

SCUOLA NORMALE SUPERIORE

Direct CPV in Charm decays at LHCb

Lorenzo Pica On behalf of the LHCb collaboration

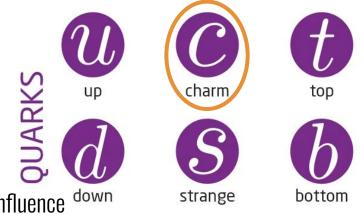
10th International Workshop on Charm Physics - CHARM 2020 31 May - 4 June 2021

Introduction

Direct CP violation in Charm decays

CP violation (CPV) is the non-invariance of Nature under Parity (P) and Charge conjugation (C)

CPV in the decay (direct CPV) present when


Studying Charm CPV is challenging:

- A_{CP} expected size *O* (10⁻³ - 10⁻⁴)

But also extremely interesting:

- small SM CPV provides excellent probe to test New Physics influence ^{down}
- only up-type quark allowing CP asymmetry measurements \rightarrow complementary to *B* and *K*

$$\mathcal{A}(D^0 \to f)|^2 \neq |\mathcal{A}(\overline{D}{}^0 \to \overline{f})|^2$$

Measuring A_{CP} at LHCb

The presence of CPV can be measured through the observable:

$$\mathcal{A}_{raw}(f) = \frac{N(D^0 \to f) - N(\overline{D}^0 \to \overline{f})}{N(D^0 \to f) + N(\overline{D}^0 \to \overline{f})} \simeq \mathcal{A}_{CP}(f) + \mathcal{A}_P(f) + \mathcal{A}_D(f)$$

$$A_{CP} \text{ is the physical asymmetry} \qquad \qquad \mathcal{A}_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to \overline{f})}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to \overline{f})}$$

 $\boldsymbol{A}_{\boldsymbol{P}}$ is the flavour asymmetry at production

 $A_{\rm D}$ is the asymmetry induced by the detector different acceptance for opposite sign particles

 A_{P} and A_{D} disentangled from A_{CP} exploiting calibration samples (large samples with known A_{CP})

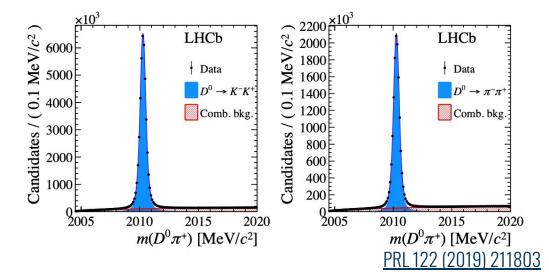
Lorenzo Pica - Direct CPV in Charm decays at LHCb

Discovery of direct CPV in Charm decays

LHCb has the perfect environment to study charm decays

 $\rightarrow \sigma(pp \rightarrow Xc\bar{c}) \cdot \mathcal{L}_{ist} \sim 1 MHz$ + precision vertexing + large bandwidth trigger system

Thanks to the huge collected statistics it was possible to reach 5σ -significance on ΔA_{CP} :

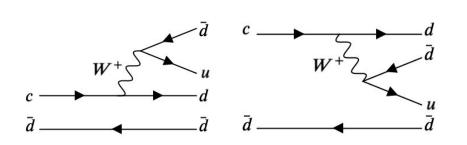

$$\Delta \mathcal{A}_{CP} = \mathcal{A}_{CP}(K^+K^-) - \mathcal{A}_{CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$$

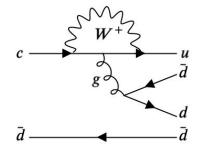
This is only the starting point!

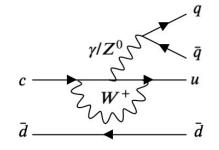
Is this in agreement with the theory?

Measurement of other decay channel can help constrain theory

Additional measurements are needed!


Search for CP violation in $D_{(s)}^{\dagger} \longrightarrow h^{\dagger} \pi^{0}$ and $D_{(s)}^{\dagger} \longrightarrow h^{\dagger} \eta$ $(h^{\dagger} = \pi^{\dagger}, K^{\dagger})$




Motivations

Eight different decays, most interesting are Singly-Cabibbo-suppressed (SCS) ones:

- $D_{s}^{+} \rightarrow K^{+}\pi^{0}, D^{+} \rightarrow \pi^{+}\eta$ and $D_{s}^{+} \rightarrow K^{+}\eta$ decays \rightarrow CPV allowed at tree level, $V_{cd}V_{ud}^{-*}$ and $V_{cs}V_{us}^{-*}$ contributions \rightarrow expected size of $A_{CP} O(10^{-3} - 10^{-4}) PRD 86 (2012) 036012$
- $D^+ \rightarrow \pi^+ \pi^0$ decay is of particular interest \rightarrow SM prediction for A_{CP} is zero

