b \to J/\psi pK$
- No lifetime cut signal-background separation done by the fit

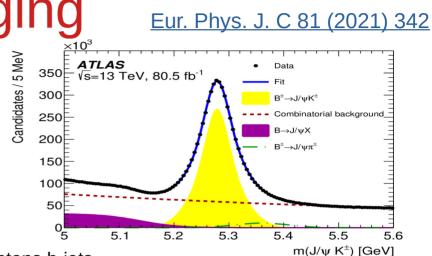
Angular analysis Eur. Phys. J. C 81 (2021) 342

- $B_s \rightarrow J/\psi \phi$ decay=decay of pseudoscalar to vector-vector
- Final state: admixture of CP-odd (L = 1) and CP-even (L = 0, 2) states
- Distinguishable through time-dependent angular analysis
- Non-resonant S-wave decay $B_s \to J/\psi KK$ contribute to the final state and is included in the differential decay rate due to interference with the $B_s \to J/\psi(\mu\mu)\phi(KK)$ decay
- The transversity angles, $\Omega = (\Theta_T, \Psi_T, \phi_T)$ are defined as below



Opposite-side flavour tagging

- Use b- \overline{b} correlation => initial B_s flavour
 - $b \rightarrow I$ transitions clean tagging method
 - diluted by oscillations and b \rightarrow c \rightarrow l ٠
- Provides probability P(B|Q) of signal candidate to be B_s or \overline{B}_s
- Tagger types: tight muon, low- p_{τ} muon, electron, b-tagged jet
- Key variables: charge of p_{τ} -weighted tracks in cone ΔR around the leptons, b-jets ∇N tracks σ $(p_{-})^{\kappa}$ P(B|Q


$$Q_x = \frac{\sum_i \quad q_i \cdot (p_{\mathrm{T}i})}{\sum_i^{N \, \mathrm{tracks}} (p_{\mathrm{T}i})^{\kappa}}$$

- 0.7 Search order based on best purity: tight muons, electrons, low- p_{T} muons, b-jets $_{0.6}$
- Calibrated on self-tagged $B^{\pm} \rightarrow J/\psi K^{\pm}$ data

$\mathcal{D}(Q_x) = 2P(B Q_x) - $	- 1
$T_x = \sum_i \epsilon_{xi} \cdot (2P(B_i))$	$ Q_{xi})-1\rangle^2$

Tag method	ϵ_x [%]	D_x [%]	T_x [%]				
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009				
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004				
Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006				
Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.006				
Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.01				

s=13 TeV, 80.5 fb⁻¹

B[−]→J/ψK[−]

Data

 \leq

B⁺→J/ψK⁺

-0.5

0

0.5

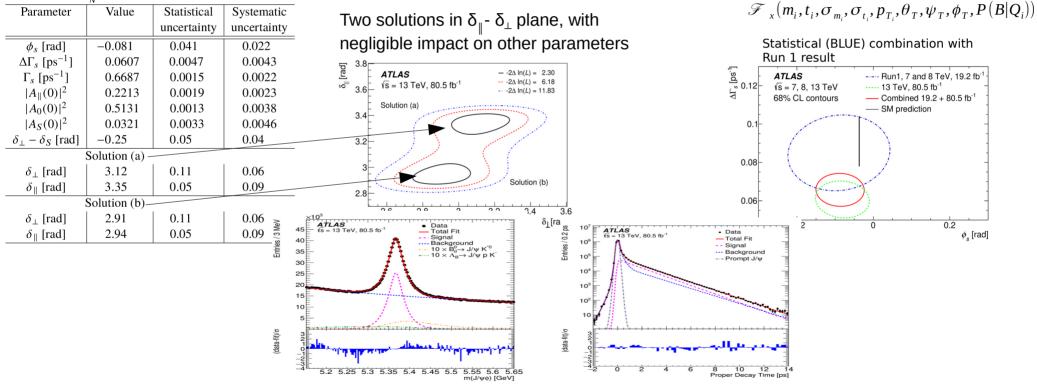
0.9

0.8

0.5

0.4

0.3


0.2

UML fit and Results

Eur. Phys. J. C 81 (2021) 342

• An unbinned maximum likelihood (UML) fit performed for B_s mass, decay time and the decay angles:

