Charmed baryons at LHCb

Dana Seman Bobulska on behalf of the LHCb collaboration

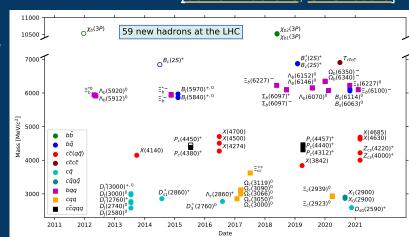
••• <u>CHARM 2020</u> 31 May 2021 - 4 June 2021

• Introduction

NEW

NEW

- Charmed baryons
 - Measurement of the lifetimes of Ω_c^0 and Ξ_c^0 baryons with prompt production
 - Doubly charmed baryons


Overview

- Search for the Ξ_{cc}^+ baryon in the $\Xi_c^+ \pi^- \pi^+$ final state
- Search for the Ω_{cc}^+ baryon in the $\Xi_c^+ K^- \pi^+$ final state
- Charm-beauty baryons
 - Search for doubly heavy baryons Ξ_{bc}^{0} and Ω_{bc}^{0}
- Summary

Introduction

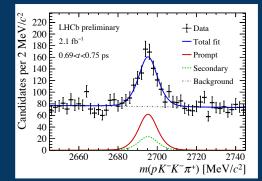
Introduction

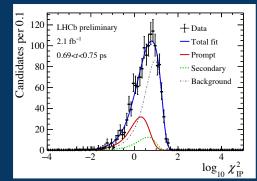
- Many new hadrons observed and studied by LHCb in the last decade
- Measurement of heavy-flavour hadron properties (masses, lifetimes, branching fractions) is of great importance
 [59 new hadrons, CDS record]
 - Valuable input for testing QCD predictions
 - Deeper understanding of the hadronic structure
- Doubly charmed baryon studies
 - Unique platform to study the nonperturbative dynamics in the presence of two heavy quarks
 - Completion of the experimental observation of all baryons in the SU(4) baryon 20-plets

This presentation describes the latest results on (doubly) charmed baryons from LHCb

4

Charmed baryon lifetimes

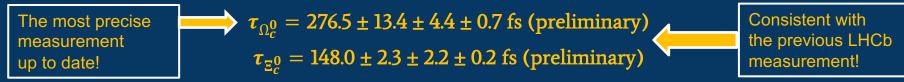

Ω_c^0 and Ξ_c^0 lifetimes - motivation

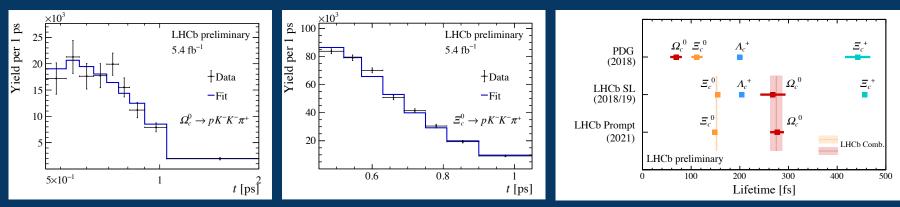

- Predicted lifetime hierarchy: $\tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$
 - Heavy Quark Expansion (HQE) is used to calculate the lifetimes of heavy flavour hadrons [ref.]
 - Expansion in inverse powers of the mass of the heavy quark works well for *b*-hadrons
 - Higher-order expansions needed for the charmed hadrons
 - \square Ω_c^0 expected to be the shortest-lived due to the constructive Pauli interference
- In 2018/2019, LHCb collaboration performed a measurement of charmed baryon lifetimes using semileptonic *b*-hadron decays [Phys. Rev. Lett. 121 (2018) 9 092003, Phys. Rev. D100 (2019) 032001]
 - \succ $\tau_{\Omega_c^0} = 268 \pm 24 \pm 10 \pm 2$ fs $^{\circ}$ inconsistent with the world average (WA) at the level of 7σ
 - \succ $\tau_{\Xi_c^0} = 154.5 \pm 1.7 \pm 1.6 \pm 1.0$ fs $^{\circ}$ in tension with the WA at the level of 3.3 σ
 - Measurement changed the lifetime hierarchy: $\tau(\Xi_c^+) > \tau(\Omega_c^0) > \tau(\Lambda_c^+) > \tau(\Xi_c^0)$