LHCB-PAPER-2021-001

Same weak phase for the two tree-level contributions

Not allowed in SM due to $\Delta I=3/2$ gluon transition

EW penguin decay, suppressed by a factor α

Lorenzo Pica - Direct CPV in Charm decays at LHCb

CHARM 2020 - 3 June 2021

Decay chain reconstruction


First $A_{CP}(D_{(s)}^{+} \rightarrow h^{+}h^{0})$ measurement at an hadronic collider

Challenging neutral mesons final state \rightarrow large combinatorial background

 ${D_{\rm (s)}}^{\rm +} {\rm vertex}$ reconstruction impossible with one single charged track

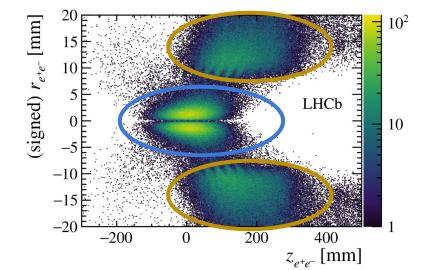
 $e^+e^-\gamma$ final state for neutral meson exploited

 $\rightarrow 2\text{-body } h^0 \rightarrow \gamma (\rightarrow e^+ e^-) \gamma$ with one converted photon

Candidate selection

Combinatorial is the most abundant background:

- random tracks (pure combinatorial)
 - random π^0 and tracks

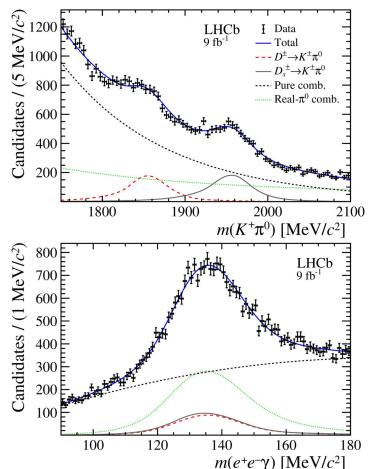

$$\rightarrow$$
 rejected by \rightarrow

Track quality and displacement Candidates $p_{\rm T}$ and vertex quality

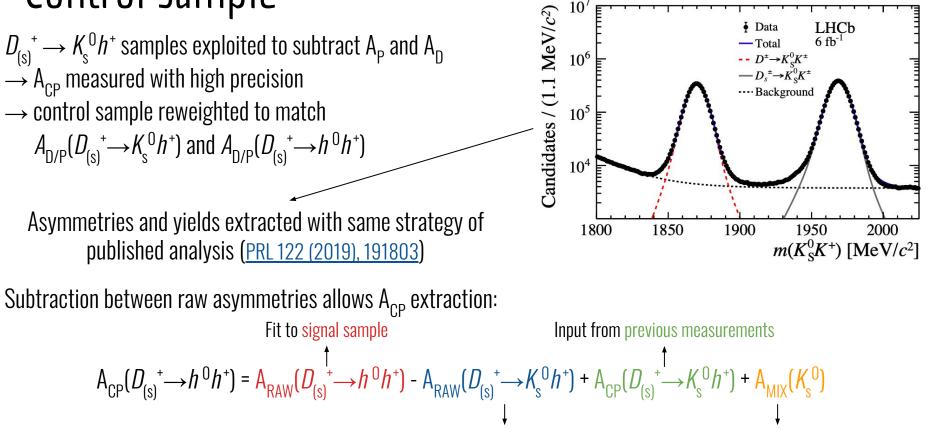
Candidates dominated by the $h^0 \rightarrow \gamma \gamma$ decay:

- $h^0 \rightarrow \gamma (\rightarrow e^+ e^-) \gamma$ 86% of the sample
- $h^0 \rightarrow \gamma e^+ e^- 14\%$ of the sample

Decay	Branching fraction
$\pi^0 \rightarrow \gamma \gamma$	$98.8 \pm 0.03\%$
$\pi^0\!\rightarrow e^+e^-\gamma$	$1.17\pm0.04\%$
$\eta \! ightarrow \gamma \gamma$	$39.41 \pm 0.20\%$
$\eta\!\rightarrow e^+e^-\gamma$	$0.68\pm0.04\%$


