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Inclusive quarkonium production in EFTs



Scales and non relativistic EFTs

Quarkonium physics may be described through non relativistic effective field theories,

owing to the hierarchy of scales typical of any nonrelativistic bound state:

m≫ mv ≫ mv2

µ

mv

µ

m

mv 2

       NRQCD

        pNRQCD

    QCD

◦ Brambilla Pineda Soto Vairo RMP 77 (2005) 1423



NRQCD

In NRQCD, the production cross sections for a quarkonium Q factorize

• in short distance coefficients, σQQ̄(N), encoding contributions from energy scales

of order m or larger,

• and in long distance matrix elements (LDMEs), 〈Ω|OQ(N)|Ω〉, encoding

contributions of order mv, mv2 and ΛQCD,

so that we can write:

σQ+X =
∑

N

σQQ̄(N)〈Ω|OQ(N)|Ω〉.

Note that the NRQCD factorization for hadroproduction has not been proved in general.

◦ Bodwin Braaten Lepage PRD 51 (1995) 1125



Strongly coupled pNRQCD

The LDMEs may be further factorized in pNRQCD.

We consider the case of strongly coupled pNRQCD:

mv2 ≪ ΛQCD

which may be suited to describe excited (non Coulombic) quarkonium states.

◦ Brambilla Pineda Soto Vairo NPB 566 (2000) 275

The pNRQCD factorization formula for the LDMEs reads

〈Ω|OQ(N)|Ω〉 = 1

〈P = 0|P = 0〉

∫

d3x1d
3x2d

3x′1d
3x′2 φ

(0)
Q

(x1 − x2)

×
[

−VO(N)(x1,x2;∇1,∇2)δ
(3)(x1 − x′

1)δ
(3)(x2 − x′

2)
]

φ
(0) ∗
Q

(x′
1 − x′

2)

φ
(0)
Q

and VO(N) have to be determined from matching the NRQCD LDMEs to pNRQCD.



The NRQCD energy eigenstates

The spectral decomposition of HNRQCD in the QQ̄ sector of the Hilbert space reads

HNRQCD

∣

∣

QQ̄
=

∑

n

∫

d3x1 d
3x2 |n;x1,x2〉En(x1,x2;∇1,∇2) 〈n;x1,x2|

|n;x1,x2〉 = ψ†(x1)χ(x2)|n;x1,x2〉 are orthonormal states made of a heavy quark, ψ,

a heavy antiquark, χ, and some light d.o.f. labeled by n.

En are operators in the coordinate, momentum and spin of the QQ̄.

In the static limit En = E
(0)
n are the different energy excitations of a static QQ̄.

They may be computed in lattice QCD as a function of the QQ̄ distance.

The eigenstates of the NRQCD Hamiltonian in the QQ̄ sector are

|Q(n,P )〉 =
∫

d3x1d
3x2 φQ(n,P )(x1,x2) |n;x1,x2〉

The functions φQ(n,P )(x1,x2) are eigenfunctions of En(x1,x2;∇1,∇2);

P is the center of mass momentum of the QQ̄ pair.



The NRQCD energy levels

In the strong coupling regime, we expect the different E
(0)
n to develop an energy gap of

order ΛQCD ≫ mv2, where mv2 are the energies of the eigenstates of each single En.

◦ Bali et al PRD 62 (2000) 054503

Juge Kuti Morningstar PRL 90 (2003) 161601



Matching the spectrum

In strongly coupled pNRQCD, the pNRQCD Hamiltonian is given by

HpNRQCD =

∫

d3x1 d
3x2 S

†
n hn(x1,x2;∇1,∇2)Sn

Sn is a color singlet field containing a QQ̄;

hn is obtained by matching the NRQCD energy En.

The matching may be performed order by order in 1/m by expanding the NRQCD

Hamiltonian and the states |n;x1,x2〉 using quantum mechanical perturbation theory.