Additional measurements to resolve this puzzle are essential

Ω_c^0 and Ξ_c^0 lifetimes – signal yields

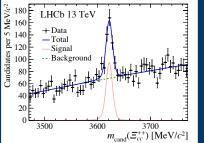
- New measurement using promptly produced Ω_c^0 and Ξ_c^0 baryons using 5.4 fb⁻¹ of LHCb data
 - \triangleright Ω_c^0 and Ξ_c^0 reconstructed through their decay to $pK^-K^+\pi^+$
 - Statistically independent of the previous LHCb measurement
 - Analysis treated as blinded until the full procedure finalised
- Lifetimes measured relative to the D^0 lifetime using prompt $D^0 \to K^- K^+ \pi^- \pi^+$ decays
- Prompt signal yields extracted with 2D extended ML fits to (m, $\log_{10} \chi_{IP}^2$)
 - mass to discriminate between signal and combinatorial background
 - \triangleright log₁₀ χ^2_{IP} (relative significance of an impact parameter) to discriminate between prompt and secondary signal decays

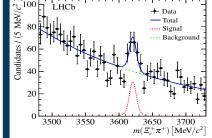


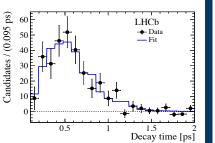

8

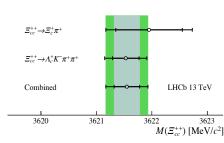
Ω_c^0 and Ξ_c^0 lifetimes - results

- Dominant systematic uncertainties are due to fit model, the kinematic corrections to the simulated data and decay-time resolution
- Lifetimes determined with extended ML fits to $(m, \log_{10} \chi_{IP}^2)$ yields simultaneously in decaytime bins measured to be

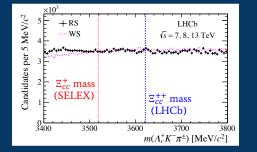

where the uncertainties are statistical, systematic, and due to the uncertainty of the D⁰ lifetime

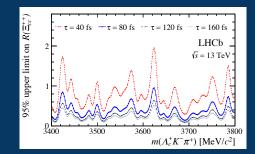


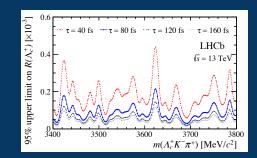

Doubly charmed baryon searches


Ξ_{cc}^{++} baryon observation and studies by LHCb

- In 2017, the first observation of the doubly charmed baryon Ξ_{cc}^{++} (ccu) in the final state of $\Lambda_c^+ K^- \pi^+ \pi^+$ was announced by the LHCb collaboration [Phys. Rev. Lett. 119 (2017) 112001]
- More studies of the Ξ_{cc}^{++} baryon followed its observation:
 - Confirmation in the $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$ decay mode [Phys. Rev. Lett. 121 (2018) 162002]
 - Search for the $\Xi_{cc}^{++} \rightarrow D^+ p K^- \pi^+$ decays [JHEP 10 (2019) 124]
 - Lifetime measurement [Phys. Rev. Lett. 121 (2018) 052002]
 - Production measurement [Chinese Physics C44 (2020) 022001]
 - Precise mass measurement [JHEP 02 (2020) 049]

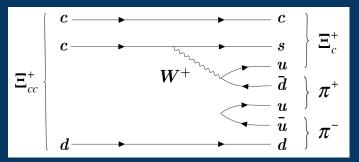






Previous searches for the Ξ_{cc}^+ baryon

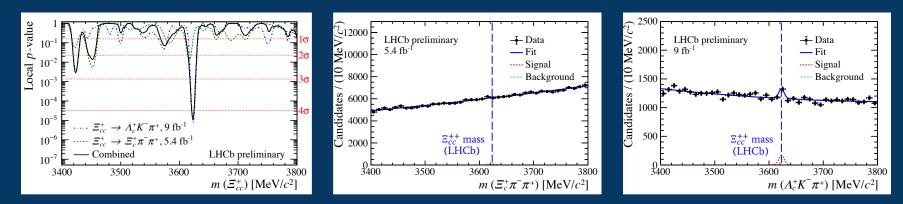
- Observation of the doubly charmed baryon \$\vec{E}_{cc}^+\$ (ccd) reported by the SELEX experiment in 2002
 (<u>Phys. Rev. Lett. 89 (2002) 112001</u>, <u>Phys. Lett. B628 (2005) 18</u>), not confirmed by searches with BaBar, Belle, FOCUS and LHCb
- Search for the Ξ_{cc}^+ baryon in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ decay channel using all available LHCb data (9 fb⁻¹) published last year (<u>Sci. China Phys. Mech. Astron. 63 (2020) 221062</u>) no significant signal visible using selection optimised for the search of the signal, upper limits on $R(\Lambda_c^+)$ and $R(\Xi_{cc}^{++})$ determined
- Production cross-section and mass of the Ξ_{cc}^+ baryon are expected to be similar to its isospin partner Ξ_{cc}^{++} , however Ξ_{cc}^+ lifetime is predicted to be ~2-4 times shorter than the lifetime of Ξ_{cc}^{++} (measured to be 256 fs) more experimentally challenging