 $ln\mathscr{L} = \sum_{N}^{i-1} w_i * \ln(f_s \mathscr{F}_s + f_s f_{(B^0)} \mathscr{F}_{(B^0)} + f_s f_{(\Lambda_b)} \mathscr{F}_{(\Lambda_b)} + (1 - f_s (1 + f_{(B^0)} + f_{(\Lambda_b)})) \mathscr{F}_{bkg})$

Observables:

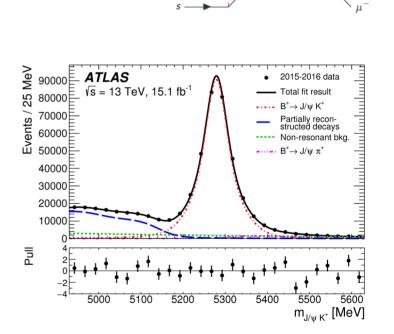
Comparison with other experiments

ATLAS result:

 ϕ_s =-0.087 ± 0.036 (stat.) ± 0.021 (syst.) rad $\Delta\Gamma_s$ =0.0657 ± 0.0043 (stat.) ± 0.0037 (syst.) ps⁻¹

[⁻sd] [°] 0.12 [¹−sd]²]0.13 ATLAS HFLAV D0 8 fb⁻¹ $\sqrt{s} = 7, 8, and 13 \text{ TeV}$ CMS, $J/\psi K^+ K^-$, 116.1 fb PDG 2021 68% CL contours 68% CL contours $(\Delta \log \mathcal{L} = 1.15)$ 0.1 CMS 116.1 fb⁻¹ 0.11 -SM LHCb, $J/\psi K^+ K^-$, 4.9 fb⁻² CDF 9.6 fb⁻¹ LHCb, all channels, 4.9 fb⁻¹ 0.09 0.08 Combined^{*} LHCb 4.9 fb⁻¹ $^{*}\Delta\Gamma_{s}$ errors scaled by 1.77 0.07 ATLAS 99.7 fb⁻ 0.06 ATLAS, $J/\psi K^+ K^-$, 99.7 fb⁻¹ 0.05 -0.5 -0.3 -0.1 0.1 0.3 -0.20.2 $\phi_s^{c\bar{c}s}$ [rad] ϕ_{c} [rad] World average: Heavy Flavour Averaging Group $\phi_{\rm c}$ = -0.050 ± 0.019 rad (HFLAV 2021) $\Delta\Gamma_{c}=0.082 \pm 0.005 \text{ ps}^{-1}$

Study of the rare decays of B_s and B_0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector

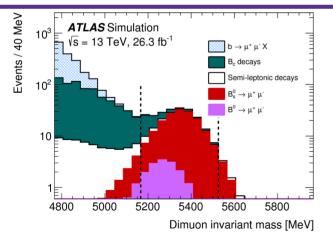

Analysis of rare $B_{(s)} \rightarrow \mu\mu$ decays

- Flavour Changing Neutral Currents(FCNC) in the SM proceeding via loop and box diagrams, strongly suppressed (B ~10⁻⁹)
- Beyond SM can signicantly contribute, modifying the branching ratio

Mesurement(s):

$$B(B_s^0 \rightarrow \mu^+ \mu^-) = N_{d(s)} * \frac{B(B^{\pm} \rightarrow J/\psi K^{\pm}) * B(J/\psi \rightarrow \mu^+ \mu^-)}{N_{J/\psi K^{\pm}} * \frac{\varepsilon_{\mu^+ \mu^-}}{\varepsilon_{J/\psi K^{\pm}}}} * \frac{f_u}{f_{d(s)}}$$

- 36.2 fb⁻¹ dataset of 2015-2016 data taking:
 - effectively 26.3 fb⁻¹ for B $\rightarrow \mu\mu$
- $B(B_{(s)} \rightarrow \mu\mu)$ mesurement(s) relative to $B(B^{\pm} \rightarrow J/\psi K^{\pm})$, $B_{s} \rightarrow J/\psi \phi$ as control channel
- Yields $N_{d(s)}$ and $N_{J/\psi K\pm}$ obtained from UML fits to the mass spectra
- Separate signal from background using boosted decision tree (BDT)
- Known branching ratios from PDG, $f_u/f_{d(s)}$ from HFLAV