Lorenzo Pica - Direct CPV in Charm decays at LHCb

Yield extraction


 $D_{(s)}^{+} \rightarrow h^{+} \pi^{0}$ Run 1 and Run 2 (9 fb⁻¹) $D_{(s)}^{+} \rightarrow h^{+} \eta$ Run 2 (6 fb⁻¹) (no dedicated trigger in Run 1)

Fitted invariant masses:

- $\begin{array}{c} m(e^+e^-\gamma) \\ m(h^+h^0) \end{array} \right\} \begin{array}{c} A_{RAW} \text{ and yields extracted through} \\ 2D \text{ maximum likelihood fit} \end{array}$
- 2D PDFs taken from MC simulation
- \rightarrow fine-tuning parameters allowed fitting real data to account for possible data-simulation differences

Control sample

Fit to control sample

Lorenzo Pica - Direct CPV in Charm decays at LHCb

11

 $K_{\rm s}^{0}$ CPV decay + mixing + regeneration

LHCB-PAPER-2021-001

Results

 $\begin{array}{l} \text{Measured CP asymmetries are:} \\ \mathcal{A}_{CP}(D^+ \to \pi^+ \pi^0) = (-1.3 \pm 0.9 \pm 0.6)\% \\ \mathcal{A}_{CP}(D^+ \to K^+ \pi^0) = (-3.2 \pm 4.7 \pm 2.1)\% \\ \mathcal{A}_{CP}(D^+ \to \pi^+ \eta) = (-0.2 \pm 0.8 \pm 0.4)\% \\ \mathcal{A}_{CP}(D^+ \to K^+ \eta) = (-6 \pm 10 \pm 4 \)\% \\ \mathcal{A}_{CP}(D_s^+ \to K^+ \pi^0) = (-0.8 \pm 3.9 \pm 1.2)\% \\ \mathcal{A}_{CP}(D_s^+ \to \pi^+ \eta) = (0.8 \pm 0.7 \pm 0.5)\% \\ \mathcal{A}_{CP}(D_s^+ \to K^+ \eta) = (0.9 \pm 3.7 \pm 1.1)\% \end{array}$

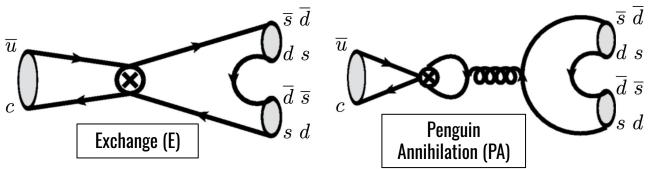
CLEO $(2.9 \pm 2.9 \pm 0.3)\%$ [Phys. Rev. D 81 (2010) 052013] Belle $(2.31 \pm 1.24 \pm 0.23)\%$ [Phys. Rev. D 97 (2018) 011101] LHCh $(-1.3 \pm 0.9 \pm 0.6)\%$ [LHCb-PAPER-2021-001] Average $(0.4 \pm 0.8)\%$ 0 5 10 $A_{CP}(D^+ \rightarrow \pi^+ \pi^0)$ [%]

- all results **compatible with CP symmetry**
- first five represent the

most precise measurements to date

Main systematics:

- fitting model
- control mode in case of $D_s^+ \rightarrow \pi^+ \eta$ ($D_s^+ \rightarrow K_s^0 \cdot \pi^+$ has the lowest statistics)


Measurement of CP asymmetry in $D^0 \rightarrow K_S^0 K_S^0$ decays

Motivations

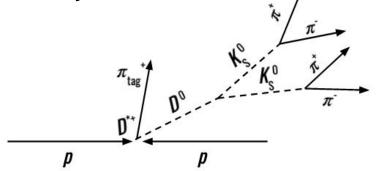
The search for CP violation in $D^0 \rightarrow K_S^0 K_S^0$ decays is interesting because:

- it has been proposed that A_{CP} can be large up to 1%

 → PA loop suppressed
 → E can have similar size (SU(3) suppressed)

> PRD 92 (2015) 054036 PRD 92 (2015) 014004

 \rightarrow candidate for Charm CPV confirmation

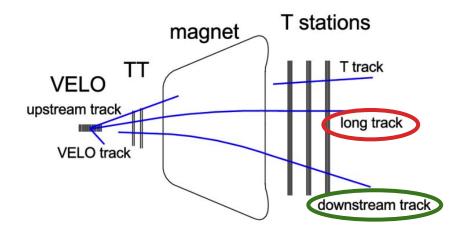

- decay sensitive to different amplitude mix w.r.t. $D^0 \to K^+ K^-$ and $D^0 \to \pi^+ \pi^-$

