Lattice QCD inputs for leptonic and semileptonic charm decays $+R\left(D^{(*)}\right)$

Aida X. El-Khadra

10th International Workshop on
Charm Physics (CHARM 2020)
UNAM (online)
31 May - 04 June 2021

Outline

- Lattice OCD Introduction

9 Leptonic D, D_{s}-meson decays

- Decay constants
- $\left|V_{c d}\right|$ and $\left|V_{c s}\right|$
- Semileptonic D, D_{s}-meson decays
- Lattice OCD form factors
- $\left|V_{c d}\right|$ and $\left|V_{c s}\right|$
- $2^{\text {nd }}$ row CKM unitarity test

9 LFU ratios:
$R(D), R\left(D^{*}\right), R\left(D_{s}\right), R\left(D_{s}^{*}\right), R\left(\Lambda_{c}\right), R(J / \psi)$

- Summary and Outlook

Lattice OCD Introduction

$$
\mathcal{L}_{\mathrm{QCD}}=\sum_{f} \bar{\psi}_{f}\left(\not D+m_{f}\right) \psi_{f}+\frac{1}{4} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}
$$

- discrete Euclidean space-time (spacing a) derivatives \rightarrow difference operators, etc...
- finite spatial volume (L)
- finite time extent (T)
adjustable parameters
* lattice spacing:

$$
a \rightarrow 0
$$

* finite volume, time: $L \rightarrow \infty, T>L$
$E-3$
EJ EJ EJ EJ
tune using hadron masses
$M_{H, \text { lat }}=M_{H, \exp }$
$m_{f} \rightarrow m_{f, \text { phys }}$
$m_{u d}$
m_{s}
m_{c}
m_{b} extrapolations/interpolations

Lattice \because antroouction

$$
\mathcal{L}_{\mathrm{QCD}}=\sum_{f} \bar{\psi}_{f}\left(\not D+m_{f}\right) \psi_{f}+\frac{1}{4} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}
$$

- discrete Euclidean space-time (spacing a) derivatives \rightarrow difference operators, etc...
- finite spatial volume (L)

Integrals are evaluated numerically using monte carlo methods.
adjustable parameters

* lattice spacing:

$$
a \rightarrow 0
$$

* finite volume, time: $L \rightarrow \infty, T>L$
$E-3$
$\because \in \theta \in B$
* quark masses (m_{f}):
$M_{H, \text { lat }}=M_{H, \exp }$
$m_{f} \rightarrow m_{f, \text { phys }}$
$m_{u d} \quad m_{s} \quad m_{c} \quad m_{b}$
tune using hadron masses
- finite time extent (T) extrapolations/interpolations

Lattice \because antroouction

$$
\mathcal{L}_{\mathrm{QCD}}=\sum_{f} \bar{\psi}_{f}\left(\not D+m_{f}\right) \psi_{f}+\frac{1}{4} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}
$$

- discrete Euclidean space-time (spacing a) derivatives \rightarrow difference operators, etc...
- finite spatial volume (L) Integrals are evaluated
- finite time extent (T)
adjustable parameters
* lattice spacing:

$$
a \rightarrow 0
$$

* finite volume, time: $L \rightarrow \infty, T>L$
* quark masses (m_{f}):
tune using hadron masses

$$
\begin{aligned}
& M_{H, \text { lat }}=M_{H, \text { exp }} \\
& m_{f} \rightarrow m_{f, \text { phys }}
\end{aligned}
$$ extrapolations/interpolations

Lattice OCD Introduction

combined chiral-continuum interpolation/extrapolation

Growing number of collaborations have generated sets of ensembles that include sea quarks with physical light-quark masses and use improved lattice actions: PACS-CS, BMW, MILC, RBC/UKOCD, ETM,...

Lattice OCD Introduction

The State of the Art

Lattice OCD calculations of simple quantities (with at most one stable meson in initial/final state) that quantitatively account for all systematic effects (discretization, finite volume, renormalization,...), in some cases with

- sub percent precision.
- total errors that are commensurate (or smaller) than corresponding experimental uncertainties.
Scope of LQCD calculations is increasing due to continual development of new methods:
- nucleons and other baryons
- nonleptonic decays ($K \rightarrow \pi \pi, \ldots$)
- resonances, scattering, long-distance effects, ...
- QED effects
- radiative decay rates ...

