

Charmed baryon decays at BESIII

Xiao-Rui Lyu

University of Chinese Academy of Sciences, Beijing

(On behalf of the BESIII collaboration)

10th International Workshop on Charm Physics (CHARM 2020)

from 31 May 2021 to 5 June 2021 Asia/Shanghai timezone

Xiao-Rui LYU

Outline

- Physics related to the charmed baryon
- Recent results on Λ_c decays at BESIII
- Future prospects
- Summary

Why Λ_c^+ is interesting

-0.8

-0.6

-0.4

-0.2

0.0

3/2**Ώ (2770)**

 $1/2^{+}$

(a) Charmed baryons

7 (2940)

 $Λ_c π π$

ππ

 Λ_{c}

2.9 -

pD

? = 5/2+ = (3080)

 $\Lambda_c \bar{K} \pi$

? E₂(2980)

 $\Lambda_c \bar{K} \pi$

3/2[−] Ξ<mark>.(2815)</mark>

3/2+ ¥E.(2645)

YY_

1/2+¥

 $1/2^{+}$

 Ξ_{c}

 $\Omega_{\rm c}$

 $\Sigma_{\rm c}$

- An important intermediate particle:
 - corner stone of the charmed baryon spectra
 - many b-baryon decays to Λ_c
- Its decays reveal information of strongand weak-interactions in charm region, complementary to D/Ds

Xiao-Rui LYU

Knowledge of charmed baryon decays before 2014

Xiao-Rui LYU

₽€SⅢ

Charm 2020, Mexcio (online)

4

Herefore For a set of the set

2014: 0.567 fb⁻¹ at 4.6 GeV

corresponds to 0.1M Λ_c pairs

- E_{cms} -2M_{Λc}=26MeV only!
- $\Lambda_c^+ \Lambda_c^-$ produced in pairs with no additional accompany hadrons.
 - $e^+e^- \rightarrow \gamma^* \rightarrow \Lambda_c^+ \Lambda_c^-$
- Clean backgrounds and well constrained kinematics.
- Typically, two ways to study Λ_c^+ decays:
 - Single Tag(ST): detect only one of the Λ_c⁺Λ_c⁻.
 =>Relative higher backgrounds
 =>Higher efficiencies
 =>Full reconstruction
 - Double Tag(DT): detect both of Λ⁺_cΛ⁻_c
 =>Smaller backgrounds.
 =>Missing technique.
 - =>Lower efficiencies.
 - =>Systematic in tag side are mostly cancelled.

$\blacksquare Studies on the \Lambda_c^+ decays at BESIII$

Hadronic decay	2014 : 0.567 fb⁻¹ at 4.6 GeV
$\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+} + 11 \text{ CF mode}$	s PRL 116, 052001 (2016)
$\Lambda_c^+ \rightarrow pK^+K^-, p\pi^+\pi^-$	PRL 117, 232002 (2016)
$\Lambda_c^+ \rightarrow nKs\pi^+$	PRL 118, 12001 (2017)
$\Lambda_c^+ \rightarrow p\eta$, pπ ⁰	PRD 95, 111102(R) (2017)
$\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+ \pi^0$	PLB 772, 388 (2017)
$\Lambda_c^+ \to \Xi^{0(*)} K^+$	PLB783, 200 (2018)
$\Lambda_c^+ o \Lambda \eta \pi^+$	PRD99, 032010 (2019)
$\Lambda_c^+ o \Sigma^+ \eta$, $\Sigma^+ \eta'$	CPC43, 083002 (2019)
$\Lambda_c^+ \rightarrow \text{BP}$ decay asymmetries	s PRD100, 072004 (2019)
$\Lambda_c^+ o pK_s \eta$	PLB 817, 136327 (2021)
Λ_c^+ spin determination	PRD 103, L091101(2021)
Semi-leptonic decay	
$\Lambda_c^+ \rightarrow \Lambda \mathrm{e}^+ \nu_e$	PRL 115, 221805(2015)
$\Lambda_c^+ { ightarrow} \Lambda \mu^+ oldsymbol{ u}_{\mu}$	PLB 767, 42 (2017)
Inclusive decay	
$\Lambda_c^+ \rightarrow \Lambda X$	PRL121, 062003 (2018)
$\Lambda_c^+ \rightarrow e^+ X$	PRL 121 251801(2018)
$\Lambda_c^+ \rightarrow K_s^0 \mathbf{X}$	EPJC 80, 935 (2020)
Production	
$\Lambda_c^+ \Lambda_c^-$ cross section	PRL 120,132001(2018)