11

New search for the Ξ_{cc}^+ baryon - introduction

- Search for the doubly charmed baryon Ξ_{cc}^+ in $\Xi_{cc}^+ \to (\Xi_c^+ \to pK^-\pi^+)\pi^-\pi^+$ decay using 5.4 fb⁻¹ of LHCb data
- Blinded analysis in the mass window of 3.3-3.8 GeV/c²
- Four main stages of the selection
 - Hardware and software trigger selection
 - Preselection based on sequential requirements
 - Multivariate-analysis (MVA) based selection
 - Removal of some duplicate candidates
- Simulation events used as a signal proxy and $\Xi_c^+\pi^-\pi^-$ combinations from data used as a background proxy

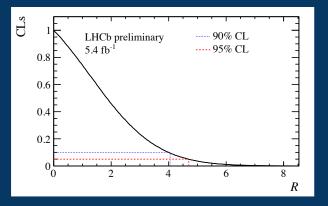


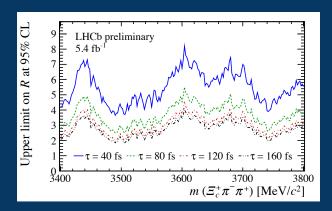
LHCb-PAPER-2021-019 (in preparation)

New search for the Ξ_{cc}^+ baryon - significance

LHCb-PAPER-2021-019 (in preparation)

- No significant signal observed (<3 σ local significance) in the $\Xi_c^+\pi^-\pi^+$ final state
- Combined fit with $\Lambda_c^+ K^- \pi^+$ final state (using its selection for the UL determination)
 - > The minimal combined p-value corresponds to the significance of $4\sigma \triangle$
 - > The combined global significance (in the 3.5–3.7 GeV/c² mass window) found to be $2.9\sigma^{4}$
 - > The best mass fit found to be 3623.0 ± 1.4 (stat) MeV/c²

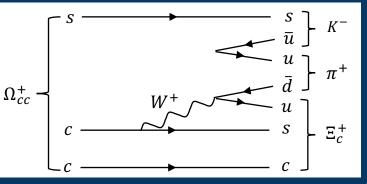

^A Including the systematic uncertainties, preliminary


New search for the Ξ_{cc}^+ baryon – UL results

• Upper limit (UL) on the ratio of production cross sections times the ratio of branching fractions between the signal and the normalisation channel $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$

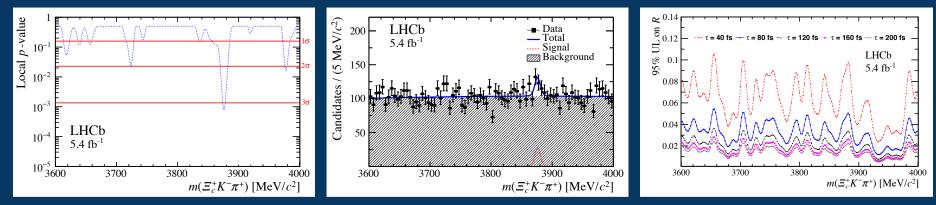
$$R = \frac{\sigma(\Xi_{cc}^+) \times \mathfrak{B}(\Xi_{cc}^+ \to \Xi_c^+ \pi^- \pi^+)}{\sigma(\Xi_{cc}^{++}) \times \mathfrak{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+)} = \frac{\varepsilon_{norm}}{\varepsilon_{sig}} \frac{N_{sig}}{N_{norm}}$$

- UL evaluated as a function of mass in an invariant mass window of (3400, 3800) MeV/c² for four lifetime hypotheses - 40, 80, 120, 160 fs
- > <u>CLs method</u> used toy experiments using Poisson and Gaussian distributions as test statistics



Search for the Ω_{cc}^+ baryon - introduction

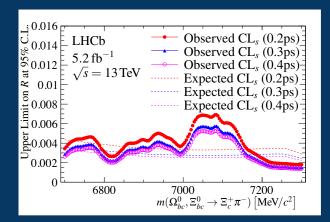
- First search for the doubly charmed baryon Ω_{cc}^+ (ccs)
- Search performed with the $\Xi_c^+ K^- \pi^+$ final state using 5.4 fb⁻¹ of LHCb data
- $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ decay is used as a normalisation channel for the

