Pc(4312), Pc(4380), and Pc(4457) as double triangle cusps

arXiv:2103.06817 (to appear in PRD)

Satoshi Nakamura

University of Science and Technology of China

Introduction

P_c signals in $\Lambda_b^0 \to J/\psi p K^-$ data

LHCb, PRL 122, 222001 (2019)

Spectrum bumps suggest:

Peaks at slightly below $\Sigma_c^{(*)} \overline{D}^{(*)}$ thresholds $\Sigma_c : \Sigma_c(2455)$ $\Sigma_c^* : \Sigma_c(2520)$

 $\rightarrow \Sigma_c^{(*)} \overline{D}^{(*)}$ bound states (hadron molecule) ?

Other possibilities also proposed:

Compact constituent pentaquark, hadrocharmonium

Previous analysis of LHCb data $(M_{J/\psi p})$ distribution)

Fernandez-Ramirez et al. (JPAC), PRL 123, 092001 (2019)

Two-channel ($\Sigma_c \overline{D}$ - $J/\psi p$) K-matrix model for Pc(4312)

Pc(4312) is interpreted as a virtual state pole

Du et al. (Germany-China group), PRL 124, 072001 (2020)

 $\Sigma_c^{(*)} \overline{D}^{(*)}$ coupled-channel model heavy quark spin symmetry + one-pion-exchange

Pc(4312), Pc(4440), Pc(4380), Pc(4457) as $\Sigma_c^{(*)} \overline{D}^{(*)}$ bound states

P_c as kinematical effect

Triangle singularities (TS) explored to interpret Run I data

Guo et al., PRD 92, 071502(R) (2015); Liu et al., PLB 757, 231 (2016)

TS conditions: process is kinematically allowed at classical level

(i) on-shell intermediate states (ii) collinear internal momenta

(iii)
$$v_{\overline{D}^{(*)}} \geq v_{\Lambda_{\mathcal{C}}^*}$$

Double triangle singularity (DTS)

Kinematical condition for DTS: kinematically classical process is allowed (Coleman-Norton theorem)

All intermediate states can be on-shell simultaneously (Σ_c case) \rightarrow leading singularity

One (or more) state is necessarily off-shell (Σ_c^* case) \rightarrow lower-order singularity

This work

- DTS causes anomalous threshold cusp significantly more singular than ordinary threshold cusp
- DT amplitudes reproduce Pc signals of LHCb data through interference with common (one-loop, tree) mechanisms
- Only Pc(4440) is required as a resonance, with width and strength significantly smaller than LHCb analysis result

How double triangle amplitude appears as Pc?

Analysis of LHCb data

Setup

$$\Sigma_c(2455)\overline{D}(1/2^-)$$

$$\Sigma_c(2520)\overline{D}(3/2^-)$$

$$\Sigma_c(2455)\overline{D}^*(1/2^-)$$

$$\Sigma_c(2455)\overline{D}^*(3/2^-)$$

$$\Sigma_c(2520)\overline{D}^*(1/2^-)$$

$$\Sigma_c(2520)\overline{D}^*(3/2^-)$$

$$\Lambda_c^{(*,**)} \overline{D}^{(*)} (J^P)$$

$$\Lambda_c \overline{D}^* (1/2^-)$$

$$\Lambda_c(2593)\overline{D} (1/2^+)$$

$$\Lambda_c(2625)\overline{D}~(3/2^+)$$

2×6 fitting parameters :
$$c_{\Lambda_c \, \overline{D}^{(*)} \overline{K}^*, \Lambda_b} \times c_{\psi p, \Sigma_c^{(*)} \overline{D}^{(*)}}^P$$

(complex couplings)

2×3 fitting parameters :
$$c_{\Lambda_c^{(*)}\overline{D}^{(*)}\overline{K},\Lambda_b} \times c_{\psi p,\Lambda_c^{(*)}\overline{D}^{(*)}}^{J^P}$$

Only color-favored weak vertices are used \longleftrightarrow color-suppressed $\Lambda_b^0 \to \Sigma_c^{(*)} \overline{D}^{(*)} K^-$ are often used in previous models

Setup

$$P_c(4440) \text{ of } J^P = 1/2^{\pm}, 3/2^{\pm} \text{ are examined}$$

4 fitting parameters :
$$m_{P_c}$$
 , Γ_{P_c} , $c_{P_c\,\overline{K},\Lambda_b} \times c_{\psi p,P_c}^{J^P}$