 Z^0, H^0, h^0

JHEP 04 (2019) 098

Backgrounds

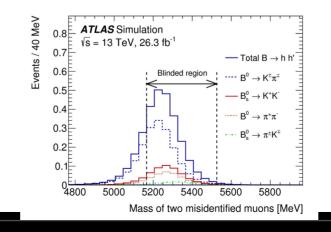
Partially reconstructed bhadron decays

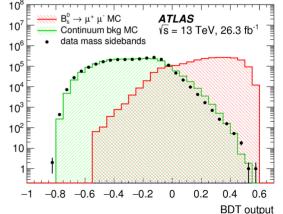
- Mostly in the low di-muon mass region
- Shape parameters is free to be determined in the fit

Peaking backgrounds:

• Hadronic B_s decays

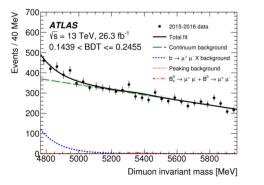
where hadrons are misidentified as muons

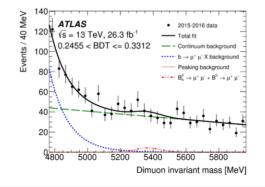

• Simulated and fixed in the mass fit

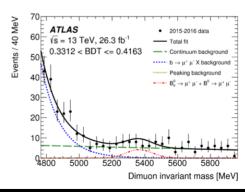

Continuum backgrounds:

- Combinatorics of μ and uncorrelated hadron decays
- Reduced by BDT

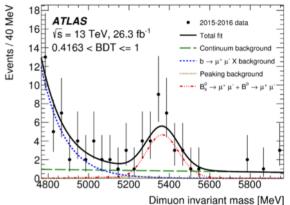
Events / 0.05

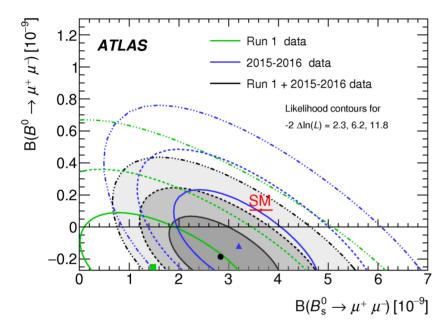

• Systematics due to $B_c^{\pm} \rightarrow J/\psi\mu\nu$ and $B_{(s)}/\Lambda_b \rightarrow h\mu\nu$ decays



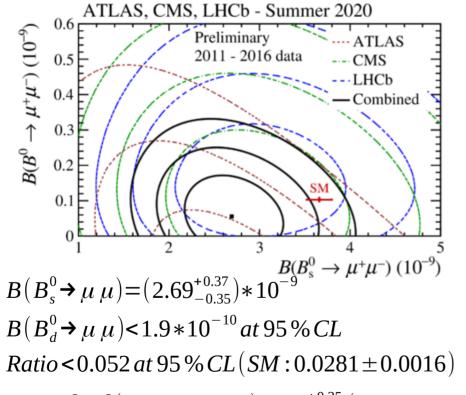


BDT and signal extraction


- BDT formed from 15 variables
 - Kinematics, isolation, B-vertex separation from PV
- BDT output validated on reference $B^{\pm} \rightarrow J/\psi K^{\pm}$ and control $B_s \rightarrow J/\psi \phi$ channels observed difference applied as the correction is on the efficiency ratio
- Signal region divided into four BDT bins with constant signal efficiency
- Simultaneous extraction of $B_s \rightarrow \mu\mu$ and $B_d \rightarrow \mu\mu$ yields from UML fit to di-muon mass distributions in the four BDT bins