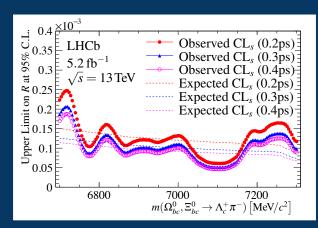

determination of $R = \frac{\sigma(\Omega_{cc}^+) \times \mathfrak{V}(\Omega_{cc}^+ \to \Xi_c^+ K^- \pi^+) \times \mathfrak{V}(\Xi_c^+ \to pK^- \pi^+)}{\sigma(\Xi_{cc}^{++}) \times \mathfrak{V}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+) \times \mathfrak{V}(\Lambda_c^+ \to pK^- \pi^+)}$

- Blinded analysis in (3.5, 4.0) GeV/c² mass window
- Two selections developed:
 - one optimised to maximise the signal sensitivity
 - > one optimised for the determination of R

Search for the Ω_{cc}^+ baryon - results

- The largest local significance found at 3876 MeV/c², corresponding to $3.2\sigma \Delta$
- The global significance (in the 3.6–4.0 GeV/c² mass range) estimated to be $1.8\sigma \triangle$
- UL evaluated as a function of mass in an invariant mass window of (3600, 4000)
 GeV/c² for five lifetime hypotheses 40, 80, 120, 160 and 200 fs
 - > Determined from the integral of the likelihood profile of the mass fits

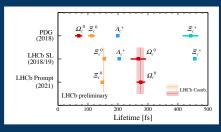


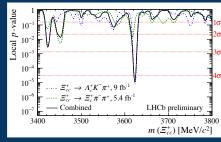

LHCb-PAPER-2021-011 (submitted arXiv:2105.06841)

Charm-beauty baryon searches

Search for doubly heavy baryons Ξ_{bc}^{0} and Ω_{bc}^{0}

- No baryons containing one *c* and one *b* quark have been observed yet
- First search for the Ω_{bc}^0 baryon and a new search for the Ξ_{bc}^0 baryon (previous search in $D^0 p K^-$ final state [<u>JHEP 11 (2020) 095</u>]) perfromed
- $\Lambda_c^+ \pi^-$ and $\Xi_c^+ \pi^-$ final states explored for both baryons
- No significant signal observed
 - > The UL on R with respect to $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ and $\Xi_b^0 \to \Xi_c^+ \pi^-$ decays set





Summary

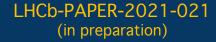
- LHCb keeps producing many interesting results on charmed baryons
- New measurement of the lifetimes of the Ω_c^0 and Ξ_c^0 baryons
- Doubly heavy baryon searches
 - > First search for the Ξ_{cc}^+ baryon in the $\Xi_c^+ \pi^- \pi^+$ final state
 - > First search for the Ω_{cc}^+ baryon
 - > Search for the Ξ_{bc}^0 and Ω_{bc}^0 baryons
- More studies and searches to be performed
 - Still exploiting the recorded data samples to perform more charmed baryon studies and searches
 - The upgraded LHCb detector with increased instantaneous luminosity and fully software trigger system with improved efficiency

More results to come from LHCb in the future – stay tuned!