Xiao-Rui LYU

Charm 2020, Mexcio (online)

6

 $\Lambda_c^+ \to \Lambda \eta \pi^+$

PRD 99, 032010,(2019)

- current world result has large uncertainty
- potential to study intermediate states, such as $a_0(980)$ and $\Lambda(1670)$

Decay	CLEO in 1995	CLEO in 2003	PDG average
$B(\Lambda_c^+ \to \Lambda \eta \pi^+)/B(\Lambda_c^+ \to \mathrm{pK}^- \pi^+)$	$0.35 \pm 0.05 \pm 0.06$	$0.41 \pm 0.17 \pm 0.10$	0.36 ± 0.07
$B(\Lambda_c^+ \to \Lambda \eta \pi^+)$			$(2.3 \pm 0.5)\%$

- branching fraction $B(\Lambda_c^+ \rightarrow \Lambda \eta \pi^+)$ measured to be (1.84 ± 0.21 ± 0.15)% more precise than previous results
 - $B(\Lambda_c^+ \rightarrow \Sigma^{*+} \eta)$ measured as $(0.91 \pm 0.08 \pm 0.09)\%$ more precise than the previous result $(1.24 \pm 0.37)\%$

Xiao-Rui LYU

$\Lambda_c^+ \to \Sigma^+ \eta, \Sigma^+ \eta'$

- Decay through internal W-emission and W-exchange.
- Both are non-factorable in theoretic calculation.

Our measurement contradict with most theoretical calculations.

$$\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')}{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)} = 3.5 \pm 2.1 \pm 0.4$$

Decay mode	Körner [5]	Sharma 3	Zenczykowski [4]	Ivanov [6]	CLEO [12]	This work
$\Lambda_c^+\! ightarrow\!\Sigma^+\eta$	0.16	0.57	0.94	0.11	$0.70{\pm}0.23$	$0.41{\pm}0.20~({<}0.68)$
$\Lambda_c^+\!\rightarrow\!\Sigma^+\eta'$	1.28	0.10	0.12	0.12	-	$1.34{\pm}0.57~({<}1.9)$

Xiao-Rui LYU

 $\Lambda_c^+ \to p K_s \eta$

PLB 817, 136327 (2021)

Unweighted signal MC 🛛 🔶 Data

- Previous CLEO result of $B(\Lambda_c^+ \rightarrow pK_s^0\eta) = (0.8 \pm 0.2)\%$, while theoretical calculations based on SU(3) symmetry give $(0.35 \sim 0.45)\%$
- A potential channel to study a puzzling N(1535) which has nontrivial decay rate of ηN and $K\Lambda$
- 2D fit to $M_{\rm BC}$ and ΔE distributions are implemented single tag method significance 5.3 σ

Xiao-Rui LYU

- Best precisions on the hadronic weak decay asymmetries
- No theoretical models fully describe the new BESIII results
- The transverse polarization is firstly studied and found to be non-zero with 2.1σ

Xiao-Rui LYU

Λ_c^+ spin determination

PRD103, L091101(2021)

- No spin-determination of the Λ_c since first discovery more than 30 years ago
- Currently, the spin half of the Λ_c is inferred to be from the naive quark model
- It would be crucial to test this spin assignment in experiment, to test the quark model hadron classification
- Multi-dimensional angular analysis on the ST samples of $\Lambda_c \rightarrow pK_s$, $\Lambda \pi^+$, $\Sigma^+ \pi^0$ and $\Sigma^0 \pi^+$ are carried out to test both hypotheses of *J*=1/2 and 3/2

J=1/2 is preferred over J=3/2 with a significance of 6 σ

- consistent with the expectation of the naive quark model.
- a cornerstone in the extraction of the properties of heavier charmed and beauty baryons