Run 2 sample analyzed (6 fb⁻¹)

 \rightarrow 2015 - 2016 data reanalyzed (JHEP 11 (2018) 048) \rightarrow ~ 30% sensitivity improvement

Decay chain and different categories

Complete decay chain:

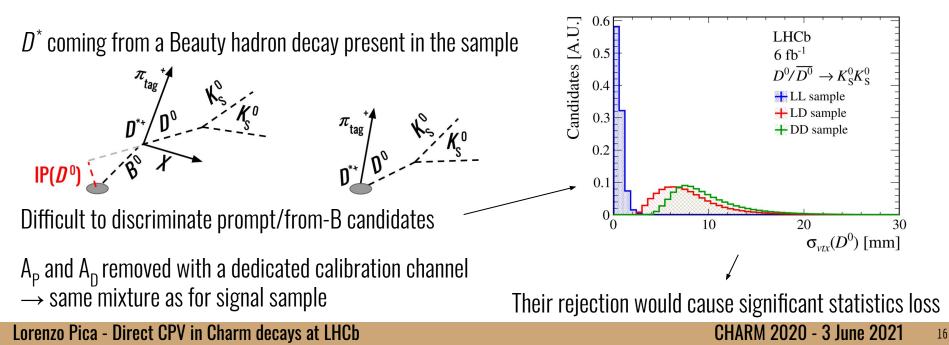

Three "categories" are identified:

- LL \rightarrow both $K_{\rm S}^0$ are Long
- LD \rightarrow one K_{S}^{0} is Long and the other is Downstream
- DD \rightarrow both \tilde{K}_{S}^{0} are Downstream

Different resolution \rightarrow separately analyzed

 $\rightarrow \pi_{\rm tag}$ sign exploited to tag the $D^{\,0}$ flavor

 $\rightarrow K_{\rm S}^{0}$ can decay outside the vertex detector (VELO)



I HCB-PAPFR-2020-047

Background sources

Main background sources:

- $D^0 \rightarrow K_S^0 \pi^+ \pi^- \rightarrow$ mostly removed by cut on K_S^0 flight distance, then disentangled in the fit
- combinatorial \rightarrow partially rejected by a multivariate kinematics/vertex quality cut (kNN) \rightarrow disentangled in the fit

Selections equalized between signal and calibration sample when possible

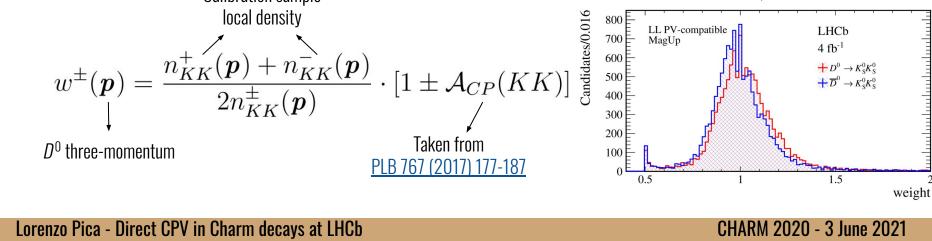
Nuisance asymmetries eliminated by **reweighting signal sample**:

Calibration sample

Local density numerically estimated through kNN

500

LHCb


 $4 \, \text{fb}^{-1}$

 $+ D^0 \rightarrow K^0_S K^0_S$

 $+\overline{D}^0 \rightarrow K^0_s K^0_s$

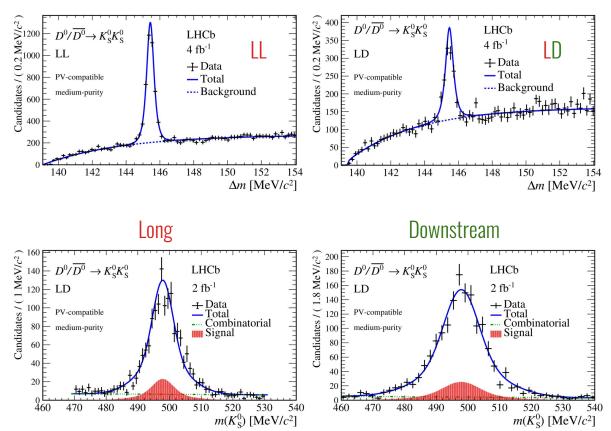
17

HCB-PAPFR-2020-047

Nuisance asymmetries cancellation

Calibration sample: large sample of $D^0 \rightarrow K^+ K^-$ w/o cuts on variables with different resolution (vertices)