At leading order in v we have

hn(x1,x2;∇1,∇2) = −∇2
1

2m
− ∇2

2

2m
+ V (0;n)(x1,x2)

The matching fixes the static potential V (0;n) to be the static energy E
(0)
n of H

(0)
NRQCD.

As a consequence of the matching, the functions φQ(n,P ) are also eigenfunctions of hn.

◦ Brambilla Pineda Soto Vairo PRD 63 (2001) 014023

Pineda Vairo PRD 63 (2001) 054007



Matching the electromagnetic production LDMEs

Color singlet and octet operators for em production of quarkonia have the form

OQ(Ncolor singlet) = χ†KNψ|Q(0,P)〉〈Q(0,P)|ψ†K′
Nχ

OQ(Ncolor octet) = χ†KNT
aψ|Q(0,P)〉〈Q(0,P)|ψ†K′

NT
aχ

|Q(0,P)〉 is just a quarkonium state;

φQ(0,0) ≈ φ
(0)
Q

is the quarkonium wavefunction at leading order in v for P = 0.

The matching condition for the em production contact terms VO(N) is

∫

d3x 〈Ω|
(

χ†KNψ
)

(x)|0;x1,x2〉〈0;x′
1,x

′
2|
(

ψ†K′
Nχ

)

(x)|Ω〉

= −VO(N)(x1,x2;∇1,∇2) δ
(3)(x1 − x′

1)δ
(3)(x2 − x′

2)
∫

d3x〈Ω|
(

χ†KNT
aψ

)

(x)|0;x1,x2〉〈0;x′
1,x

′
2|
(

ψ†K′
NT

aχ
)

(x)|Ω〉

= −VO(N)(x1,x2;∇1,∇2)δ
(3)(x1 − x′

1)δ
(3)(x2 − x′

2)

where we may expand the states |n;x1,x2〉 order by order in 1/m.



Hadroproduction LDMEs

Color singlet and octet operators for hadroproduction of quarkonia have the form

OQ(Ncolor singlet) = χ†KNψPQ(P=0)ψ
†K′

Nχ

OQ(Ncolor octet) = χ†KNT
aψΦ†ab

ℓ (0)PQ(P=0)Φ
bc
ℓ (0)ψ†K′

NT
cχ

Φℓ(x) is a Wilson line along the direction ℓ in the adjoint representation required to

ensure the gauge invariance of the color octet LDME.

◦ Nayak Qiu Sterman PLB 613 (2005) 45

PQ(P ) projects onto a state containing a heavy quarkonium Q with momentum P .

PQ(P ) commutes with the NRQCD Hamiltonian (the number of quarkonia is conserved)

and is diagonalized by the same eigenstates of the NRQCD Hamiltonian:

PQ(P ) =
∑

n∈S

|Q(n,P )〉〈Q(n,P )|

The sum extends over S, which are all states where the QQ̄ is in a color singlet at the

origin in the static limit. This is a necessary condition to produce a quarkonium.



Matching the hadroproduction LDMEs

The matching condition for the hadroproduction contact terms VO(N) is

∑

n∈S

∫

d3x 〈Ω|
(

χ†KNψ
)

(x)|n;x1,x2〉〈n;x′
1,x

′
2|
(

ψ†K′
Nχ

)

(x)|Ω〉

= −VO(N)(x1,x2;∇1,∇2) δ
(3)(x1 − x′

1)δ
(3)(x2 − x′

2)

∑

n∈S

∫

d3x〈Ω|
(

χ†KNT
aψ

)

(x)Φ†ab
ℓ (0,x)|n;x1,x2〉

× 〈n;x′
1,x

′
2|Φbc

ℓ (0,x)
(

ψ†K′
NT

cχ
)

(x)|Ω〉

= −VO(N)(x1,x2;∇1,∇2)δ
(3)(x1 − x′

1)δ
(3)(x2 − x′

2)

where again we may expand the states |n;x1,x2〉 order by order in 1/m using quantum

mechanical perturbation theory.



