Caltech

Current anomalies in semileptonic B decays into charm: Global EFT analysis

Clara Murgui

In collaboration with Martin Jung, Rusa Mandal, Ana Peñuelas and Antonio Pich

3rd June 2021 10th International Workshop on Charm Physics (CHARM 2020)

Accessing High Energies

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{O}\left(\frac{\rm Energy}{\Lambda_{\rm NP}}\right)^n$$

[Based on Refs. 1904.09311 and 2004.06726, in collaboration with Martin Jung, Rusa Mandal, Ana Peñuelas and Antonio Pich.]

$$\triangleright \mathcal{R}_{D^{(*)}} \equiv \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu}_{\tau})}{\mathcal{B}(B \to D^{(*)} \ell \bar{\nu}_{\ell})}$$

Status 2021

Pattern of deviations in B-meson decays involving b to c transitions pointing to "the same direction"

$$\begin{array}{l} \clubsuit \quad \mathcal{R}_{D^{(*)}} \equiv \frac{\mathcal{B}(B \to D^{(*)}\tau\bar{\nu}_{\tau})}{\mathcal{B}(B \to D^{(*)}\ell\bar{\nu}_{\ell})} & \textbf{3.1 } \sigma \\ \\ \text{HFLAV, up to date} \\ \cr \clubsuit \quad \mathcal{R}_{J/\Psi} \equiv \frac{\mathcal{B}(B_c \to J/\Psi\tau\bar{\nu}_{\tau})}{\mathcal{B}(B_c \to J/\Psi\mu\bar{\nu}_{\mu})} = 0.71 \pm 0.17 \pm 0.18 \\ \\ \text{LHCb, 2017} & \textbf{1.7 } \sigma \\ \\ R_{J/\Psi_{SM}} \sim 0.25 - 0.28 \\ \cr \clubsuit \quad \bar{\mathcal{P}}_{\tau}^{D^*} = -0.38 \pm 0.51^{+0.21}_{-0.16} \\ \\ \text{Belle, 2016} \\ \mathcal{P}_{\tau}(D^*)_{SM} = -0.499 \pm 0.003 \\ \cr \clubsuit \quad \bar{F}_{L}^{D^*} = 0.60 \pm 0.08 \pm 0.04 \\ \\ \text{Belle, 2019} \\ \end{array} \begin{array}{l} \textbf{1.6 } \sigma \\ \\ \hline{\nu}_{\overline{\nu}}(p_{\nu}) \end{array}$$

 \bullet Most general effective dim 6 Hamiltonian:

 $\mathcal{H}_{\text{eff}}^{b \to c\ell\nu} = \frac{4 G_F}{\sqrt{2}} V_{cb} [(1 + C_{V_L})\mathcal{O}_{V_L} + C_{V_R}\mathcal{O}_{V_R} + C_{S_R}\mathcal{O}_{S_R} + C_{S_L}\mathcal{O}_{S_L} + C_T \mathcal{O}_T] + \text{h.c.}$

$$\mathcal{O}_{V_L} = (\bar{c} \,\gamma^{\mu} P_L b) (\bar{\ell} \,\gamma_{\mu} P_L \nu_{\ell}),$$

$$\mathcal{O}_{S_R} = (\bar{c} \,P_R b) (\bar{\ell} \,P_L \nu_{\ell}),$$

$$\mathcal{O}_T = (\bar{c} \,\sigma^{\mu\nu} P_L b) (\bar{\ell} \,\sigma_{\mu\nu} P_L \nu_{\ell}),$$

$$\mathcal{O}_{V_R} = (\bar{c} \gamma^{\mu} P_R b) (\bar{\ell} \gamma_{\mu} P_L \nu_{\ell}),$$

$$\mathcal{O}_{S_L} = (\bar{c} P_L b) (\bar{\ell} P_L \nu_{\ell}),$$

 \bullet Most general effective dim 6 Hamiltonian:

 $\mathcal{H}_{\text{eff}}^{b \to c\ell\nu} = \frac{4 G_F}{\sqrt{2}} V_{cb} [(1 + C_{V_L})\mathcal{O}_{V_L} + C_{V_R}\mathcal{O}_{V_R} + C_{S_R}\mathcal{O}_{S_R} + C_{S_L}\mathcal{O}_{S_L} + C_T \mathcal{O}_T] + \text{h.c.}$

$$\mathcal{O}_{V_L} = (\bar{c} \,\gamma^{\mu} P_L b) (\bar{\ell} \,\gamma_{\mu} P_L \nu_{\ell}),$$

$$\mathcal{O}_{S_R} = (\bar{c} \,P_R b) (\bar{\ell} \,P_L \nu_{\ell}),$$

$$\mathcal{O}_T = (\bar{c} \,\sigma^{\mu\nu} P_L b) (\bar{\ell} \,\sigma_{\mu\nu} P_L \nu_{\ell}),$$

$$\mathcal{O}_{V_R} = (\bar{c} \gamma^{\mu} P_R b) (\bar{\ell} \gamma_{\mu} P_L \nu_{\ell}),$$

$$\mathcal{O}_{S_L} = (\bar{c} P_L b) (\bar{\ell} P_L \nu_{\ell}),$$

 \bullet Most general effective dim 6 Hamiltonian:

 $\mathcal{H}_{\text{eff}}^{b \to c\ell\nu} = \frac{4 G_F}{\sqrt{2}} V_{cb} [(1 + C_{V_L})\mathcal{O}_{V_L} + C_{V_R}\mathcal{O}_{V_R} + C_{S_R}\mathcal{O}_{S_R} + C_{S_L}\mathcal{O}_{S_L} + C_T \mathcal{O}_T] + \text{h.c.}$

• Assumptions:

$$\blacktriangleright$$
 EFT \checkmark \blacktriangleright New physics only in the third generationNP effects negligible in $b \rightarrow c(e, \mu)\bar{\nu}_{(e,\mu)}$ analysis [Jung, Straub, 1801.01112]

$$\mathcal{O}_{V_L} = (\bar{c} \,\gamma^{\mu} P_L b) (\bar{\tau} \,\gamma_{\mu} P_L \nu_{\tau}),$$

$$\mathcal{O}_{S_R} = (\bar{c} \,P_R b) (\bar{\tau} \,P_L \nu_{\tau}),$$

$$\mathcal{O}_T = (\bar{c} \,\sigma^{\mu\nu} P_L b) (\bar{\tau} \,\sigma_{\mu\nu} P_L \nu_{\tau}),$$

$$\mathcal{O}_{V_R} = (\bar{c} \gamma^{\mu} P_R b) (\bar{\tau} \gamma_{\mu} P_L \nu_{\tau}),$$

$$\mathcal{O}_{S_L} = (\bar{c} P_L b) (\bar{\tau} P_L \nu_{\tau}).$$

 \bullet Most general effective dim 6 Hamiltonian:

$$\mathcal{H}_{\text{eff}}^{b \to c\ell\nu} = \frac{4\,G_F}{\sqrt{2}} V_{cb} [(1 + C_{V_L})\mathcal{O}_{V_L} + C_{V_R}\mathcal{O}_{V_R} + C_{S_R}\mathcal{O}_{S_R} + C_{S_L}\mathcal{O}_{S_L} + C_T \mathcal{O}_T] + \text{h.c.}$$

• Assumptions:

 $\begin{array}{c} \overleftarrow{} & \text{EFT} \\ \hline{} & \overleftarrow{} \\ \end{array} \\ \hline & \text{New physics only in the third generation,} \\ \hline{} & \overleftarrow{} \\ & C_{V_R} \text{ lepton flavour universal } \Rightarrow C_{V_R}^{\tau} \sim 0 \\ \\ & C_{V_R}^{\ell} \equiv C_{V_R} + \mathcal{O}\left(\frac{v^4}{\Lambda_{\text{NP}}^4}\right) \end{array}$

Assuming SMEFT and no significant effect from NP in $b \to c(e,\mu)\bar{\nu}_{(e,\mu)}$ [Jung, Straub, 1801.01112]

$$\mathcal{O}_{V_L} = (\bar{c} \,\gamma^{\mu} P_L b) (\bar{\tau} \,\gamma_{\mu} P_L \nu_{\tau}),$$

$$\mathcal{O}_{S_R} = (\bar{c} \,P_R b) (\bar{\tau} \,P_L \nu_{\tau}),$$

$$\mathcal{O}_T = (\bar{c} \,\sigma^{\mu\nu} P_L b) (\bar{\tau} \,\sigma_{\mu\nu} P_L \nu_{\tau}),$$

$$\mathcal{O}_{V_R} = (\bar{c} \gamma^{\mu} P_R b) (\bar{\tau} \gamma_{\mu} P_L \nu_{\tau}),$$
$$\mathcal{O}_{S_L} = (\bar{c} P_L b) (\bar{\tau} P_L \nu_{\tau}).$$