Inclusive decay $\Lambda_c^+ \to e^+ X$

- Difference between $B(\Lambda_c \rightarrow \Lambda e^+ \nu)$ and $B(\Lambda_c \rightarrow e^+ X)$ can shed light on searching for new semi-leptonic mode
- Two clean tag modes are used
- PID unfolding is implemented
- Improved results from Mark II's

✓ **BESIII results:**

$$B(\Lambda_{c}^{+} \to Xe^{+}v_{e}) = (3.95 \pm 0.34 \pm 0.09)\%$$
$$\frac{B(\Lambda_{c}^{+} \to \Lambda e^{+}v_{e})}{B(\Lambda_{c}^{+} \to Xe^{+}v_{e})} = (91.9 \pm 12.5 \pm 5.4)\%$$

 $\frac{\Gamma(\Lambda_c^+ \to X e^+ v_e)}{\Gamma(D \to X e^+ v_e)} = 1.26 \pm 0.12$

consistent with theoretical predictions

$\Lambda_c^+ \to X e^+ \nu_e$	Right sign	Wrong sign
Observed yields		
Tag signal region	228.0 ± 15.1	26.0 ± 5.1
Tag sideband region	11.0 ± 3.3	2.0 ± 1.4
PID unfolding		
Tag signal region	250.1 ± 17.1	28.3 ± 6.2
Tag sideband region	12.1 ± 3.8	1.7 ± 1.5
Sideband subtraction	240.7 ± 17.4	27.0 ± 6.3
Wrong-sign subtraction	213.7 ± 18.5	
Correction of tracking efficiency	272.1 ± 23.5	

PRL121, 251801(2018)

Xiao-Rui LYU

Inclusive decay $\Lambda_c^+ \to K_S^0 X$

- Sum BF for exclusive channels with K^0 or \overline{K}^0 is evaluated to be $(22.4 \pm 0.9)\%$ with inclusion of guessed modes EPJC 80, 935 (2020)
- Its difference from the inclusive rate $B(\Lambda_c^+ \to K^0/\overline{K}^0X)$ will help in identifying unknown modes
- Eleven hadronic tag modes are used

- 2D fit
- signal yields: 478 ± 27

Mode	Value (%)	Mode	Value (%)
Observed BF		Extrapolated BF	
$p\bar{K}^0$	$3.18{\pm}0.16$	$nar{K}^0\pi^+\pi^0$	3.07±0.16
$p \bar{K}^0 \pi^0$	$3.94{\pm}0.26$	$par{K}^0\pi^0\pi^0$	$1.36{\pm}0.07$
$p \bar{K}^0 \pi^+ \pi^-$	3.20±0.24	$nar{K}^0\pi^+\pi^+\pi^-$	$0.14{\pm}0.09$
$nar{K}^0\pi^+$	$3.64{\pm}0.50$	$par{K}^0\pi^+\pi^-\pi^0$	$0.22{\pm}0.14$
$p \bar{K}^0 \eta$	1.60 ± 0.40	$nar{K}^0\pi^+\pi^0\pi^0$	$0.10{\pm}0.06$
$\Lambda K^+ ar K^0$	0.57 ± 0.11	$par{K}^0\pi^0\pi^0\pi^0$	$0.03{\pm}0.02$
in statistica	al isospin mode	$\sum (\Sigma K)^+ \bar{K}^0$	$0.68 {\pm} 0.34$
PRD97, 1	16015 (2018)	$\Xi^0 K^0 \pi^+$	$0.62{\pm}0.06$
Total	16.1 ± 0.8	Total	6.3 ± 0.4
Total		22.4 ± 0.9	

 $B(\Lambda_c^+ \to K_S^0 X) = (9.9 \pm 0.6 \pm 0.4)\%$ $B(\Lambda_c^+ \to K^0 / \overline{K}^0 X) = (19.8 \pm 1.2 \pm 0.8 \pm 1.0)\%$

- third error due to isospin breaking for Λ_c^+ decaying to *K*s or K_L in final states
- compatible with the estimated exclusive rate