Matching the wavefunctions φQ(n,P )

The projector PQ(P ) depends on the wavefunction φQ(n,P ) with n ∈ S.

φQ(n,P ) is a solution of the Schrödinger equation with static potential V (0;n).

V (0;n) is the energy of a static Wilson loop in the presence of disconnected gluon fields.

Lattice QCD determinations of V (0;n) for n ∈ S and n 6= 0 are not available yet.

One expects, however, disconnected gluon fields to produce mainly a constant shift to

the potentials, e.g. in the form of a glueball mass. This is supported by the large Nc limit:

the vacuum expectation value of a Wilson loop with additional disconnected gluon fields

factorizes into the vacuum expectation value of the Wilson loop times the vacuum

expectation value of the additional gluon fields up to corrections of order 1/N2
c .

If the slopes of the static potentials are the same for all n ∈ S, then

φQ(n,P )(x1,x2) ≈ eiP ·(x1+x2)/2φ
(0)
Q

(x1 − x2)

φ
(0)
Q

is the leading order quarkonium wavefunction in the center of mass frame.



pp → χQ +X



LDMEs in NRQCD

We consider

pp→ hQ(nP ) +X and pp→ χQJ (nP ) +X

The NRQCD factorization formulas at leading order in v read

σhQ+X = σ
QQ̄(1P

[1]
1 )

〈Ω|OhQ (1P
[1]
1 )|Ω〉+ σ

QQ̄(1S
[8]
0 )

〈Ω|OhQ (1S
[8]
0 )|Ω〉

σχQJ+X = σ
QQ̄(3P

[1]
J

)
〈Ω|OχQJ (3P

[1]
J )|Ω〉+ σ

QQ̄(3S
[8]
1 )

〈Ω|OχQJ (3S
[8]
1 )|Ω〉



Matching the contact terms in pNRQCD

After matching with pNRQCD, the contact terms read

V
O(1P

[1]
1 )

(r,∇r) =Nc∇i
rδ

(3)(r)∇i
r

V
O(1S

[8]
0 )

(r,∇r) =Nc∇i
rδ

(3)(r)∇j
r

Eij

N2
cm

2

V
O(3P

[1]
J

)
(r,∇r) =T

ij
1JNc∇i

rδ
(3)(r)∇j

r

V
O(3S

[8]
1 )

(r,∇r) =σ
k ⊗ σkNc∇i

rδ
(3)(r)∇j

r

Eij

N2
cm

2

r = x1 − x2 and T ij
1J are spin projectors.

The tensor Eij is defined by

Eij =

∫ ∞

0
dt t

∫ ∞

0
dt′ t′ 〈Ω|Φ†ab

ℓ Φ†ad(0; t)gEd,i(t)gEe,j(t′)Φec(0; t′)Φbc
ℓ |Ω〉

Φab(0, t) is a Wilson line in the adjoint representation connecting (t,0) with (0,0).



The chromoelectric correlators E ij and E

For a suitable choice of ℓ0, the fields in gEe,j(t′)Φec(0; t′)Φbc
ℓ are time ordered (T ) and

those in Φ†ab
ℓ Φ†ad(0; t)gEd,i(t) are anti-time ordered (T̄ ).

Hence the correlator Eij may be interpreted as a cut diagram:

For polarization-summed cross sections or for production of scalar states only the

isotropic part of Eij is relevant. This is the dimensionless gluonic correlator E :

E =
3

Nc

∫ ∞

0
dt t

∫ ∞

0
dt′ t′ 〈Ω|Φ†ab

ℓ Φ†ad(0; t)gEd,i(t)gEe,i(t′)Φec(0; t′)Φbc
ℓ |Ω〉



LDMEs in pNRQCD

The pNRQCD factorization formulas for P -wave quarkonium hadroproduction are

〈Ω|OhQ (1P
[1]
1 )|Ω〉 =3× 3Nc

2π
|R(0)′(0)|2

〈Ω|OhQ (1S
[8]
0 )|Ω〉 =3× 3Nc

2π
|R(0)′(0)|2 1

9Ncm2
E

〈Ω|OχQJ (3P
[1]
J )|Ω〉 =(2J + 1)× 3Nc

2π
|R(0)′(0)|2

〈Ω|OχQJ (3S
[8]
1 )|Ω〉 =(2J + 1)× 3Nc

2π
|R(0)′(0)|2 1

9Ncm2
E

R(0)′(0) is the derivative of the radial wavefunction at the origin at leading order in v.