One direct-decay amplitude in each of

$$J^P = 1/2^{\pm}, 3/2^{\pm}$$
 partial waves

$$J^P$$
: spin-parity of $J/\psi p$ pair

4 fitting parameters :
$$c_{J/\psi \ p \ \overline{K}, \Lambda_b}^{J^P}$$
 (real) for each J^P

$Y_c \overline{D}^{(*)}$ final state interactions $Y_c = \Lambda_c^{(*,**)}, \Sigma_c^{(*)}$

$$Y_c = \Lambda_c^{(*,**)}, \Sigma_c^{(*)}$$

Our model:

- $Y_c \overline{D}^{(*)}$ single-channel scattering (elastic unitarity)
- other possible coupled-channel effect
 - → absorbed by couplings fitted to data
- Examine if fit favors attraction or repulsion for each channel of $Y_c \overline{D}^{(*)}(I^P)$

Attraction : $\Sigma_c \overline{D}(1/2^-)$, $\Sigma_c^* \overline{D}(3/2^-)$, $\Sigma_c \overline{D}^*(1/2^-)$, $\Sigma_c \overline{D}^*(3/2^-)$, $\Lambda_c(2593) \overline{D}(1/2^+)$, $\Lambda_c(2625) \overline{D}(3/2^+)$

All interaction strengths are fixed so that $a \approx 0.5$ fm; $p \cot \delta \sim 1/a + \mathcal{O}(p^2)$

Repulsion : $\Lambda_c \overline{D}^* (1/2^-)$, $\Sigma_c^* \overline{D}^* (1/2^-)$, $\Sigma_c^* \overline{D}^* (3/2^-)$ \leftarrow common interaction strength is used

 $\Lambda_c \overline{D}^*$ (1/2⁻) interaction strength is fitted to LHCb data $\rightarrow a = -0.4 \sim -0.05$ fm for $\Lambda = 0.8 \sim 2$ GeV

 $(\Lambda: cutoff in form factors)$

Note: Pc-like peak positions are NOT sensitive to α values

Weighted candidates/(2 MeV)

Comparison with LHCb data

- Pc(4312), Pc(4380), Pc(4457) peaks are well described by kinematical effects; not by poles
- $\Lambda_c \overline{D}^*$ and $\Lambda_c (2625) \overline{D}$ threshold cusps fit the data
- Pc(4440) requires a resonance pole ($J^P = 3/2^-$ in figure)
- Similar fit quality when changing cutoff over 0.8-2 GeV and changing $J^P=1/2^\pm,3/2^\pm$ for Pc(4440)

: full model (smeared by exp. resolution)

Pc(4440)

Mass (MeV) Width (MeV)

This work 4443.1 ± 1.4

 2.7 ± 2.4

LHCb $4440.3 \pm 1.3^{+4.1}_{-4.7}$

 $20.6 \pm 4.9^{+8.7}_{-10.1}$

Pc(4440) contribution

$$\mathcal{R}_{\text{LHCb}} \equiv \frac{\mathcal{B}\left(\Lambda_b^0 \to P_c^+ K^-\right) \mathcal{B}(P_c^+ \to J/\psi \, p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \, p \, K^-)} = 1.11 \pm 0.33^{+0.22}_{-0.10} \%$$

$$\approx \underline{22} \times \mathcal{R}_{\text{This work}}$$

Pc(4440) from this work has significantly narrower width and weaker coupling strength than LHCb analysis

 \leftarrow Different strategies to fit large structure at ~ 4450 MeV

LHCb: fit with incoherent Pc(4440) and Pc(4457)

This work: mostly kinematical effect, Pc(4440) is small spike

P_c signal in $\Lambda_b^0 \to J/\psi p \pi^-$ data

LHCb data

- $M_{I/\psi p}$ bin for Pc(4440) is enhanced
- No enhancement for other Pc's bins

This observation is consistent with our model because:

- $\Lambda_b^0 \to J/\psi \ p \ \pi^-$ cannot have DTS of $\Lambda_b^0 \to J/\psi \ p \ K^ \to$ no Pc(4312), Pc(4380), Pc(4457) in $\Lambda_b^0 \to J/\psi \ p \ \pi^-$
- $\Lambda_b^0 \to J/\psi \ p \ \pi^-$ can have $\Lambda_b^0 \to P_c(4440) \ \pi^-$ mechanism \to Pc(4440) signal is possible in $\Lambda_b^0 \to J/\psi \ p \ \pi^-$

However, this data may conflict with some other Pc models

Pc signals in $\Lambda_b^0 \to J/\psi \ p \ \pi^-$ are inconclusive due to limited statistics \to Higher statistics $\Lambda_b^0 \to J/\psi \ p \ \pi^-$ data can seriously test Pc models!

