Lattice QCD inputs for leptonic and semileptonic charm decays + $R(D^{(*)})$

10th International Workshop on Charm Physics (CHARM 2020) UNAM (online) 31 May — 04 June 2021

Outline

- Lattice QCD Introduction
- Θ Leptonic D, D_s -meson decays
 - Decay constants
 - $|V_{cd}|$ and $|V_{cs}|$
- Semileptonic D, D_s -meson decays
 - Lattice QCD form factors
 - $|V_{cd}|$ and $|V_{cs}|$
 - 2nd row CKM unitarity test
- LFU ratios:

 $R(D), R(D^*), R(D_s), R(D_s^*), R(\Lambda_c), R(J/\psi)$

Summary and Outlook

$$\mathcal{L}_{\text{QCD}} = \sum_{f} \bar{\psi}_{f} (\not\!\!\!D + m_{f}) \psi_{f} + \frac{1}{4} \text{tr} F_{\mu\nu} F^{\mu\nu}$$

- ◆ discrete Euclidean space-time (spacing a) derivatives → difference operators, etc...
- finite spatial volume (L)
- finite time extent (T)

adjustable parameters

- ♦ lattice spacing: $a \rightarrow 0$
- ♦ finite volume, time: $L \rightarrow \infty$, T > L
- ♦ quark masses (m_f): $M_{H,lat} = M_{H,exp}$ f → f → f,phys $M_{H,lat} = M_{H,exp}$ tune using hadron masses $m_f \rightarrow m_{f,phys}$ m_{ud} m_s m_c extrapolations/interpolations

Mh

$$\mathcal{L}_{\text{QCD}} = \sum_{f} \bar{\psi}_{f} (\not\!\!\!D + m_{f}) \psi_{f} + \frac{1}{4} \text{tr} F_{\mu\nu} F^{\mu\nu}$$

- ◆ discrete Euclidean space-time (spacing a) derivatives → difference operators, etc...
- finite spatial volume (L)
- finite time extent (T)

Integrals are evaluated numerically using monte carlo methods.

adjustable parameters

- ♦ lattice spacing: $a \rightarrow 0$
- ♦ finite volume, time: $L \rightarrow \infty$, T > L
- ♦ quark masses (m_f): $M_{H,lat} = M_{H,exp}$ tune using hadron masses $m_f \rightarrow m_{f,phys}$ m_u extrapolations/interpolations

$$(f)$$

$$\mathcal{L}_{\text{QCD}} = \sum_{f} \bar{\psi}_{f} (\not\!\!\!D + m_{f}) \psi_{f} + \frac{1}{4} \text{tr} F_{\mu\nu} F^{\mu\nu}$$

- ◆ discrete Euclidean space-time (spacing a) derivatives → difference operators, etc...
- finite spatial volume (L)
- finite time extent (T)

Integrals are evaluated numerically using monte carlo methods.

adjustable parameters

- ♦ lattice spacing: $a \rightarrow 0$
- ♦ finite volume, time: $L \rightarrow \infty$, T > L
- ♦ quark masses (m_f): $M_{H,lat} = M_{H,exp}$ tune using hadron masses $m_f
 ightarrow m_{f,phys}$ extrapolations/interpolations

combined chiral-continuum interpolation/extrapolation

Growing number of collaborations have generated sets of ensembles that include sea quarks with physical light-quark masses and use improved lattice actions: PACS-CS, BMW, MILC, RBC/UKQCD, ETM,...

The State of the Art

Lattice QCD calculations of simple quantities (with at most one stable meson in initial/final state) that **quantitatively account for all systematic effects** (discretization, finite volume, renormalization,...) , in some cases with

- sub percent precision.
- total errors that are commensurate (or smaller) than corresponding experimental uncertainties.

Scope of LQCD calculations is increasing due to continual development of new methods:

- nucleons and other baryons
- nonleptonic decays ($K \rightarrow \pi \pi$, ...)
- resonances, scattering, long-distance effects, ...
- QED effects
- radiative decay rates ...

Lattice **QCD**: Overview

Leptonic D, D_s meson decay

example:
$$D^+ \to \mu^+ \nu_\mu$$

$$\Gamma(D^+ \to \mu^+ \nu_\mu (\gamma)) = (\text{known}) \times S_{\text{EW}} (1 + \delta_{\text{EM}}) \times |V_{cd}|^2 \times f_{D^+}^2$$

Q use experiment + LQCD input (f_{D^+}) for determination of CKM element

account for EW+EM corrections in the experimental rate

- EW: [Sirlin, Nuc. Phys. 1982] ~ 1.8%
- EM: Structure dependent: [Dobrescu+Kronfeld, PRL 2008] ~ 1% depends on photon energy cut Long distance: [Kinoshita, PRL 1959] ~ 2.4%
 - removed with PHOTOS

D, D_s meson decay constants

Small errors due to:

- physical light quark masses
- improved light-quark actions
- small lattice spacings
- NPR or no renormalization