Heavier charmed baryons

	Structure	J^P	Mass, MeV	Width,MeV	Decay
Λ_c^+	udc	$(1/2)^+$	2286.46 ± 0.14	(200 ± 6) fs	weak
Ξ_c^+	usc	$(1/2)^+$	$2467.8^{+0.4}_{-0.6}$	(442 ± 26) fs	weak
Ξ_c^0	dsc	$(1/2)^+$	$2470.88\substack{+0.34\\-0.8}$	112^{+13}_{-10} fs	weak
Σ_{c}^{++}	uuc	$(1/2)^+$	2454.02 ± 0.18	2.23 ± 0.30	$\Lambda_c^+\pi^+$
Σ_c^+	udc	$(1/2)^+$	2452.9 ± 0.4	< 4.6	$\Lambda_c^+ \pi^0$
Σ_c^0	ddc	$(1/2)^+$	2453.76 ± 0.18	2.2 ± 0.4	$\Lambda_c^+\pi^-$
$\Xi_c^{\prime+}$	usc	$(1/2)^+$	2575.6 ± 3.1	-	$\Xi_c^+ \gamma$
Ξ_c^0	dsc	$(1/2)^+$	2577.9 ± 2.9	_	$\Xi_c^0 \gamma$
Ω_c^0	ssc	$(1/2)^+$	2695.2 ± 1.7	(69 ± 12) fs	weak
Σ_c^{*++}	uuc	$(3/2)^+$	2518.4 ± 0.6	14.9 ± 1.9	$\Lambda_c^+\pi^+$
Σ_c^{*+}	udc	$(3/2)^+$	2517.5 ± 2.3	< 17	$\Lambda_c^+ \pi^0$
Σ_c^{*0}	ddc	$(3/2)^+$	2518.0 ± 0.5	16.1 ± 2.1	$\Lambda_c^+\pi^-$
Ξ_c^{*+}	usc	$(3/2)^+$	$2645.9^{+0.5}_{-0.6}$	< 3.1	$\Xi_c \pi$
Ξ_{c}^{*0}	dsc	$(3/2)^+$	2645.9 ± 0.5	< 5.5	$\Xi_c \pi$
Ω_c^{*0}	SSC	$(3/2)^+$	2765.9 ± 2.0		$\Omega_c^0 \gamma$

ESI New data samples in 2020 and 2021

Two major changes in BEPCII machine:

- max beam energy: 2.30→2.35(2018)→ 2.48 GeV(2020)
- top-up injection: data taking efficiency increases by 20~30%

Available data for charmed baryon

- ✓ 0.567 fb⁻¹ at 4.6 GeV (35 days in 2014)
- ✓ 3.8 fb⁻¹ scan at 4.61, 4.63, 4.64, 4.66, 4.68, 4.7 GeV (186 days in 2020)
- ✓ 2 fb⁻¹ scan at 4.74, 4.78, 4.84, 4.91, 4.95 GeV (99 days in 2021)

~ 10x Λ_c data that those at 4.6 GeV; accessible to Σ_c/Ξ_c prod. & decays

ESI Proposal of the BEPCII upgrade

• optimized energy at 2.35 GeV with luminosity 3 times higher than the current BEPCII.

Ξ_c (usc/dsc): decay information is limited

- No absolute BFs have been measured/calculated until 2019
- Belle measured abs. BFs in 2019, but uncertainties are large: $\delta B \sim 30\%$