 \bullet Most general effective dim 6 Hamiltonian:

$$\mathcal{H}_{\text{eff}}^{b \to c\ell\nu} = \frac{4\,G_F}{\sqrt{2}} V_{cb} [(1 + C_{V_L})\mathcal{O}_{V_L} + C_{V_R}\mathcal{O}_{V_R} + C_{S_R}\mathcal{O}_{S_R} + C_{S_L}\mathcal{O}_{S_L} + C_T \mathcal{O}_T] + \text{h.c.}$$

• Assumptions:

Fitted complex W.C. without significant improvement

$$\mathcal{O}_{V_L} = (\bar{c} \,\gamma^{\mu} P_L b) (\bar{\tau} \,\gamma_{\mu} P_L \nu_{\tau}),$$

$$\mathcal{O}_{S_R} = (\bar{c} \,P_R b) (\bar{\tau} \,P_L \nu_{\tau}),$$

$$\mathcal{O}_T = (\bar{c} \,\sigma^{\mu\nu} P_L b) (\bar{\tau} \,\sigma_{\mu\nu} P_L \nu_{\tau}),$$

$$\mathcal{O}_{V_R} = (\bar{c} \gamma^{\mu} P_R b) (\bar{\tau} \gamma_{\mu} P_L \nu_{\tau}),$$

$$\mathcal{O}_{S_L} = (\bar{c} P_L b) (\bar{\tau} P_L \nu_{\tau}).$$

 \bullet Most general effective dim 6 Hamiltonian:

 $\mathcal{H}_{\text{eff}}^{b \to c\ell\nu} = \frac{4\,G_F}{\sqrt{2}} V_{cb} [(1 + C_{V_L})\mathcal{O}_{V_L} + C_{V_R}\mathcal{O}_{V_R} + C_{S_R}\mathcal{O}_{S_R} + C_{S_L}\mathcal{O}_{S_L} + C_T\mathcal{O}_T] + \text{h.c.}$

• Assumptions:

 $\begin{array}{c} \longleftrightarrow \\ FT \\ \hline \\ \end{array} \end{array}$ New physics only in the third generation, $\begin{array}{c} \longleftrightarrow \\ C_{V_R} \\ \end{array}$ lepton flavour universal $\Rightarrow C_{V_R}^{\tau} \sim 0$ $\begin{array}{c} \longleftrightarrow \\ CP \\ \end{array}$ CP conserving W.C.

$$\mathcal{O}_{V_L} = (\bar{c} \,\gamma^{\mu} P_L b) (\bar{\tau} \,\gamma_{\mu} P_L \nu_{\tau}),$$

$$\mathcal{O}_{S_R} = (\bar{c} \,P_R b) (\bar{\tau} \,P_L \nu_{\tau}),$$

$$\mathcal{O}_T = (\bar{c} \,\sigma^{\mu\nu} P_L b) (\bar{\tau} \,\sigma_{\mu\nu} P_L \nu_{\tau}),$$

$$\mathcal{O}_{V_R} = (\bar{c} \gamma^{\mu} P_R b) (\bar{\tau} \gamma_{\mu} P_L \nu_{\tau}),$$

$$\mathcal{O}_{S_L} = (\bar{c} P_L b) (\bar{\tau} P_L \nu_{\tau}).$$

 \bullet Most general effective dim 6 Hamiltonian:

$$\mathcal{H}_{\text{eff}}^{b \to c\ell\nu} = \frac{4 G_F}{\sqrt{2}} V_{cb} [(1 + C_{V_L})\mathcal{O}_{V_L} + C_{S_R} \mathcal{O}_{S_R} + C_{S_L} \mathcal{O}_{S_L} + C_T \mathcal{O}_T] + \text{h.c.}$$

Image borrowed from [Celis et al., 2016]

 \bullet Most general effective dim 6 Hamiltonian:

 $\mathcal{H}_{\text{eff}}^{b \to c\ell\nu} = \frac{4 G_F}{\sqrt{2}} V_{cb} [(1 + C_{V_L})\mathcal{O}_{V_L} + C_{S_R} \mathcal{O}_{S_R} + C_{S_L} \mathcal{O}_{S_L} + C_T \mathcal{O}_T] + \text{h.c.}$

$$\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau}) = \# |V_{cb}|^2 \times \left| 1 + C_{V_L} - C_{V_R} + \frac{m_{B_c}^2}{m_{\tau}(m_b + m_c)} \left(C_{S_R} - C_{S_L} \right) \right|^2$$

 \bullet Most general effective dim 6 Hamiltonian:

 $\mathcal{H}_{\text{eff}}^{b \to c\ell\nu} = \frac{4 G_F}{\sqrt{2}} V_{cb} [(1 + C_{V_L})\mathcal{O}_{V_L} + C_{S_R} \mathcal{O}_{S_R} + C_{S_L} \mathcal{O}_{S_L} + C_T \mathcal{O}_T] + \text{h.c.}$

• Inputs:

$$\begin{array}{c} \blacktriangleright & \mathcal{R}_D \\ \hline & \swarrow & \mathcal{R}_{D^*} \\ \hline & \frown & \Gamma(B \to D^{(*)} \tau \bar{\nu}_{\tau}) \\ \hline & \blacksquare & B_c \to \tau \bar{\nu}_{\tau} \end{array}$$

• Bc lifetime:

 $\Rightarrow \operatorname{Br}(B_c \to \tau \bar{\nu}_{\tau}) \le 30 - 40\%$ [Alonso et al., 2016]

• Bound LEP Z peak:
[Akeroyd et al., 2017]

$$\Rightarrow Br(B_c \rightarrow \tau \bar{\nu}_{\tau}) \leq 10\%$$

$$\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau}) = \# |V_{cb}|^2 \times \left| 1 + C_{V_L} - C_{V_R} + \frac{m_{B_c}^2}{m_{\tau}(m_b + m_c)} \left(C_{S_R} - C_{S_L} \right) \right|^2$$

 \bullet Most general effective dim 6 Hamiltonian:

$$\mathcal{H}_{\text{eff}}^{b \to c\ell\nu} = \frac{4 G_F}{\sqrt{2}} V_{cb} [(1 + C_{V_L})\mathcal{O}_{V_L} + C_{S_R} \mathcal{O}_{S_R} + C_{S_L} \mathcal{O}_{S_L} + C_T \mathcal{O}_T] + \text{h.c.}$$

• Inputs:

 $-C_{V_L} - C_{V_R} - C_{S_R} - C_{S_L} - C_T$ $\pm 1 \sigma \qquad \pm 2 \sigma$

$$\Rightarrow \mathcal{R}_{D^*} = \mathcal{R}_{D^*} [\underbrace{(1 + C_{V_L} - C_{V_R})}_{\text{axial} \equiv C_A}, \underbrace{(C_{S_R} - C_{S_L})}_{\text{pseudo-scalar} \equiv C_P}, C_T]$$

• Inputs:

$$\begin{array}{c} \blacktriangleright & \mathcal{R}_{D^*}(C_A) & \mathcal{C}_P & \mathcal{C}_T \\ \hline & \bullet & \Gamma(B \to D^{(*)}\tau\bar{\nu}_{\tau}) \\ \hline & \bullet & B_c \to \tau\bar{\nu}_{\tau} & \mathcal{C}_A & \mathcal{C}_P \\ \hline & \bullet & F_L^{D^*} & \mathcal{C}_A & \mathcal{C}_P & \mathcal{C}_T \end{array}$$

Global Fit: inputs

 \bullet Most general effective dim 6 Hamiltonian:

$$\mathcal{H}_{\text{eff}}^{b \to c\ell\nu} = \frac{4 G_F}{\sqrt{2}} V_{cb} [(1 + C_{V_L})\mathcal{O}_{V_L} + C_{S_R} \mathcal{O}_{S_R} + C_{S_L} \mathcal{O}_{S_L} + C_T \mathcal{O}_T] + \text{h.c.}$$

• Inputs:

$$\chi^2 = \underbrace{\chi^2_{\exp}}_{exp} + \underbrace{\chi^2_{FF}}_{exp}$$

$$\begin{split} \mathcal{R}_D, \mathcal{R}_{D^*} \ 2 \ \mathrm{d.o.f.} & \quad 10 \ \mathrm{d.o.f.} \\ \Gamma(B \to D^{(*)}) \ 58 \ \mathrm{d.o.f.} \\ F_L^{D^*} \ 1 \ \mathrm{d.o.f.} \end{split}$$