JHEP 04 (2019) 098


Results

JHEP 04 (2019) 098 Standard model: $B(B_s^0 \rightarrow \mu \mu) = (3.66 \pm 0.14) * 10^{-9}$ B(B_d^0 \rightarrow \mu \mu) = (1.03 \pm 0.05) * 10^{-9} arXiv:1908.07011 ATLAS 2015+2016 data: $B(B_s^0 \rightarrow \mu \mu) = (3.2^{+1.1}_{-1.0}) * 10^{-9}$ $B(B_d^0 \rightarrow \mu \mu) < 4.3 * 10^{-10} at 95 \% CL$ ATLAS Run1+2015+2016 data: $B(B_{c}^{0} \rightarrow \mu \mu) = (2.8_{-0.7}^{+0.8}) * 10^{-9}$ $B(B_d^0 \rightarrow \mu \mu) < 2.1 * 10^{-10} at 95 \% CL$

- Combined measurement compatible with SM at 2.4σ
- Statistic uncertainties dominate

Combination of ATLAS+CMS+LHCb

 $\tau_{B_{c}^{0} \rightarrow \mu \mu}[ps](LHCb+CMS) = 1.9^{+0.35}_{-0.37}(SM:1.609\pm0.010)$

CMS-PAS-BPH-20-003 ; LHCb-CONF-2020-002 ; ATLAS-CONF-2020-049

- Combination from binned two-dimensional profile likelihoods
- Independent systematics, except for ratio of fragmentation fractions f_d/f_s , common nuisance parameter and only correlation
 - among experiments
- fd/fs profiled separately and its uncertainty included in a single likelihood
- The results compatible with the SM predictions within 2.1 standard deviations in the 2d plane of the branching fractions

Summary

- Latest ATLAS result measurement of CPviolation in $B_s \rightarrow J/\psi \phi$ decay and branching ratio measurement of rare $B_{s(d)} \rightarrow \mu \mu$ decays compatible with Standart Model predictions
- Full Run 2 data analyses in progress

Backup

Tagging performance

Tag method	ϵ_x [%]	D_x [%]	T_x [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.006
Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.01

- Efficiency: Fraction of signals with specific tagger, $\varepsilon = \frac{N_{tagged}}{N_{Bcand}}$
- Dilution: D = (1 2w), where w is the miss-tag probability
- Tagging Power: figure of merit of tagger performance
 - Depends on dilution and efficiency: $TP = \epsilon D^2 = \epsilon (1 - 2w)^2$

Reconstruction and candidate selection

Event

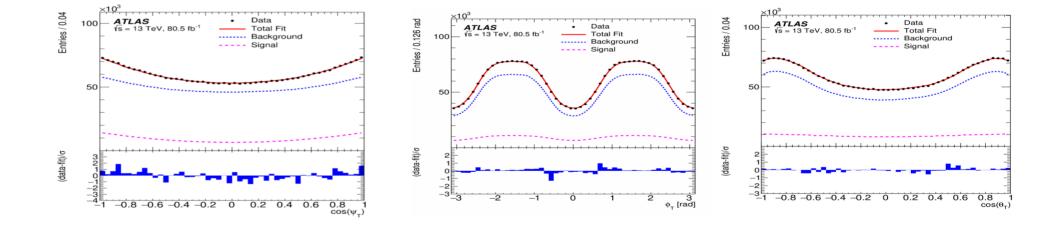
- Triggers and good quality data
- At least one PV formed from at least 4 ID tracks
- At least one pair of ID+MS identified $\mu^+\mu^-$

$J/\psi \to \mu^+ \mu^-$

- Dimuon vertex fit $\chi^2/d.o.f. < 10$
- Three dimuon invariant mass windows for BB/BE/EE (barrel,endcap) muon combinations

$\phi \rightarrow K^+K^-$

- p_T(K) > 1 GeV
- 1008.5 MeV < m(KK) < 1030.5 MeV


$B_s \rightarrow J/\psi(\mu\mu)\phi(KK)$

- p_T(B_s) > 10 GeV
- Four-track vertex fit $\chi^2/d.o.f. < 3$ (J/ ψ mass constrained)
- Keep only the candidate with best vertex fit $\chi^2/d.o.f.$ in event
- 5150 MeV < m(B_s) < 5650 MeV \rightarrow in total 3 210 429 B_s candidates