800 E LL PV-compatible 700 MagUp 600 E


Fit strategy

Sample splitted to maximize sensitivity:

- LL, LD, DD
- 2015-2016, 2017-2018 (different trigger selections)
- purity level
- compatibility for D^{*} to come from PV

Asymmetries and yields extracted through 3D ML fit:

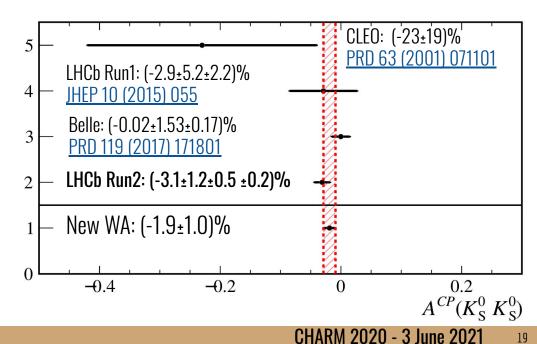
- $\Delta m = m (K_{\rm S}^{0} K_{\rm S}^{0} \pi^{+}) m (K_{\rm S}^{0} K_{\rm S}^{0})$
- two $m(\pi^+\pi^-)$ distributions

LHCB-PAPER-2020-047

Lorenzo Pica - Direct CPV in Charm decays at LHCb

Results

Combined result is:


 $A_{CP}(D^{0} \longrightarrow K_{S}^{0} K_{S}^{0}) = (-3.1 \pm 1.2 \text{ (stat.)} \pm 0.4 \text{ (syst.)} \pm 0.2 \text{ (}A_{CP}(D^{0} \longrightarrow K^{+} K^{-})\text{))\%}$

 \rightarrow systematic dominated by knowledge on fitting model

Most precise measurement to date

Compatible with zero within 2.4 σ

WA is approaching for the first time upper end of SM predictions

Conclusions

LHCb collected the largest samples of D^0 decays to date, leading to first CPV observation in Charm decays

Efforts now focused on confirming and expanding this result

- LHCb producing world-best measurements in different channels
 - \rightarrow decays with neutral mesons (π^0 , η , K_S^0) in the final state included!

No further observations of CPV yet

- new data from next year with LHC Run 3
- LHCb will work at higher luminosity, with upgraded detector and trigger system \rightarrow expecting increased trigger efficiency for hadronic modes

Latest addition: work ongoing to bring K_S^0/Λ^0 identification and selection at first trigger level (HLT1), to enhance efficiency of these interesting modes in Run 3

Stay tuned!

Lorenzo Pica - Direct CPV in Charm decays at LHCb

Backup slides

Direct CP violation

CP violation (CPV) is the non-invariance of laws of Nature under Parity (P) and Charge conjugation (C) \rightarrow matter and antimatter does not always behave the same when weak interaction is involved

It can manifest in three different ways:

- CPV in the decay (direct CPV)

$$|\mathcal{A}(D^0 \to f)|^2 \neq |\mathcal{A}(\overline{D}^0 \to \overline{f})|^2$$

- CPV in the mixing

$$\mathcal{P}(D^0 \to \overline{D}{}^0) \neq \mathcal{P}(\overline{D}{}^0 \to D^0)$$

- CPV in the interference between decay and mixing $|\mathcal{A}(D^0 \to \overline{D}^0 \to f)|^2 \neq |\mathcal{A}(\overline{D}^0 \to D^0 \to f)|^2$

Decay amplitudes definition

Decay amplitudes are defined as:

$$\mathcal{A}(D^0 \to f) = \mathcal{A}_f^T e^{i\phi_f^T} \left[1 + r_f e^{i(\delta_f + \phi_f)} \right]$$

$$\mathcal{A}(\overline{D}{}^0 \to \overline{f}) = \eta_{CP} \mathcal{A}_f^T e^{-i\phi_f^T} \left[1 + r_f e^{i(\delta_f - \phi_f)} \right]$$

 A_{f}^{T} is the magnitude of the dominant SM amplitudes (tree level)

 ϕ^{T}_{f} is an unobservable weak phase

 η_{CP} = ± 1 is the CP eigenvalue of f

CPV size

ACP can be expressed as:

🔎 Relative magnitude of subleading amplitudes w.r.t dominant ones

$$\mathcal{A}_{CP}(f) \simeq -2 \ r_f \sin \delta_f \sin \phi_f$$

Relative **strong** and **weak** phases between subleading and dominant amplitudes