Summary

Summary

- LHCb data of $\Lambda_b^0 \to J/\psi \ p \ K^-$ with Pc structures is analyzed
- Pc(4312), Pc(4380), and Pc(4457) peaks are well described by double triangle cusps and their interference with common mechanisms
- Only Pc(4440) is interpreted as a resonance
 Its width and coupling strength are significantly smaller than the LHCb analysis
- The proposed interpretation of Pc structures in $\Lambda_b^0 \to J/\psi \ p \ K^-$ is completely different from hadron molecule and compact pentaquark models
- In future, understand other resonance-like structures near thresholds with DTS
 DTS should now be a possible option

Backup

Theoretical interpretations for Pc (many papers!)

- $\Sigma_c^{(*)} \overline{D}^{(*)}$ hadron molecule $J^P = 1/2^-$ for Pc(4312), $1/2^-$ or $3/2^-$ for Pc(4440) and Pc(4457)
 - -- Coupled-channel $\Sigma_c^{(*)} \overline{D}^{(*)}$ system based on heavy quark spin symmetry (HQSS) \rightarrow 7 Pc states predicted Liu et al. (Beihang group), PRL 122, 242001 (2019)
 - -- HQSS interactions + one-pion-exchange mechanism Du et al. (Germany-China group), PRL 124, 072001 (2020); Xiao et al., PRD 102, 056018 (2020)
- Constituent quark model
 - -- diquark-diquark-antiquark model $J^P = 3/2^-$ for Pc(4312), $3/2^+$ for Pc(4440), $5/2^+$ for Pc(4457) Ali and Parkhomenko, PLB 793, 365 (2019)
 - -- pentaguark model $J^P = 1/2^-$ for Pc(4312), $3/2^-$ for Pc(4440), $1/2^-$ for Pc(4457) Weng et al. (Pekin group), PRD 100, 016014 (2019)
- Hadrocharmonium Eides et al., Mod. Phys. Lett. A 35, 2050151 (2020) $I^P = 1/2^+$ for Pc(4312) as χ_{c0} -N bound state, $1/2^-$ for Pc(4440), $3/2^-$ for Pc(4457) as $\psi(2S)$ -N bound states

P_c signals in other processes

Important to establish Pc as hadronic states

 J/ψ photoproduction

Wang et al., PRD 92, 034022 (2015), etc.

Advantage : No kinematical effect to mimic Pc

No Pc signals, why?

- photo-coupling of Pc is weak
 - → higher statistics data might find a signal
- Pc in $\Lambda_b^0 \to J/\psi \ p \ K^-$ is a kinematical effect
 - → but no such mechanism has been found

Kinematics closest to double triangle leading singularity condition

$$\bullet \ m_{\Lambda_b} = E = E_2 = E_3 \neq E_1$$

(On-shell condition)

- $|E-E_1|$: minimum Criteria of leading singularity : $|E-E_1| \lesssim \Gamma_{\!K^*}$
- Collinear internal momenta ($p_{\overline{K}}$ taken along positive axis)

•
$$v_{\overline{D}} \geq v_{\Lambda_c}$$
 , $v_{\pi} \geq v_{\Lambda_c}$, $v_{\Sigma_c} \geq v_{\overline{D}}$

Internal momenta (MeV) in CM frame satisfying above

$$J/\psi p$$
 Σ_c
 π

	$p_{ar{K}}$	$p_{\bar{K}^*}$	p_π	$p_{\Lambda_c^+}$	$p_{\bar{D}^{(*)}}$	$p_{\Sigma_c^{(*)}}$	$E_1 - E$ -76 -211 -45 -164
$A^{ m DT}_{\Sigma_car{D}}$	1061	926	-135	-471	-455	-607	-76
$A^{ m DT}_{\Sigma_c^*ar{D}}$	1006	771	-234	-346	-426	-580	-211
$A^{ m DT}_{\Sigma_car{D}*}$	937	807	-131	-412	-395	-543	-45
$A^{\mathrm{DT}}_{\Sigma_c^*\bar{D}^*}$	879	654	-225	-266	-388	-491	-164

Previous models often used color-suppressed vertices →

Color-suppressed decay cannot explain Pc production rates? Burns and Swanson, PRD 100, 114033 (2019)