Signal time-angular PDF

k	$O^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) \mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} + (1-\cos\phi_s) \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t} \pm 2\mathrm{e}^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\mp2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}\left[(1+\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$
5	$ A_{\parallel}(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}-\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}\pm\mathrm{e}^{-\Gamma_{s}t}(\sin(\delta_{\perp}-\delta_{\parallel})\cos(\Delta m_{s}t)-\cos(\delta_{\perp}-\delta_{\parallel})\cos\phi_{s}\sin(\Delta m_{s}t))\right]$	$-\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
6	$ A_0(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos\delta_{\perp}\sin\phi_s \pm \mathrm{e}^{-\Gamma_s t}(\sin\delta_{\perp}\cos(\Delta m_s t) - \cos\delta_{\perp}\cos\phi_s\sin(\Delta m_s t))\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin 2\theta_T \cos \phi_T$
7	$\frac{1}{2} A_{s}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$\alpha A_{\mathcal{S}}(0) A_{\parallel}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\sin(\delta_{\parallel} - \delta_{\mathcal{S}})\sin\phi_{s} \pm \mathrm{e}^{-\Gamma_{s}t}(\cos(\delta_{\parallel} - \delta_{\mathcal{S}})\cos(\Delta m_{s}t) - \sin(\delta_{\parallel} - \delta_{\mathcal{S}})\cos\phi_{s}\sin(\Delta m_{s}t))\right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
9	$\frac{1}{2}\alpha A_{\mathcal{S}}(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_{\mathcal{S}})\left[(1-\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
10	$\alpha A_0(0) A_S(0) \left[\frac{1}{2} (\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}) \sin \delta_S \sin \phi_s \pm \mathrm{e}^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t)) \right]$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$

Projections on angles

Systematic Uncertainties

	ϕ_s	$\Delta\Gamma_s$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_{z}$
	[10 ⁻³ rad]	$[10^{-3} \text{ ps}^{-1}]$	$[10^{-3} \text{ ps}^{-1}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3} \text{ rad}]$	$[10^{-3} \text{ rad}]$	[10 ⁻³ ra
Tagging	19	0.4	0.3	0.2	0.2	1.1	17	19	2.3
Tagging									
Acceptance	0.5	< 0.1	< 0.1	1.0	0.8	2.6	30	50	11
ID alignment	0.8	0.2	0.5	< 0.1	< 0.1	< 0.1	11	7.2	< 0.1
Best candidate selection	0.5	0.4	0.7	0.5	0.2	0.2	12	17	7.5
Background angles model:									
Choice of fit function	2.5	< 0.1	0.3	1.1	< 0.1	0.6	12	0.9	1.1
Choice of $p_{\rm T}$ bins	1.3	0.5	< 0.1	0.4	0.5	1.2	1.5	7.2	1.0
Choice of mass interval	0.4	0.1	0.1	0.3	0.3	1.3	4.4	7.4	2.3
Dedicated backgrounds:									
B^0_d	2.3	1.1	< 0.1	0.2	3.0	1.5	10	23	2.1
Λ_{b}^{a}	1.6	0.3	0.2	0.5	1.2	1.8	14	30	0.8
Fit model:									
Time res. sig frac	1.4	1.1	0.5	0.5	0.6	0.8	12	30	0.4
Time res. $p_{\rm T}$ bins	0.7	0.5	0.8	0.1	0.1	0.1	2.2	14	0.7
S-wave phase	0.2	< 0.1	< 0.1	0.3	< 0.1	0.3	11	21	8.4
Fit bias	4.1	1.7	0.9	1.4	< 0.1	1.5	19	0.9	7.0
Total	20	2.5	1.6	2.3	3.5	4.5	50	79	18

Uncertainty in the calibration of the B_s -tag probability; MC statistical uncertainty included in fit stat. error Alternative detector acceptance fit-functions and binning determined from MC Radial expansion uncertainties determined from their effect on tracks d_0 in the data

Background angles model (fixed in UML fit) extracted from data with varying sidebands size and binning Uncertainties of relative fraction; fit-model and P-wave contribution Uncertainties of relative fraction; fit-model and contributions from $\Lambda_{h} \rightarrow J/\psi$ Kp decays

Toy-MC studies; pulls of the default fit model, default fit on toy-data generated with modified PDFs