LDMEs are polarization summed in the case of χQJ states.

The above expressions imply (at leading order in v) the universality of the ratios

〈Ω|OχQJ (3S
[8]
1 )|Ω〉

〈Ω|OχQJ (3P
[1]
J )|Ω〉

=
〈Ω|OhQ (1S

[8]
0 )|Ω〉

〈Ω|OhQ (1P
[1]
1 )|Ω〉

=
1

9Ncm2
E



Infrared divergences in NRQCD

For the pNRQCD expressions of the LDMEs to be consistent with perturbative QCD,

they must reproduce the same infrared divergences. At two loop accuracy and at the

lowest order in the relative momentum q of the Q and Q̄, the infrared diverges in the

NRQCD LDMEs can be cast in the infrared factor

I2(p, q) =
∑

N

∫ ∞

0
dλ′ λ′〈Ω|T̄

{

Φ†c′b
ℓ Φ†a′c′

p (λ′)[pµqνFa′

νµ(λ
′p)]

}

|N〉

×
∫ ∞

0
dλλ〈N |T

{

Φbc
ℓ [pµqνFa

νµ(λp)]Φ
ac
p (λ)

}

|Ω〉

The sum over N contains all possible intermediate states, p is half the center-of-mass

momentum of the QQ̄, and

Φp(λ) = P exp

[

−ig
∫ λ

0
dλ′ p ·Aadj(λ′p)

]

is an adjoint Wilson line along p.

◦ Nayak Qiu Sterman PLB 613 (2005) 45, PRD 72 (2005) 114012

Nayak Qiu Sterman PRD 74 (2006) 074007



Consistency of pNRQCD with the NRQCD factorization

• Since in I2(p, q) a momentum q comes from each side of the cut, the infrared

factor contributes to the production of a color-singlet P -wave state.

• In the rest frame of the QQ̄: p = 0, q0 = 0, Φp(λ) = Φ(0, t) with t =
√

p2λ,

pµqνFa
νµ(λp) = −

√

p2qiEa i(t) and I2(p, q) can be written as

Eij q
iqj

p2

Since this expression is proportional to the contact terms V
O(1S

[8]
0 )

and V
O(3S

[8]
1 )

in momentum space, the pNRQCD expressions for the color-octet LDMEs

reproduce the same infrared divergences cast in the NRQCD infrared factor.

• The one-loop running of E (CF = (N2
c − 1)/(2Nc)):

d

d log Λ
E(Λ) = 12CF

αs

π

implies
d

d log Λ
〈OχQJ (3S

[8]
1 )〉 = 4CFαs

3Ncπm2
〈OχQJ (3P

[1]
J )〉.

This agrees with the one-loop evolution equation derived in perturbative NRQCD.



Chromoelectric correlator for hadroproduction

The correlator E can be fitted from the ratio

r21 =
dσχc2(1P )/dpT

dσχc1(1P )/dpT

which does not depend (at leading order in v) on the wavefunction. One obtains

E(Λ = 1.5 GeV) = 1.99± 0.06

The correlator is universal: it does not depend neither on the flavor of the heavy quark

nor on the quarkonium state. The universal nature of the correlator allows to use it to

compute cross sections for quarkonia with different principal quantum number and for

bottomonia (once accounted for the running) without having to fit new octet LDMEs.



(dσχc2(1P )/dpT )/(dσχc1(1P )/dpT )
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@ center of mass energy
√
7 = 7 TeV and rapidity range |y| <0.75.