Global fit: Form Factors

Global Fit: Goodness of the fit

• Standard Model $(\forall C_i = 0)$ $\chi^2_{SM} = 65.5/57$ d.o.f.

$$\chi^2_{R_D,R_{D^*}} = 22.6/2 \rightarrow \text{Reproduce the well-known tension}$$

$$\chi_{\Gamma[q^2]}^2 = 43/54$$

Conservative uncertainties
Misleading χ^2 contribution
$$\int_{-20}^{60} \int_{-20}^{\text{Belle}} \int_{-20}^{10} \int_{-20}^{0} \int_{-20}^{0}$$

Quality of the fit: Pull w.r.t. the SM

Global Fit: Results

• SM:
$$\chi^2_{SM} = 65.5/57$$
 d.o.f.

• New Physics:
$$\chi^2_{min1} = 34.1/53_{\text{d.o.f.}} \qquad \chi^2_{min2} = 37.5/53_{\text{d.o.f.}} \qquad \chi^2_{min3} = 58.6/53_{\text{d.o.f.}}$$

Global Fit: Results

Global Fit: Predictions

Global Fit: Predictions

 Λ_c

2

 $\overline{\mathcal{J}_{n}}$

C

Global Fit: Results

• Theory assumptions:

\rightarrow EFT

 \blacktriangleright New physics only in the third generation

 $ightarrow C_{V_R}$ flavour universal

 \clubsuit CP conserving W.C.

• Experimental measurements

• Theory assumptions:

EFT

 \checkmark New physics only in the third generation of leptons

 $ightarrow C_{V_R}$ flavour universal

 \clubsuit CP conserving W.C.

No significant improvement of χ^2 by promoting the W.C. to be complex

• Experimental measurements

• Theory assumptions:

\rightarrow EFT

 \checkmark New physics only in the third generation of leptons

EW breaking is non-linear?

• Experimental measurements

Global fit + C_{V_R}

• Theory assumptions:

 \checkmark New physics only in the third generation of leptons

 $ightarrow C_{V_R}$ flavour universal

 \clubsuit CP conserving W.C.

• Experimental measurements

• Theory assumptions:

EFT New light d.o.f. [C. Bobeth et al., a month ago]

 \checkmark New physics only in the third generation of leptons

??

 $ightarrow C_{V_R}$ flavour universal

 \checkmark CP conserving W.C.

• Experimental measurements

• Theory assumptions:

 \rightarrow EFT New light d.o.f.

 \blacksquare New physics only in the third generation of leptons

 $ightarrow C_{V_R}$ flavour universal

 \checkmark CP conserving W.C.

• Experimental measurements

Bounds on $Br(B_c \rightarrow \tau \bar{\nu})$

Resurrection of the scalar candidates ?

 $\mathcal{B}(B_c \to \tau \bar{\nu}) < 60\%$

See discussion in [M. Blanke et al., 2019]

[Akeroyd et al., 2017]

Implications of new measurements?

[Speculating...]

Belle-II	5 ab^{-1}	$50 {\rm ~ab}^{-1}$
\mathcal{R}_{D^*}	$(\pm 3.0 \pm 2.5)\%$	$(\pm 1.0 \pm 2.0)\%$
$ar{P}^{D^*}_{ au}$	$\pm 0.18 \pm 0.08$	$\pm 0.06 \pm 0.04$

My guess:	$F_L^{D^*}$	$\sim 15\%$	\Rightarrow	5%
-----------	-------------	-------------	---------------	----

Thank you!

SLIDES

Global Fit: Goodness of the fit

• P-value

$$p(\chi^2_{\rm min}, n) \equiv \int_{\chi^2_{\rm min}}^{\infty} dz \, \chi^2(z, n)$$

• Pull [# of standard deviations]

$$\text{Pull}_{\text{SM}} \equiv \text{prob}(\Delta \chi_i^2, \Delta n_i)[\sigma] = \sqrt{2} \text{Erf}^{-1}[\text{CDF}(\Delta \chi_i^2, \Delta n_i)]$$