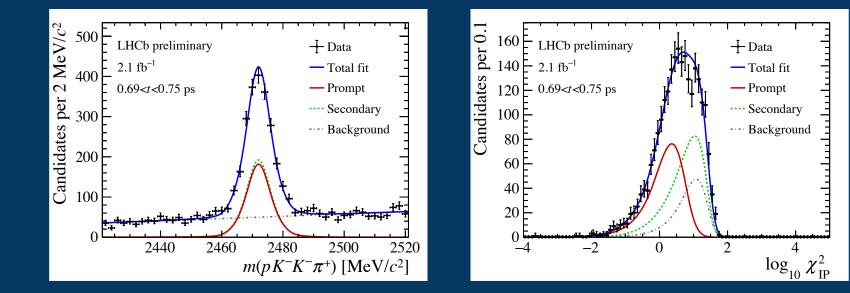
Thank you for your attention

Ω_c^0 and Ξ_c^0 lifetimes – fit model

• Lifetimes determined with binned χ^2 fit to the data collected in 2016–2018 as


$$\chi^{2}(\tau,\vec{C}) = \sum_{\text{year}} \sum_{i} \frac{\left(N_{i,\text{year}}^{\text{sig}} - C_{\text{year}} \times F_{i}(\tau) \times \frac{N_{i,\text{year}}^{\text{con}}}{M_{i,\text{year}}^{\text{con}}} \times M_{i,\text{year}}^{\text{sig}}\right)^{2}}{\sigma_{N_{i,\text{year}}^{\text{sig}}}^{2} + C_{\text{year}}^{2} \times F_{i}^{2}(\tau) \times \sigma_{\left(\frac{N_{i,\text{year}}^{\text{con}}}{M_{i,\text{year}}^{\text{con}}} \times M_{i,\text{year}}^{\text{sig}}\right)}^{2}}$$

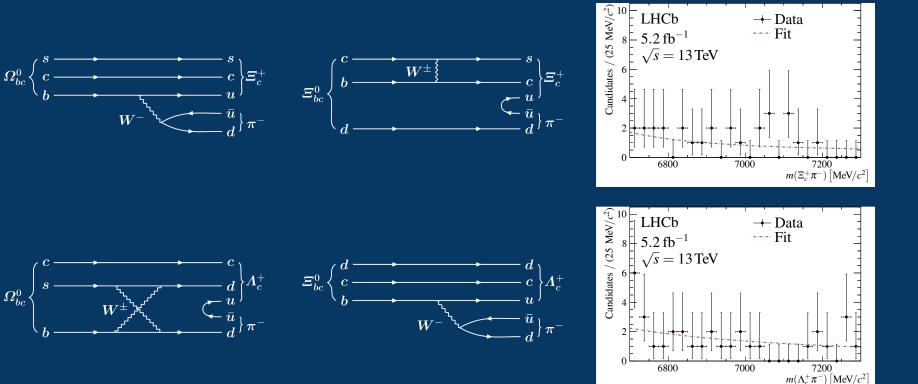
where $N_{i,year}^{sig}$ ($N_{i,year}^{con}$) is the signal yield in data for the signal (control) mode in decay-time bin *i* and for the data taking period "year", *M* is the effective yield predicted from simulation, *C* is a normalisation factor to account for the difference in size between the data and the simulated samples, and σ is the uncertainty of the relevant quantity


• F_i is a quantity to account for the difference in lifetime between the data and the simulated samples

$$F_i(\tau) = \frac{\int_i \exp(-t/\tau) dt}{\int_i \exp(-t/\tau_{\rm sim}) dt} / \frac{\int_i \exp(-t/\tau^{\rm con}) dt}{\int_i \exp(-t/\tau_{\rm sim}^{\rm con}) dt}$$

where $\tau_{sim} = 250$ fs is the signal mode lifetime in simulation, and $\tau^{con} = \tau^{con}_{sim} \tau$ con sim is the known D⁰ lifetime 23

Ω_c^0 and Ξ_c^0 lifetimes – Ξ_c^0 2D fit


Possible resonant contributions in $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^- \pi^+$ decay

- Additional cross-check performed after unblinding a mass cut of (2638,2653) MeV/c² in the $\Xi_c^+\pi^-$ invariant-mass spectrum is applied in order to evaluate the statistical significances for the potential resonant decay $\Xi_{cc}^+ \rightarrow (\Xi_c^{**0} \rightarrow \Xi_c^+\pi^-) \pi^+$
 - > The evaluated local significance is under $3\sigma \rightarrow n\sigma$ evidence for this resonant decay either
- Consideration that the resonant decay $\Xi_{cc}^+ \to \Xi_c^+ \rho^0$ can represent a significant contribution in the final state
 - > The effect of its possible contribution is considered as a systematic uncertainty by reweighting the $\pi^-\pi^+$ invariant mass spectrum in MC to match the ρ^0 line shape (as an extreme case in which 100% of the bachelor pions would come from the ρ^0 resonance)
 - > The correction for this possible contribution is estimated by averaging over the nominal ratio (0% resonance contribution) and the ratio after the ρ^0 re-weighting (100% resonance contribution)

Search for the Ω_{cc}^+ baryon – systematic uncertainties

Source	$R \ [\%]$
Fit model	3.5
Hardware trigger	11.2
Tracking	2.7
PID	0.9
Ξ_{cc}^{++} lifetime	12.0
Simulation/data difference	5.0
Total	17.7

Search for doubly heavy baryons Ξ_{bc}^{0} and Ω_{bc}^{0}

27

LHCb-PAPER-2021-002 (submitted arXiv:2104.04759)