Generally, color suppression is difficult to predict Du et al., arXiv:2102.07159

We still assume dominance of color-favored decay

 \leftarrow color-suppressed mechanisms are redundant to fit only $M_{J/\psi\;p}$ distribution data

Double triangle amplitudes

$$V_{1} = c_{\Lambda_{c}\bar{D}\bar{K}^{*},\Lambda_{b}} \left(\frac{1}{2}t_{\bar{D}}\frac{1}{2}t_{\bar{K}^{*}}\middle| 00\right) \boldsymbol{\sigma} \cdot \boldsymbol{\epsilon}_{\bar{K}^{*}}.$$

$$V_{2} = c_{\bar{K}\pi,\bar{K}^{*}} \left(1t_{\pi}\frac{1}{2}t_{\bar{K}}\middle| \frac{1}{2}t_{\bar{K}^{*}}\right) \boldsymbol{\epsilon}_{\bar{K}^{*}} \cdot (\boldsymbol{p}_{\bar{K}} - \boldsymbol{p}_{\pi})$$

$$V_{3} = c_{\Lambda_{c}\pi,\Sigma_{c}} \boldsymbol{\sigma} \cdot \boldsymbol{p}_{\pi}$$

$$V_{4} = c_{\psi p,\Sigma_{c}\bar{D}}^{1/2^{-}} \left(1t_{\Sigma_{c}}\frac{1}{2}t_{D}\middle| \frac{1}{2}t_{p}\right) \boldsymbol{\sigma} \cdot \boldsymbol{\epsilon}_{\psi}$$

Dipole form factor is multiplied to each vertex (cutoff 1 GeV as default)

$$A_{DT} = \iint d^3 p_{\pi} \ d^3 p_{\overline{D}} \ V_4 \ \frac{1}{E - E_3} \ V_3 \ \frac{1}{E - E_2} \ V_2 \ \frac{1}{E - E_1} \ V_1 \qquad \qquad E_1 = E_{K^*} + E_{\Lambda_c} + E_{\overline{D}} - i \frac{\Gamma_{K^*}}{2}$$
 ... etc.

$Y_c \overline{D}^{(*)}$ final state interactions $Y_c = \Lambda_c^{(*,**)}, \Sigma_c^{(*)}$

$$Y_c = \Lambda_c^{(*,**)}, \Sigma_c^{(*)}$$

Non-perturbative treatment required for $Y_c \overline{D}^{(*)}$ coupled-channel system

Reasonable approach

 $Y_c\overline{D}^{(*)}$ coupled-channel scattering model \leftarrow HQSS-constrained interactions + pion-exchange mechanism

Simplified approach employed in this work

 $Y_c \overline{D}^{(*)}$ single-channel scattering model with a contact interaction (elastic unitarity) other possible coupled-channel effect \rightarrow absorbed by couplings fitted to data

$Y_c \overline{D}^{(*)}$ final state interactions

Justification of the simplified treatment to describe $M_{J/\psi p}$ distribution of $\Lambda_b^0 \to J/\psi p K^-$

In our model, Pc structures (other than Pc(4440)) are described by kinematical effect not directly by poles from $Y_c\overline{D}^{(*)}$ scattering; even perturbative $Y_c\overline{D}^{(*)}\to J/\psi$ p can fit Pc peaks fairly well

- \rightarrow Data can only loosely constrain $Y_c\overline{D}^{(*)}$ interactions
- ightarrow Details of $Y_c\overline{D}^{(*)}$ interactions do not play a major role

The simplification is not valid to describe possible Pc structure in $M_{\Sigma_c \overline{D}}$ distribution of $\Lambda_b^0 \to \Sigma_c \overline{D} K^-$

In contrast, for $Y_c \overline{D}^{(*)}$ molecule model, the simplification is not valid because:

 $Y_c\overline{D}^{(*)}$ interactions need fine-tuning \rightarrow Pc poles at exact positions are generated

 \rightarrow Details of $Y_c \overline{D}^{(*)}$ interactions do matter

Analysis of LHCb data

Setup

 $Y_c\overline{D}^{(*)}$ interaction Examine if the fit favors attraction or repulsion for each $Y_c\overline{D}^{(*)}(J^P)$

Attraction : $\Sigma_c \overline{D}(1/2^-)$, $\Sigma_c^* \overline{D}(3/2^-)$, $\Sigma_c \overline{D}^*(1/2^-)$, $\Sigma_c \overline{D}^*(3/2^-)$, $\Lambda_c(2593) \overline{D}(1/2^+)$, $\Lambda_c(2625) \overline{D}(3/2^+)$