absol	ute branching fractions have been me	asured.The following are branching	Mode		Fraction (Γ_i / Γ
$\Xi^{-}\pi^{+}$	Cabibbo-favored ($S = -2$) decays -	relative to $\Xi^- \pi^+$	Cabibb	o-favored (S = -2) decays	
1	-0	0.087 ± 0.021	Γ_1	$pK^-K^-\pi^+$	$(4.8 \pm 1.2) \times 10^{-3}$
	$\Lambda K^{*}\pi^{+}$		Γ_2	$nK^{-}\overline{K}^{*}(892)^{0}$ $\overline{K}^{*0} \rightarrow K^{-}\pi^{+}$	$(2.0 \pm 0.6) \times 10^{-3}$
	$\Sigma(1385)^+\overline{K}^0$	1.0 ± 0.5	Γ3	$pK^{-}K^{-}\pi^{+} (n \circ \overline{K}^{*0})$	$(3.0 \pm 0.9) \times 10^{-3}$
	$\Lambda K^{-}2 \pi^{+}$	0.323 ± 0.033	Γ_4	$\Lambda K_{\rm s}^{\rm o}$	$(3.0 \pm 0.8) \times 10^{-3}$
	$\Lambda \overline{K}^*(892)^0 \pi^+$	< 0.16	Γ_5	$\Lambda K^{-}\pi^{+}$	$(1.45 \pm 0.33)\%$
	$\Sigma(1385)^{+}K^{-}\pi^{+}$	< 0.23	Γ ₆	$\Lambda \overline{K}^0 \pi^+ \pi^-$	seen
	$\Sigma^+ K^- \pi^+$	0.94 ± 0.10	Γ_7	$\frac{\Lambda K}{\Lambda K^{-}\pi^{+}\pi^{+}\pi^{-}}$	seen
	$\Sigma^+\overline{K}^*(892)^0$	0.81 ± 0.15	Γ_8	$\Xi^-\pi^+$	$(1.43 \pm 0.32)\%$
	$\Sigma^0 K^- 2 \pi^+$	0.27 ± 0.12	Г9	$\Xi^-\pi^+\pi^+\pi^-$	$(4.8 \pm 2.3)\%$
	$\Xi^0\pi^+$	0.55 ± 0.16	Γ_{10}	$\Omega^{-}K^{+}$	$(4.2 \pm 1.0) \times 10^{-1}$
	Ξ ⁻ 2π ⁺	DEFINEDAS1	Γ_{11}	$\Xi^- e^+ \nu_e$	$(1.8 \pm 1.2)\%$
2	$\Xi(1530)^{0}\pi^{+}$	< 0.10	Cabibb	o-suppressed decays	
3	$\Xi^0\pi^+\pi^0$	2.3 ± 0.7	Γ_{12}	Ξ^-K^+	$(3.9 \pm 1.2) \times 10^{-4}$
4	$\Xi^0\pi^-2\pi^+$	1.7 ± 0.5	Γ ₁₃	$\Lambda K^+ K^-$ (no ϕ)	$(4.1 \pm 1.4) \times 10^{-4}$
5	$\Xi^0 e^+ \nu_e$	$2.3^{+0.7}_{-0.8}$	Γ_{14}	$\Lambda\phi$	$(4.9 \pm 1.5) \times 10^{-4}$
6	$\Omega^- K^+ \pi^+$	0.07 ± 0.04			

	C C	
Mode		Fraction (Γ_i / Γ)
Cabibbo	-favored (S = -2) decays	
Γ_1	$pK^-K^-\pi^+$	$(4.8 \pm 1.2) \times 10^{-3}$
Γ_2	$pK^-\overline{K}^*(892)^0$, $\overline{K}^{*0} \to K^-\pi^+$	$(2.0 \pm 0.6) \times 10^{-3}$
Γ_3	$pK^-K^-\pi^+$ (no \overline{K}^{*0})	$(3.0 \pm 0.9) \times 10^{-3}$
Γ_4	ΛK_S^0	$(3.0 \pm 0.8) \times 10^{-3}$
Γ_5	$\Lambda K^{-}\pi^{+}$	$(1.45 \pm 0.33)\%$
Γ_6	$\Lambda \overline{K}^0 \pi^+ \pi^-$	seen
Γ_7	$\Lambda K^- \pi^+ \pi^+ \pi^-$	seen
Γ_8	$\Xi^-\pi^+$	$(1.43 \pm 0.32)\%$
Г9	$\Xi^-\pi^+\pi^+\pi^-$	$(4.8 \pm 2.3)\%$
Γ_{10}	$\Omega^{-}K^{+}$	$(4.2 \pm 1.0) \times 10^{-3}$
Γ ₁₁	$\Xi^- e^+ u_e$	$(1.8 \pm 1.2)\%$
Cabibbo	-suppressed decays	
Γ_{12}	Ξ^-K^+	$(3.9 \pm 1.2) \times 10^{-4}$
Γ_{13}	$\Lambda K^+ K^-$ (no ϕ)	$(4.1 \pm 1.4) \times 10^{-4}$
Γ_{14}	$\Lambda\phi$	$(4.9 \pm 1.5) \times 10^{-4}$