Lattice QCD: Overview

$$
a_{\mu}^{\mathrm{HVP} \mathrm{LO}} \quad a_{\mu}^{\mathrm{HLbL}}
$$

$$
\underset{\substack{g_{A} \\\left\langle\bar{B}_{q}^{0}\right| \mathcal{O}_{i}^{\Delta B=2} \\\left|B_{q}^{0}\right\rangle}}{ } \quad \text { MEs for light nuclei }
$$

$$
\left\langle\bar{D}^{0}\right| \mathcal{O}_{i}^{\Delta C=2}\left|D^{0}\right\rangle
$$

$$
\hat{B}_{K} \ldots \begin{gathered}
\Lambda_{b} \rightarrow p, \Lambda_{c}, \Lambda \\
\text { nucleon form } f
\end{gathered}
$$

nucleon form factors, ..

$$
f_{+, 0}^{B \rightarrow D}\left(q^{2}\right), \ldots
$$

$$
f_{+}^{K \rightarrow \pi} \quad f_{+.0 T}^{B \rightarrow \pi} \ldots \quad\left\langle\pi \pi_{(I=0)}\right| \mathcal{H}^{\Delta S=1}\left|K^{0}\right\rangle
$$

$$
f_{K^{ \pm}} f_{B_{(s)}} \cdots \quad\left\langle\pi \pi_{(I=2)}\right| \mathcal{H}^{\Delta S=1}\left|K^{0}\right\rangle
$$

[inspired by A. Kronfeld]

$$
\begin{array}{ll}
\Delta M_{K}, \epsilon_{K} & B \rightarrow K^{*} \ell \ell \rightarrow K \pi \ell \ell \ldots \\
& K^{+} \rightarrow \ell^{+} \nu(\gamma) \ldots
\end{array} \quad B \rightarrow X_{c} \ell \nu,
$$

other inclusive decay rates,

$$
K^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-} \ldots \quad \ldots
$$

$$
K^{+} \rightarrow \pi^{+} \nu \bar{\nu}
$$

> Complete LQCD results, large(ish) errors

First results,
physical params,
incomplete
systematics

> new methods, pilot projects, unphysical kinematics
new ideas, first studies

Leptonic D, D_{s} meson decay

example: $D^{+} \rightarrow \mu^{+} \nu_{\mu}$

$$
\left.\Gamma\left(D^{+} \rightarrow \mu^{+} \nu_{\mu}(\gamma)\right)=(\text { known }) \times S_{\mathrm{EW}}\left(1+\delta_{\mathrm{EM}}\right) \times\left. V_{c d}\right|^{2}\right) \times f_{D^{+}}^{2}
$$

9 use experiment + LQCD input ($f_{D^{+}}$) for determination of CKM element
Q account for EW+EM corrections in the experimental rate

- EW: [Sirlin, Nuc. Phys. 1982] ~ 1.8\%
- EM: Structure dependent: [Dobrescu+Kronfeld, PRL 2008] ~ 1\%

depends on photon energy cut
Long distance: [Kinoshita, PRL 1959] ~ 2.4\%
nill removed with PHOTOS

D, D_{s} meson decay constants

[S. Aoki et al FLAG 2019 review, 1902.08191, webupdate: flag.unibe.ch/2019/]

Small errors due to:
\& physical light quark masses
\& improved light-quark actions
\& small lattice spacings
\& NPR or no renormalization

| | | $f_{D_{s}} / f_{D}$ |
| :--- | :--- | :--- | :--- |

Consider strong isospin breaking effects to obtain $f_{D^{+}}$

Leptonic D, D_{s} meson decay

experimental averages [PDG 2019, Rosner, Stone, Van de Water]:

2nd row CKM unitarity test: $\left|V_{c d}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{c b}\right|^{2}-1=0.016(37)$

Semileptonic D, D_{s} meson decay

example: $D^{0} \rightarrow \pi^{-} \mu^{+} \nu_{\mu}$

$$
\frac{d \Gamma\left(D^{0} \rightarrow \pi^{-} \mu^{+} \nu_{\mu}(\gamma)\right)}{d q^{2}}=(\mathrm{known}) \times S_{\mathrm{EW}}\left(1+\delta_{\mathrm{EM}}\right) \times\left|V_{c d}\right|^{2} \times f_{+}\left(q^{2}\right)^{2}
$$

Q calculate the form factors over entire q^{2} range + model-independent parametrization of shape (z-expansion).
Q account for EW+EM corrections in experimental rate

- EW: [Sirlin, Nuc. Phys. 1982] ~ 1.8\%
- EM: Structure dependent: use guidance from $K_{\ell 3}$? ~ 1% ?
depends on photon energy cut
Long distance: [Kinoshita, PRL 1959] ~ 2.4\%
nul removed with PHOTOS

Semileptonic D meson decay form factors

¿ Compare shape of LQCD form factor with experiment and fit LOCD form factors + experimental diff. rates to determine $\left|V_{c d}\right|$ or $\left|V_{c s}\right|$
\approx can also extract CKM elements from exp. average of $\left|V_{c q}\right| f_{+}(0)$
is similar analysis with Λ_{c} decay form factors [Meinel, arXiv:1611.09696, 2017 PRL].
¿ also: D-meson tensor form factors [ETM, arXiv:1803.04807, 2018 PRD]
¿ongoing work by FNAL/MILC, JLQCD, RBC/UKOCD, ALPHA,...