All interaction strengths are fixed so that $a\approx 0.5~{\rm fm}$; $p\cot\delta\sim 1/a+\mathcal{O}(p^2)$

Repulsion : $\Sigma_c^* \overline{D}^* (1/2^-)$, $\Sigma_c^* \overline{D}^* (3/2^-)$, $\Lambda_c \overline{D}^* (1/2^-)$ \leftarrow common interaction strength is used

 $\Lambda_c \overline{D}^* (1/2^-)$ interaction strength is fitted to LHCb data $\rightarrow a = -0.4 \sim -0.05$ fm for $\Lambda = 0.8 - 2$ GeV

Note: Pc-like peak positions are NOT sensitive to a values

- $A_{
 m DT}/A_{
 m 1L}$ shows how DT amplitude behaves differently from threshold cusp
- Singular behavior remains in $Re[A_{DT}/A_{1L}]$

First (second) derivate of in $\operatorname{Re}[A_{\mathrm{DT}}/A_{1\mathrm{L}}]$ for $\Sigma_{c}\overline{D}$ ($\Sigma_{c}^{*}\overline{D}$) seems divergent

→ qualitatively different singular behaviors between leading and lower-order singularity

Comparison with LHCb data

- Pc(4312), Pc(4380), Pc(4457) peaks are well described by kinematical effects; not by poles
- $\Lambda_c \overline{D}^*$ and $\Lambda_c (2625) \overline{D}$ threshold cusps fit the data
- Pc(4440) requires a resonance pole ($J^P = 3/2^-$ in figure)
- Similar fit quality when changing cutoff over 0.8-2 GeV and changing $J^P=1/2^\pm,3/2^\pm$ for Pc(4440)
- Simplified model works fairly well $J^P=1/2^+, 3/2^+ \text{ amplitudes omitted}$ perturbative treatment of $Y_c\overline{D}^{(*)} \to J/\psi \, p$

----: full model ----: simplified model

(smeared by exp. resolution)

Partial wave decomposition

- Interference of DT, direct-decay, and one-loop amplitudes
 - \rightarrow Pc(4312), Pc(4380), and Pc(4457) peak structures in $1/2^-$ and $3/2^-$ contributions
- Constructive interference between $\Lambda_c(2593)\overline{D}$ one-loop and direct-decay amplitudes \rightarrow relatively large $1/2^+$ contribution $(\Lambda_c\overline{D}^* >> \Lambda_c(2593)\overline{D}$ one-loop amplitudes in magnitude)
- Direct-decay amplitudes (not fitted to data) alone give phase-space-like distribution
- Limited experimental information ($M_{J/\psi\;p}$ distribution only)
 - → uncertainty in the partial wave decomposition

FAQ: Isn't two-loop amplitude normally suppressed compared to one-loop? (Therefore your model seems strange)

Ans. When a kinematical singularity occurs, the situation is not very normal.

→ something unusual can happen

One-loop and DT contributions (no interference)

At singularity peaks, DT are comparable to one-loop contribution Otherwise, DT is suppressed compared to one-loop, as usual

Coupling ratio of $\Sigma_c \overline{D}^*$ DT to $\Lambda_c \overline{D}^*$ one-loop

$$R \equiv \left| \frac{c_{\Lambda_c \, \overline{D} \overline{K}^*, \Lambda_b} \times c_{\psi p, \Sigma_c \overline{D}}^{1/2^-}}{c_{\Lambda_c \, \overline{D}^* \overline{K}, \Lambda_b} \times c_{\psi p, \Lambda_c \, \overline{D}^*}^{1/2^-}} \right| = 7.2 - 3.2 \quad \text{for} \quad \Lambda = 0.8 - 2 \text{ GeV}$$

Unreasonably large coupling ($R\gg 1$) for DT amplitude is not used

→ Comparable DT singularity peak and one-loop is not artifact

J/ψ photoproduction

DTS scenario of Pc can (partly) explain no Pc signals in J/ψ photoproduction data of GlueX

Pc(4440)

Pc(4440) width and strength extracted in this work are significantly smaller than those of LHCb analysis

 \rightarrow Finding Pc(4440) signal in J/ψ photoproduction is more challenging than expected based on the LHCb result

Next step

• Study of $\Lambda_b^0 \to \Sigma_c^{(*)} \, \overline{D}^{(*)} \, K^-$ decays and Pc structures

Coupled-channel $Y_c \, \overline{D}^{(*)}$ scattering need developed

Understand other resonance-like structures near thresholds with DTS

DTS should now be a possible option