Global Fit: New Physics interpretations

• Effect of the running between WET and SMEFT W.C ($\Lambda = 1$ TeV)

$$C_{V_{L}}(\mu_{b}) = -1.503 \ \tilde{C}_{V_{L}}(\Lambda) ,$$

$$C_{S_{L}}(\mu_{b}) = -1.257 \ \tilde{C}_{S_{L}}(\Lambda) + 0.2076 \ \tilde{C}_{T}(\Lambda) ,$$

$$C_{S_{R}}(\mu_{b}) = -1.254 \ \tilde{C}_{S_{R}}(\Lambda) ,$$

$$C_{T}(\mu_{b}) = 0.002725 \ \tilde{C}_{S_{L}}(\Lambda) - 0.6059 \ \tilde{C}_{T}(\Lambda) .$$

Global Fit: New Physics interpretations

• Global minimum:

 $C_{V_L} = 0.09^{+0.13}_{-0.11}, \quad C_{S_R} = 0.14^{+0.06}_{-0.67}, \quad C_{S_L} = -0.20^{+0.58}_{-0.03}, \quad C_T = 0.007^{+0.046}_{-0.044}$

• New gauge mediator: $W' \sim (1,3,0)$ $\mathcal{L}_{\text{eff}} \supset -\frac{\tilde{g}_{\ell\nu_{\ell}}\tilde{g}_{du}^{\dagger}}{M_{W'}^2} (\bar{\ell}_L \gamma_{\mu} \nu_{\ell L}) (\bar{u}_L \gamma^{\mu} d_L) \qquad \Rightarrow M_{W'} = 0.22 \text{ TeV}$

(sequential W')

 $\mathcal{B}(B_c \to \tau \nu) \le 10\%$

• Motivated scenarios:

$$C_{LL}^V + \text{All RH}$$

All

All RH
$$u_R$$

$$\begin{array}{l} \Phi \sim (1,2,1/2) \\ S_1 \sim (\bar{3},1,1/3) \\ \tilde{R}_2 \sim (3,2,1/6) \end{array} \begin{array}{l} {\rm Scalar} \\ \tilde{R}_2 \sim (3,2,1/6) \\ U_1^{\mu} \sim (3,1,2/3) \\ U_3^{\mu} \sim (3,3,2/3) \\ \tilde{V}_2^{\mu} \sim (\bar{3},2,-1/6) \\ V^{\mu} \sim (1,1,-1) \end{array} \begin{array}{l} {\rm Scalar} \\ {\rm Scalar} \\$$

 $\mathcal{B}(B_c \to \tau \nu) \le 30\%$

• Motivated scenarios:

$$C_{LL}^V + \text{All RH}$$

All

All RH
$$u_R$$

$$\begin{array}{l} \Phi \sim (1,2,1/2) \\ S_1 \sim (\bar{3},1,1/3) \\ \tilde{R}_2 \sim (3,2,1/6) \end{array} \begin{array}{l} {\rm Scalar} \\ \tilde{R}_2 \sim (3,2,1/6) \\ U_1^{\mu} \sim (3,1,2/3) \\ U_3^{\mu} \sim (3,3,2/3) \\ \tilde{V}_2^{\mu} \sim (\bar{3},2,-1/6) \\ V^{\mu} \sim (1,1,-1) \end{array} \begin{array}{l} {\rm Scalar} \\ {\rm Scalar} \\$$

 $[\]Delta \mathcal{R}_D$

 $Pull_{SM}$ – p-value

Angular observables (D^*)

 $D^{*}(p_{D^{*}})$ $\tau(p_{\tau})$ $W^*_{\mu}(q)$ $\overline{\nu}(p_{\nu})$ $F_L^{D^*} = \frac{1}{\Gamma} \int_{q^2}^{q^2_{\text{max}}} dq^2 \frac{d\Gamma_{\lambda_D^*} = 0}{dq^2}$ $\mathcal{P}_{\tau}^{D^*} = \frac{1}{\Gamma} \int_{q_{\text{max}}^2}^{q_{\text{max}}^2} dq^2 \left(\frac{d\Gamma_{\lambda_{\tau}=1/2}}{dq^2} - \frac{d\Gamma_{\lambda_{\tau}=-1/2}}{dq^2} \right)$ $\mathcal{A}_{\mathrm{FB}}^{D^*} = \frac{1}{\Gamma} \int_{q_{\mathrm{min}}^2}^{q_{\mathrm{max}}^2} dq^2 \left[\int_0^1 - \int_{-1}^0 \right] d\cos\theta_\tau \frac{d^2\Gamma}{dq^2 d\cos\theta_\tau}$