Semileptonic D meson decay

For illustration: experimental averages [HFLAV 2019, arXiv:1909.12524, EPJC2021]:

$$
\left[S_{\mathrm{EW}}\left(1+\delta_{\mathrm{EM}}\right)\right]^{1 / 2}\left|V_{c s}\right| f_{+}^{D K}(0)=0.7180(33)_{\exp } \quad\left[S_{\mathrm{EW}}\left(1+\delta_{\mathrm{EM}}\right)\right]^{1 / 2}\left|V_{c d}\right| f_{+}^{D \pi}(0)=0.1426(18)_{\exp }
$$

From joint exp + LQCD fits:

2nd row CKM unitarity test: $\left|V_{c d}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{c b}\right|^{2}-1=-0.0174$ (157)

Form factors for $B \rightarrow D \ell \nu_{\ell}$

\star The form factors obtained from the combined exp/lattice fit are well determined over entire recoil range.
\star Can be used for an improved SM prediction of $R(D)$.
\star Ongoing work by FNAL/MILC, JLQCD, RBC/UKQCD, HPQCD
\star Also: form factors for $\Lambda_{b} \rightarrow \Lambda_{c} \ell \nu$ Detmold+Meinel [arXiv:1503.01421, 2015 PRD]

Form factors for $B_{s} \rightarrow D_{s} \ell \nu_{\ell}$

HPQCD [arXiv:1906.00701, PRD 2020]

FNAL/MILC [arXiv:1901.02561, PRD 2019]

Reconstructed from $B \rightarrow D$ form factors [1505.03925] and B_{s} / B ratio [1403.0635]
\star Can be used to predict $R\left(D_{s}\right)$.
\star New: experimental measurements of differential decay rate by LHCb * Ongoing work by FNAL/MILC, JLQCD, RBC/UKOCD, HPQCD

Form factors for $B \rightarrow D^{*} \ell \nu_{\ell}$ and $\left|V_{c b}\right|$

$$
\frac{d \Gamma}{d w}=(\text { known }) \times \eta_{\mathrm{EW}}^{2}\left(1+\delta_{\mathrm{EM}}\right) \times\left|V_{c b}\right|^{2} \times\left(w^{2}-1\right)^{1 / 2} \times \chi(w)|\mathcal{F}(w)|^{2}
$$

$\star \mathcal{F}(w)=f\left[h_{A_{1}}(w), h_{V}(w), h_{A_{2}}(w), h_{A_{3}}(w)\right]$

$$
w=v_{B} \cdot v_{D^{*}}
$$

\star results for form factor at zero recoil:
FNAL/MILC [arXiv:1403.0635, 2014 PRD], HPQCD [arXiv:1711.11013, 2018 PRD]
\star result for $\mathcal{F}^{B_{s} \rightarrow D_{s}^{*}}(1): \mathrm{HPQCD}$ [arXiv:1904.02046, 2019 PRD]
\star New: non-zero recoil form factors:
$B \rightarrow D^{*}:$ FNAL/MILC [arXiv:2105.14019] $\quad B_{s} \rightarrow D_{s}^{*}$: HPQCD [arXiv:2105.11433]
\star ongoing efforts by
JLQCD [T. Kaneko @APLAT 2020 conference, arXiv:1912.11770]
LANL/SWME [Bhattacharya et al, arXiv:2003.09206]
FNAL/MILC [A. Vaquero \& A. Lytle @ Lattice 2021]

* new constraints/LOCD inputs:
[Martinelli et al, arXiv:2105.08674, arXiv:2105.07851]

Form factors for $B_{(s)} \rightarrow D_{(s)}^{*} \ell \nu_{\ell}$

[FNAL/MILC, arXiv:2105.14019]

[HPQCD, arXiv:2105.11433]

\star Results for $h_{A_{1}}(w), h_{A_{2}}(w), h_{A_{3}}(w), h_{V}(w)$.
\star Can be used to calculate $R\left(D_{(s)}^{*}\right)$ (lattice-only)
\star Can be used in joint fits with experimental data to determine $\left|V_{c b}\right|$ and $R\left(D_{(s)}^{*}\right)$ (lattice $\left.+\exp \right)$

Phenomenology: LFU τ / ℓ

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu\right)}
$$

Phenomenology: LFU τ / ℓ

FNAL/MILC [arXiv:2105.14019]