To have CPV at least two different processes have to contribute to the decay amplitude, with different strong and weak phases

- \rightarrow leading order term usually defined as **tree amplitude**
- \rightarrow second successive order terms usually defined as **penguin amplitude**

ACP in charm decays expected size is $O(10^{-3} - 10^{-4})$, because of:

- suppression factor is due to involved CKM matrix elements in Charm decays

$$\mathrm{Im}(V_{cb}V_{ub}^*/V_{cs}V_{us}^*)\approx -6\times 10^{-4}$$

- additional loop factor $O(10^{-1})$

ΔA_{CP} related literature

Grossman et al. 2007 <u>PRD 75 (2007) 036008</u> Li et al. 2012 <u>PRD 86 (2012) 036012</u> Cheng & Chiang 2012 <u>PRD 85 (2012) 024036</u> Khodjamirian & Petrov <u>PRB 774 (2017) 235-242</u>

Chala et al. 2019 JHEP 07 (2019) 161 Grossman & Schacht 2019 JHEP 07 (2019) 020 Buccella et al. 2019 PRD 99 (2019) 11, 113001 Cheng & Chiang 2019 PRD 100 (2019) 9, 093002 Soni 2019 arXiv 1905.00907 Dery & Nir 2019 JHEP 12 (2019) 104 Li et al. 2019 <u>arXiv 1903.10638</u> Wang et al 2020 <u>arXiv 2001.09460</u> Bause et al. 2020 PRD 101 (2020) 11, 115006 Dery et al. 2021 JHEP 05 (2021) 179 Lorenzo Pica - Direct CPV in Charm decays at LHCb

Decays phenomenology

Eight different decays are considered, with different phenomenology:

- $D^+_{s} \rightarrow \pi^+ \pi^0 \rightarrow$ highly suppressed
- $D^*_{s} \rightarrow \pi^* \eta \rightarrow \text{Cabibbo-favored (CF)}$
- $\begin{array}{ccc} & & D^+ \longrightarrow & \mathcal{K}^+ \pi^0 \\ & & & D^+ \longrightarrow & \mathcal{K}^+ \eta \end{array} \right\} \longrightarrow \text{Doubly-Cabibbo-suppressed (DCS)}$
- $\begin{array}{ccc} & & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array} \right\} \rightarrow \text{Singly-Cabibbo-suppressed (SCS)}$

Main background sources

Purely combinatorial	Real π^0 combinatorial	Misidentification background	Partially reconstructed decays
Random combination of tracks and photons	Random combination of real π^0 and random tracks	Signal decays where a π^* track has been incorrectly assigned the K^* mass hypothesis (or vice versa)	Charm mesons decays to h ⁺ h ⁰ X final states (X is unreconstructed)
Rejected applying selections	on:		

 h^+ , e^+ , e^- track quality and displacement h^0 and $D_{(s)}^+$ candidates invariant mass h^0 and $D_{(s)}^+$ candidates transverse momentum $D_{(s)}^+$ quality vertex MVA-based particle identification (PID) variables \rightarrow looser on π^+ , e^+ , $e^ \rightarrow$ tighter on K^+ (more abundant π^+ mode)

*D*_(s) ⁺ candidate momentum pointing toward the primary vertex

Selections are applied in different steps: by the trigger during data taking and offline during analysis

Sample splitting during fit

Sample is split into multiple categories and simultaneously fitted:

- data taking period (only for $D_{(s)}^{+} \rightarrow h^{+}\pi^{0}$) \rightarrow different data taking period
- number of bremsstrahlung photons (O or 1, 2+ events are rejected due to poor resolution) \rightarrow different resolution
- charged-hadron type (π^+ or K^+)
 - \rightarrow allow signal yield in each category to determine misidentification background yields
- candidate charge
 - \rightarrow extract raw asymmetry

Control sample reweighting

Reweighting is applied to equalize:

- kinematic distributions (p, η and ϕ of $D_{(s)}^+$ and h^+)
 - \rightarrow 2D reweighting is performed on this variables (*e.g.* $p(D_{(s)}^{+})-p(h^{+})$), to take into account correlations
- equalize relative fraction of different trigger categories population
 - \rightarrow each category passed different selection criteria that differently affected $A_{\rm D}$
- equalize impact parameter (IP, distance of closest approach between PV and $D_{(s)}^{+}$ flight direction) distributions
 - \rightarrow equalize prompt/from *B* decays relative fraction candidates, that have different $A_{\rm P}$