Consider strong isospin breaking effects to obtain $f_{D^{\rm +}}$

Leptonic D, D_s meson decay

experimental averages [PDG 2019, Rosner, Stone, Van de Water]:

 $|V_{cs}|f_{D_s} = 245.7 \,(3.1)_{\exp}(3.4)_{(\text{EW}+\text{EM})} \,\text{MeV}$ $|V_{cd}|f_{D^+} = 46.2 \,(1.0)_{\exp}(0.6)_{(\text{EW}+\text{EM})} \,\text{MeV}$

 $|V_{cs}| = 0.983(13)(14)(2)$

2nd row CKM unitarity test: $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 - 1 = 0.016(37)$

CHARM 2021, 31 May - 04 June 2021

Semileptonic D, D_s meson decay

- Solution with a constraint of the second state of the second stat
- Sequence of a sequence of
 - EW: [Sirlin, Nuc. Phys. 1982] ~ 1.8%
 - EM: Structure dependent: use guidance from K_{ℓ3}? ~ 1%? depends on photon energy cut Long distance: [Kinoshita, PRL 1959] ~ 2.4%
 Impremoved with PHOTOS

CHARM 2021, 31 May - 04 June 2021

Semileptonic D meson decay form factors

☆ Compare shape of LQCD form factor with experiment and fit LQCD form factors + experimental diff. rates to determine |V_{cd}| or |V_{cs}|
 ☆ can also extract CKM elements from exp. average of |V_{cq}|f₊(0)
 ☆ similar analysis with Λ_c decay form factors [Meinel, arXiv:1611.09696, 2017 PRL].
 ☆ also: *D*-meson tensor form factors [ETM, arXiv:1803.04807, 2018 PRD]
 ☆ ongoing work by FNAL/MILC, JLQCD, RBC/UKQCD, ALPHA,...

Semileptonic D meson decay

For illustration: experimental averages [HFLAV 2019, arXiv:1909.12524, EPJC2021]:

 $[S_{\rm EW}(1+\delta_{\rm EM})]^{1/2}|V_{cs}|f_{+}^{DK}(0) = 0.7180\,(33)_{\rm exp} \quad [S_{\rm EW}(1+\delta_{\rm EM})]^{1/2}|V_{cd}|f_{+}^{D\pi}(0) = 0.1426\,(18)_{\rm exp}$

From joint exp + LQCD fits:

HPQCD [arXiv:2104.09883]

 $|V_{cs}| = 0.9663 \,(39)_{\rm exp} (53)_{\rm LQCD} (19)_{\rm EW} (40)_{\rm EM}$

ETM [arXiv:1706.03657, EPJC 2017] $|V_{cd}| = 0.2341(74)_{exp+LQCD}$ error²

2nd row CKM unitarity test: $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 - 1 = -0.0174(157)$

CHARM 2021, 31 May - 04 June 2021

Form factors for $B \rightarrow D \ell \nu_{\ell}$

★The form factors obtained from the combined exp/lattice fit are well determined over entire recoil range.

★ Can be used for an improved SM prediction of R(D).

★Ongoing work by FNAL/MILC, JLQCD, RBC/UKQCD, HPQCD

★Also: form factors for $\Lambda_b \rightarrow \Lambda_c \ell \nu$ Detmold+Meinel [arXiv:1503.01421, 2015 PRD]

★ Can be used to predict $R(D_s)$.

★New: experimental measurements of differential decay rate by LHCb
 ★Ongoing work by FNAL/MILC, JLQCD, RBC/UKQCD, HPQCD

Form factors for $B \to D^* \ell \nu_{\ell}$ and $|V_{cb}|$

$$\frac{d\Gamma}{dw} = (\text{known}) \times \eta_{\text{EW}}^2 (1 + \delta_{\text{EM}}) \times (|V_{cb}|^2) \times (w^2 - 1)^{1/2} \times \chi(w) |\mathcal{F}(w)|^2$$

 $w = v_B \cdot v_{D^*}$

$$\star \mathcal{F}(w) = f[h_{A_1}(w), h_V(w), h_{A_2}(w), h_{A_3}(w)]$$

* results for form factor at zero recoil: FNAL/MILC [arXiv:1403.0635, 2014 PRD], HPQCD [arXiv:1711.11013, 2018 PRD]

- * result for $\mathcal{F}^{B_s \to D_s^*}(1)$: HPQCD [arXiv:1904.02046, 2019 PRD]
- ★ New: non-zero recoil form factors:

 $B \rightarrow D^*$: FNAL/MILC [arXiv:2105.14019] $B_s \rightarrow D_s^*$: HPQCD [arXiv:2105.11433]

★ ongoing efforts by

JLOCD [T. Kaneko @APLAT 2020 conference, arXiv:1912.11770]

LANL/SWME [Bhattacharya et al, arXiv:2003.09206]

FNAL/MILC [A. Vaquero & A. Lytle @ Lattice 2021]

* new constraints/LQCD inputs:

[Martinelli et al, arXiv:2105.08674, arXiv:2105.07851]

Form factors for $B_{(s)} \rightarrow D^*_{(s)} \ell \nu_{\ell}$

★ Results for $h_{A_1}(w), h_{A_2}(w), h_{A_3}(w), h_V(w)$.