Xiao-Rui LYU

 Γ_{20} Γ_{21}

 $\Sigma^+ K^+ K^-$

 0.15 ± 0.06

Xiao-Rui LYU

Charm 2020, Mexcio (online)

Studies on the Ω_c^0

Mode	
------	--

✓ No absolute branching fractions have been measured. The following are branching rational state of the second state of th Cabibbo-favored (S = -3) decays – relative to $\Omega^{-}\pi^{+}$

Γ_1	$\Omega^{-}\pi^{+}$	DEFINED AS 1
Γ_2	$\Omega^{-}\pi^{+}\pi^{0}$	1.80 ± 0.33
Γ_3	$\Omega^- ho^+$	> 1.3
Γ_4	$\Omega^{-}\pi^{-}2\pi^{+}$	0.31 ± 0.05
Γ_5	$\Omega^- e^+ \nu_e$	2.4 ± 1.2
Γ_6	$\Xi^0\overline{K}^0$	1.64 ± 0.29
Γ_7	$\Xi^0 K^- \pi^+$	1.20 ± 0.18
Γ_8	$\varXi^0 \overline{K}^{*0}$, $\overline{K}^{*0} o K^- \pi^+$	0.68 ± 0.16
Г9	$\Xi^-\overline{K}^0\pi^+$	2.12 ± 0.28
Γ_{10}	$\Xi^- K^- 2 \pi^+$	0.63 ± 0.09
Γ_{11}	$\Xi(1530)^0 K^- \pi^+$, $\Xi^{*0} \to \Xi^- \pi^+$	0.21 ± 0.06
Γ_{12}	$\Xi^-\overline{K}^{*0}\pi^+$	0.34 ± 0.11
Γ_{13}	$\Sigma^+ K^- K^- \pi^+$	< 0.32
Γ_{14}	$\Lambda \overline{K}^0 \overline{K}^0$	1.72 ± 0.35

Fraction (Γ_i / Γ)

EFSI Studies on most of the Ξ_c / Ω_c weak decays are missing in experiment (I)

BFs of CF decays

	RQM	Pole	Pole	RQM	Pole	Pole (in	units of %)
Decay	Körner,	Xu,	Cheng,	Ivanov	Żenczykowski	Sharma,	Expt.
	Krämer ('92)	Kamal ('92)	Tseng ('93)	et al. ('98)	('94)	Verma ('99)	
$\Xi_c^+\to \Sigma^+ \bar{K}^0$	6.45	0.44	0.84	3.08	1.56	0.04	
$\Xi_c^+ \to \Xi^0 \pi^+$	3.54	3.36	3.93	4.40	1.59	0.53	0.55 ± 0.16^a
$\Xi_c^0 \to \Lambda \bar{K}^0$	0.12	0.37	0.27	0.42	0.35	0.54	seen
$\Xi_c^0 o \Sigma^0 \bar{K}^0$	1.18	0.11	0.13	0.20	0.11	0.07	
$\Xi_c^0\to \Sigma^+ K^-$	0.12	0.12		0.27	0.36	0.12	
$\Xi_c^0 \to \Xi^0 \pi^0$	0.03	0.56	0.28	0.04	0.69	0.87	
$\Xi_c^0 o \Xi^0 \eta$	0.24			0.28	0.01	0.22	
$\Xi_c^0 o \Xi^0 \eta'$	0.85			0.31	0.09	0.06	
$\Xi_c^0\to \Xi^-\pi^+$	1.04	1.74	1.25	1.22	0.61	2.46	seen
$\Omega_c^0 o \Xi^0 \bar{K}^0$	1.21		0.09	0.02			

Studies on most of the Ξ_c / Ω_c^0 weak decays are missing in experiment (II)