◦ CMS coll EPJC 72 (2012) 2251

ATLAS coll JHEP 07 (2014) 154



σ(pp → χcJ(1P ) +X)

@ center of mass energy
√
7 = 7 TeV and rapidity range |y| <0.75.

Wavefunctions at the origin (at leading order in v) determined from Γ(χc0,2(1P ) → γγ).

◦ ATLAS coll JHEP 07 (2014) 154



Polarized cross sections

For polarized cross sections, the non-isotropic part of Eij can in principle contribute to

the color-octet matrix elements, and, if such contribution is nonvanishing, the color-octet

matrix elements can acquire a dependence on the direction of the gauge-completion

Wilson lines. For the universality of the NRQCD matrix elements to be valid also for the

case of polarized cross sections, such non-isotropic contributions should vanish in the

NRQCD matrix elements. This has not been proved, but often assumed in the literature:

〈Ω|OhQ (1S
[8]
0 )|Ω〉 =3× 〈Ω|χ†TaψΦ†ab

ℓ (0)PhQ(λ,P=0)Φ
bc
ℓ (0)ψ†T cχ|Ω〉

〈Ω|OχQJ (3S
[8]
1 )|Ω〉 =(2J + 1)× 〈Ω|χ†σiTaψΦ†ab

ℓ (0)PχQJ (λ,P=0)Φ
bc
ℓ (0)ψ†σiT cχ|Ω〉

Under the universality assumption of the polarized color-octet LDMEs, one can compute

the polarization parameters

λ
χcJ
θ =

1− 3ξχcJ

1 + ξχcJ

ξχcJ
is the fraction of J/ψ produced with longitudinal polarization from decays of χcJ .

We use the hadron helicity frame to define the spin quantization axis of the J/ψ.



Polarization of χcJ(1P )

@ center of mass energy
√
7 = 7 TeV and rapidity range |y| < 0.75.

◦ CMS coll PRL 124 (2020) 16



(dσχb2(1P )/dpT )/(dσχb1(1P )/dpT )

A test of the universality of the pNRQCD factorization is provided by the ratio

(dσχb2(1P )/dpT )/(dσχb1(1P )/dpT ) that depends only of E (at the scale of the b mass)

and therefore is expected to be same also for 2P and 3P bottomonium states.

@ center of mass energy
√
7 = 7 TeV and rapidity range 2 < y < 4.5.

◦ LHCb coll EPJC 74 (2014) 3092

CMS coll PLB 743 (2015) 383



σ(pp → χbJ(1P ) +X)
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✆✝✆✶✆

✆✝✶✆✆
✶

✶✆

@ center of mass energy
√
7 = 7 TeV and rapidity range 2 < y < 4.5.

Wavefunctions at the origin (at leading order in v) determined from models.



χbJ(nP ) feeddown fractions

Feeddown fractions, R
χb(nP )
Υ(n′S)

=

∑

J=1,2 Br(χbJ (nP ) → Υ(n′S) + γ)× σχbJ (nP )

σΥ(n′S)

,

are model dependent in the χbJ wavefunctions, σΥ(nS) and in some Br.

@ center of mass energy
√
7 = 7 TeV and rapidity range 2 < y < 4.5.

◦ LHCb coll EPJC 74 (2014) 3092



Conclusions



Outlook

Critical points where the present analysis could be significantly improved are:

• Computation of E or Eij in lattice QCD.

• Model independent determinations of the bottomonium wavefunctions at the origin.

This may require new data, e.g. for P -wave bottomonium decay widths.

Possible developments include:

• Computation of higher order corrections in the velocity expansion. They come from

higher dimensional operators in the NRQCD factorization formula, from higher

order corrections to the pNRQCD expansion of the NRQCD long-distance matrix

elements, and from higher order corrections to the wavefunctions originating from

higher order corrections to the pNRQCD potential.

• Extension of the analysis to S-wave quarkonia.

• Extension of the formalism to quarkonium exotica (hybrids, tetraquarks) and to

quarkonium production in heavy ion collisions.
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