Meinel+Detmold:
$R\left(\Lambda_{c}\right)=0.332(10)$
[arXiv:1503.01421, 2015 PRD]

HPQCD:
$R\left(D_{s}^{*}\right)=0.2442(79)_{\mathrm{lat}}(35)_{\mathrm{EM}}$
[arXiv:2105.14019]
$R\left(D_{s}\right)=0.2987(46)$
[arXiv:1906.00701, 2020 PRD]
$R(J / \psi)=0.2582(38) \quad \sim 2 \sigma$ below LHCb [arXiv:2007.06956, 2020 PRL]

LHCb:
$R(J / \psi)=0.71(17)(18)$
[arXiv:1711.05623, 2018 PRL]

Can also use the lattice form factors to study how observables change under NP scenarios.

Summary and Outlook

i D, D_{s}-meson decay constants known from LQCD with $\sim 0.2-0.3 \%$ precision.
III exp. uncertainties dominate in $\left|V_{c q}\right|$ determination smaller exp. errors: ${ }^{n+4}$ big impact on $\left|V_{c q}\right|$ and CKM unitarity
\approx including EW correction resolves $\sim 2 \sigma$ tension CKM unitarity test [PDG]
is D, D_{s}-meson form factors known from LQCD with $\sim 1-3 \%$ precision -First LQCD calculation of $f_{+, 0}^{D \rightarrow K}\left(q^{2}\right)$ with $\sim 0.5 \%$ precision [HPQCD] (see parallel talk by W. Parrott on Friday, 13:10, for more details)
-focus of ongoing LQCD efforts is on full q^{2} dependence
EW + EM corrections significant (dominant) source of uncertainty; need to be better quantified
LQCD calculations of radiative corrections, radiative decay [Desidero et al, arXiv:2006.05358, 2020 PRD, Kane et al, arXiv:1907.00279, Di Carlo et al, arXiv:1904.0873, 2019 PRD,....]
is New: LQCD results for $B \rightarrow D^{*}\left[\right.$ FNAL/MILC] and $B_{s} \rightarrow D_{s}^{*}$ [HPQCD] form factors @ nonzero q^{2}.
nilt new results for $R\left(D^{*}\right), R\left(D_{s}^{*}\right)$ and related
is scope of LOCD calculations continues to increase (new methods, new formulations, new quantities)
meeting the growing precision needs of the experimental program

Thank you!

Farah Willenbrock

Appendix

Heavy Quarks

- For light quark ($m_{q} \ll \Lambda_{\mathrm{QCD}}$) quantities, the leading discretization errors $\sim(a \Lambda)^{2}$ - if the fermion action is $O(a)$ improved.
- Using the same action for heavy quarks ($m_{Q}>\Lambda_{\mathrm{QCD}}$) results in leading discretization errors $\sim\left(a m_{Q}\right)^{2}$. The effects are large, if $a m_{q} \nless 1$, which is true for b quarks on most available ensembles.

Uw Two classes of solutions:

1. avoid $\sim\left(a m_{Q}\right)^{2}$ effects using EFT (HQET, NRQCD)
but: nontrivial matching and renormalization

- rel. heavy quarks (Fermilab, Columbia,...): matching rel. lattice action via HQET to continuum
- lattice NRQCD, HOET: use EFT to construct lattice action

2. brute force: use the same lattice action for heavy quarks as for light quarks

- generate gauge ensembles with a small enough so that $\left(a m_{b}\right)<1$
- supplement with HOET inspired extrapolation and/or static limit

The z-expansion

The form factor can be expanded as:

$$
f(t)=\frac{1}{P(t) \phi\left(t, t_{0}\right)} \sum_{k=0} a_{k}\left(t_{0}\right) z\left(t, t_{0}\right)^{k}
$$

- $P(t)$ removes poles in [$\left.t_{-}, t_{+}\right]$
- The choice of outer function ϕ affects the unitarity bound on the a_{k}.
- In practice, only first few terms in expansion are needed.

Form factors for $B \rightarrow D^{*} \ell \nu_{\ell}$

[FNAL/MILC, arXiv:2105.14019]

\star Results for $h_{A_{1}}(w), h_{A_{2}}(w), h_{A_{3}}(w), h_{V}(w)$.
\star Can be used to calculate $R\left(D^{*}\right)$ (lattice-only)

A. Vaquero
\star Can be used in joint fits with experimental data from BaBar and Belle to determine $\left|V_{c b}\right|$ and $R\left(D^{*}\right)$ (lattice $+\exp$)

$$
\left|V_{c b}\right|=\left(38.57 \pm 0.70_{\mathrm{th}} \pm 0.34_{\exp }\right) \times 10^{-3}
$$