Decay asymmetry α for CF decays

Longitudinal pol. of daughter baryon from unpol. parent baryon

 \Rightarrow information on the relative sign between s- and p-waves

Decay	Körner,	Xu,	Cheng,	Ivanov	Żenczykowski	Sharma,	Expt.
	Krämer ('92)	Kamal ('92)	Tseng ('93)	et al. ('98)	('94)	Verma ('99)	\frown
$\Xi_c^+\to \Sigma^+ \bar{K}^0$	-1.0	0.24	-0.09	-0.99	1.00	0.54	
$\Xi_c^+ \to \Xi^0 \pi^+$	-0.78	-0.81	-0.77	-1.0	1.00	-0.27	
$\Xi_c^0 o \Lambda \bar{K}^0$	-0.76	1.0	-0.73	-0.75	-0.29	-0.79	
$\Xi_c^0 \to \Sigma^0 \bar{K}^0$	-0.96	-0.99	-0.59	-0.55	-0.50	0.48	
$\Xi_c^0\to \Sigma^+ K^-$	0	0		0	0	0	
$\Xi_c^0 \to \Xi^0 \pi^0$	0.92	0.92	-0.54	0.94	0.21	-0.80	
$\Xi_c^0 o \Xi^0 \eta$	-0.92			-1.0	-0.04	0.21	
$\Xi_c^0 o \Xi^0 \eta'$	-0.38			-0.32	-1.00	0.80	
$\Xi_c^0 \to \Xi^- \pi^+$	-0.38	-0.38	-0.99	-0.84	-0.79	-0.97	-0.6 ± 0.4
$\Omega_c^0 \to \Xi^0 \bar{K}^0$	0.51		-0.93	-0.81			

Studies on most of the Ξ_c / Ω_c^0 weak decays are missing in experiment (III)

Larger than

theoretical

predictions

Charm-flavor-conserving weak decays

- Light quarks undergo weak transitions, while c quark behaves as a "spectator" e.g. Ξ_c→ Λ_cπ (s → W⁻u). Can be studied using HHChPT.
 - $Br(\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-) = 2.9 \times 10^{-4}$

 $Br(\Xi_c^+ \rightarrow \Lambda_c^+ \pi^0) = 6.7 \times 10^{-4}$

Cheng, Cheung, Lin, Lin, Yan, Yu ('92)

These can be further tested at BESIII

 $\mathcal{B}(\Xi_c^0 \to \pi^- \Lambda_c^+) \ (0.55 \pm 0.02 \pm 0.18)\%$

[LHCb, PRD 102, 071101 (2020)]

Semileptonic decays

	$ \rightarrow$	NRQM	←	RQM	LFQM	QSR	QSR	
Process	Pérez-Marcial	Singleton	Cheng,	Ivanov	Luo	Marques de Carvalho	Huang,	Expt.
	et al. [85]	[86]	Tseng [81]	et al. [87]	[88]	et al. [89]	Wang [90]	[3]
$\Xi_c^0 \to \Xi^- e^+ \nu_e$	18.1 (12.5)	8.5	7.4	8.16	9.7			seen
$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	18.4 (12.7)	8.5	7.4	8.16	9.7			seen

in units of $10^{10} \, s^{-1}$

 ${\cal B}(\Xi_c^0 o \Xi^- e^+
u_e) = (1.72 \pm 0.10 \pm 0.12 \pm 0.50)\%$

 $\mathcal{B}(\Xi_c^0 o \Xi^- \mu^+
u_\mu) = (1.71 \pm 0.17 \pm 0.13 \pm 0.50)\%$

[Belle, arXiv:<u>2103.06496</u>]

 $\mathcal{B}_{exp}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = 2.43(0.25)(0.35)(0.72)\%$ [ALICE, PoS ICHEP 2020, 524(2021)]

Xiao-Rui LYU

Summary

- BESIII has been playing significant role in studying Λ_c decays
- Many new results of Λ_c decays have been published in Charm2018
- BEPCII energy upgrade during 2020-2021 has improved the BESIII capability in Λ_c physics by accumulating more statistics at different energy points and pose opportunity to study Σ_c/Ξ_c physics
- Proposal of BEPCII upgrade (3x luminosity and energy up to 5.6 GeV) will greatly extend the physics opportunities in *c*-baryon sector

Thank you! 谢谢!

Xiao-Rui LYU