★ Can be used to calculate $R(D^*_{(s)})$ (lattice-only)

★Can be used in joint fits with experimental data to determine $|V_{cb}|$ and $R(D^*_{(s)})$ (lattice + exp)

Phenomenology: LFU τ/ℓ

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\ell\nu)}$$

📕 A. El-Khadra

CHARM 2021, 31 May - 04 June 2021

Phenomenology: LFU τ/ℓ

HPQCD:

 $R(D_s^*) = 0.2442 (79)_{\text{lat}}(35)_{\text{EM}}$ [arXiv:2105.14019]

 $R(D_s) = 0.2987 (46)$ [arXiv:1906.00701, 2020 PRD]

 $R(J/\psi) = 0.2582(38) \sim 2\sigma$ below LHCb [arXiv:2007.06956, 2020 PRL]

LHCb: $R(J/\psi) = 0.71 (17)(18)$ [arXiv:1711.05623, 2018 PRL]

Meinel+Detmold: $R(\Lambda_c) = 0.332 (10)$ [arXiv:1503.01421, 2015 PRD]

Can also use the lattice form factors to study how observables change under NP scenarios.

Summary and Outlook

 $\Rightarrow D, D_{s}$ -meson decay constants known from LQCD with ~0.2-0.3% precision. \blacksquare exp. uncertainties dominate in $|V_{cq}|$ determination smaller exp. errors: \blacksquare big impact on $|V_{ca}|$ and CKM unitarity \approx including EW correction resolves $\sim 2\sigma$ tension CKM unitarity test [PDG] $\checkmark D, D_{s}$ -meson form factors known from LQCD with ~1-3% precision -First LQCD calculation of $f_{\pm 0}^{D \to K}(q^2)$ with ~0.5% precision [HPQCD] (see parallel talk by W. Parrott on Friday, 13:10, for more details) -focus of ongoing LQCD efforts is on full q^2 dependence ☆ EW + EM corrections significant (dominant) source of uncertainty; need to be better quantified LQCD calculations of radiative corrections, radiative decay [Desidero et al, arXiv:2006.05358, 2020 PRD, Kane et al, arXiv:1907.00279, Di Carlo et al, arXiv:1904.0873, 2019 PRD,....] \Rightarrow New: LQCD results for $B \rightarrow D^*$ [FNAL/MILC] and $B_s \rightarrow D_s^*$ [HPQCD] form factors @ nonzero q^2 . methank new results for $R(D^*), R(D^*_s)$ and related \Rightarrow scope of LQCD calculations continues to increase (new methods, new formulations, new quantities)

meeting the growing precision needs of the experimental program

Thank you!

Farah Willenbrock

Appendix

Heavy Quarks

- For light quark ($m_q \ll \Lambda_{\rm QCD}$) quantities, the leading discretization errors $\sim (a\Lambda)^2$ if the fermion action is O(a) improved.
- Using the same action for heavy quarks ($m_Q > \Lambda_{\rm QCD}$) results in leading discretization errors $\sim (am_Q)^2$. The effects are large, if $am_q \not< 1$, which is true for b quarks on most available ensembles.
- Two classes of solutions:
 - 1. avoid ~ $(am_Q)^2$ effects using EFT (HQET, NRQCD) but: nontrivial matching and renormalization
 - rel. heavy quarks (Fermilab, Columbia,..): matching rel. lattice action via HQET to continuum
 - lattice NRQCD, HQET: use EFT to construct lattice action
 - 2. brute force: use the same lattice action for heavy quarks as for light quarks
 - generate gauge ensembles with a small enough so that $(am_b) < 1$
 - supplement with HQET inspired extrapolation and/or static limit

The *z*-expansion

The form factor can be expanded as:

$$f(t) = \frac{1}{P(t)\phi(t,t_0)} \sum_{k=0}^{\infty} a_k(t_0) z(t,t_0)^k$$

Bourrely at al (Nucl.Phys. B189 (1981) 157) Boyd, Grinstein, Lebed (hep-ph/9412324, PRL 95; hep-ph/9504235, PLB 95; hep-ph/9508211, NPB 96; hep-ph/9705252, PRD 97) Lellouch (arXiv:hep- ph/9509358, NPB 96) Boyd & Savage (hep-ph/9702300, PRD 97) Bourrely at al (arXiv:0807.2722, PRD 09)

- P(t) removes poles in $[t_{-},t_{+}]$
- The choice of outer function ϕ affects the unitarity bound on the a_k .
- In practice, only first few terms in expansion are needed.

Form factors for $B \to D^* \ell \nu_\ell$

[FNAL/MILC, arXiv:2105.14019]

$$|V_{cb}| = (38.57 \pm 0.70_{\rm th} \pm 0.34_{\rm exp}) \times 10^{-3}$$