Raw asymmetries correlation

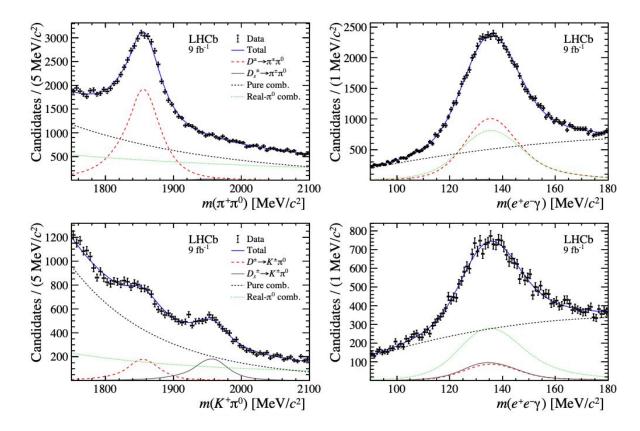
Raw asymmetries are correlated

- \rightarrow fitted variable $m(h^+h^0) = m(h^+e^+e^-\gamma) m(e^+e^-\gamma) + M(h^0)_{PDG}$
- \rightarrow reduce correlation between fitted dimensions

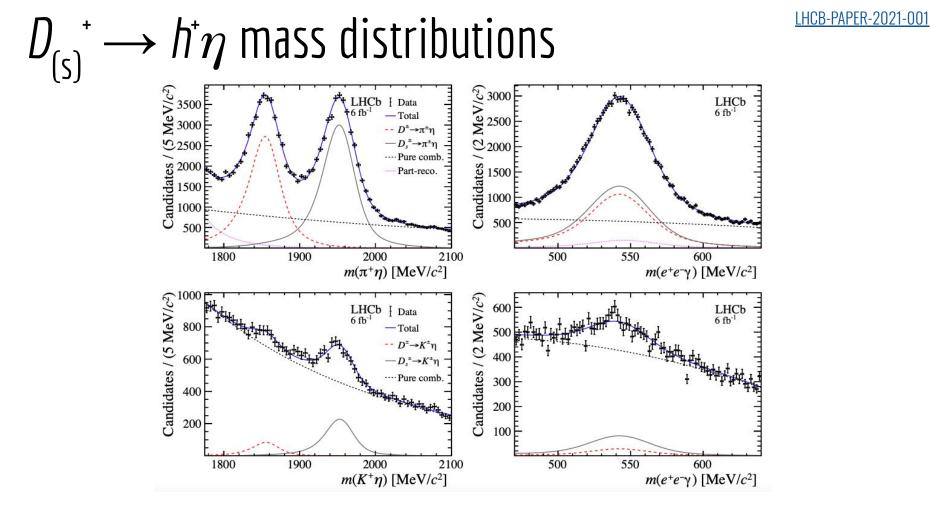
 $D^+_{\circ} \to K^+ \eta$

Correlations between raw asymmetries are present due to D^+ and $D_{(s)}^+$ signal distributions overlap

-0.06


			$D^+ \! \rightarrow$	$\pi^+\pi^0$	$D^+ \! \rightarrow$	$K^+\pi^0$	D_s^+ –	$\rightarrow K^+ \pi^0$	
	$D^+ \rightarrow \pi$	$-+\pi^0$	1	.00					
	$D^+ \rightarrow K$	$C^+\pi^0$	-0	.01	1.	00			
	$D_s^+ \to K$	$C^+\pi^0$	-0	.09	0.	10		1.00	
		D^+-	$ ightarrow \pi^+\eta$	$D^+\! ightarrow$	$\cdot K^+ \eta$	$D_s^+ \rightarrow c$	$\pi^+\eta$	$D_s^+ \to K$	$^+\eta$
D^+	$\to \pi^+ \eta$	1	.00						
D^+	$\rightarrow K^+ \eta$	-0	0.00	1	.00				
D_s^+	$\to \pi^+ \eta$	C	0.01	0	.00	1.0	0		
DI	771	0	00	0	10	0.0	0	1 00	

0.10


-0.00

1.00

 $D_{(s)}^{\dagger} \rightarrow h^{\dagger} \pi^0$ mass distributions

LHCB-PAPER-2021-001

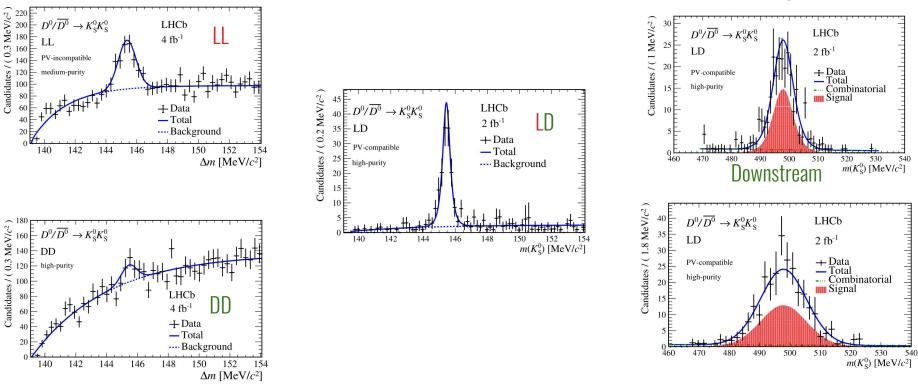
LHCB-PAPER-2021-001

Signal sample complete fit results

Mode		$A_{ m Raw}$ (%)		
	2011	2012	Run 2	
$D^+\!\to\pi^+\pi^0$	740 ± 60	2240 ± 120	25750 ± 430	-1.64 ± 0.93
$D_s^+ \rightarrow \pi^+ \pi^0$	20 ± 30	-50 ± 50	450 ± 120	-
$D^+ \rightarrow K^+ \pi^0$	10 ± 13	90 ± 30	2440 ± 110	-2.53 ± 4.75
$D_s^+\!\to K^+\pi^0$	54 ± 13	150 ± 30	2580 ± 90	-0.25 ± 3.87
$D^+\!\to\pi^+\eta$	-	-	32760 ± 380	-0.55 ± 0.76
$D_s^+ \rightarrow \pi^+ \eta$	-	-	37950 ± 340	$0.75\pm~0.65$
$D^+ \! \rightarrow K^+ \eta$	2. 92	-	880 ± 70	-5.39 ± 10.40
$D_s^+ \to K^+ \eta$	-	-	2520 ± 70	$1.28\pm~3.67$

Control sample complete fit results

Mode	$A_{\rm Raw}^{\rm Weighted}(D^+_{(s)} \to K^0_{\rm S} h^+)$	MC binning syst.
$D^+ \rightarrow \pi^+ \pi^0$	-0.446 ± 0.021	0.008
$D^+\! ightarrow K^+\pi^0$	0.577 ± 0.081	0.008
$D_s^+ \rightarrow K^+ \pi^0$	0.595 ± 0.068	0.008
$D^+ \rightarrow \pi^+ \eta$	-0.458 ± 0.043	-
$D_s^+ \rightarrow \pi^+ \eta$	-0.018 ± 0.365	-
$D^+ \rightarrow K^+ \eta$	0.331 ± 0.100	0.082
$D_s^+\!\to K^+\eta$	0.357 ± 0.099	_


LHCB-PAPER-2021-001

LHCB-PAPER-2020-047

Main background sources $D^0 \rightarrow K_S^0 K_S^0$

Partially reconstructed decays	Non-D ⁰ decays	$D^0 \rightarrow K_{\rm S}^0 \pi^+ \pi^-$ decays	Combinatorial		
Partially reconstructed D^0 decays, coming from D^* e.g. $D^0 \rightarrow K_S^0 K_S^0 \pi^0$	Main contributor is $D_{\rm S}^{*} \rightarrow K_{\rm S}^{0} K_{\rm S}^{0} \pi^{*}$	With the $\pi^*\pi^-$ pair identified as a $K_{\rm S}^{0}$ it mimics signal	Random association of tracks, K _S ⁰ and D ⁰ , forming fake candidates		
Treated with:					
Effectively suppressed accepting around the kn		Selection on K _S ⁰ flight distance and disentangled from signal in the fit	Selection on the output of a k-nearest-neighbour classifier (kNN)		

Fitted mass distributions examples

Long

Subsamples results

	First uncertainty is statistical			
		Second uncertainty is systematic		
Sample	2015 - Yield	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
LL PV-comp.	1388 ± 41	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
LL PV-incomp.	178 ± 31	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
LD PV-comp.	411 ± 25	$-7.2 \pm 5.8 \pm 1.1$ 1145 ± 49 $-2.9 \pm 3.8 \pm 0.7$		
LD PV-incomp.	58 ± 18	$-10 \pm 31 \pm 4$ $349 \pm 64 - 5 \pm 17 \pm 2$		
DD	-	$- 87 \pm 28 - 35 \pm 47 \pm 6$		