

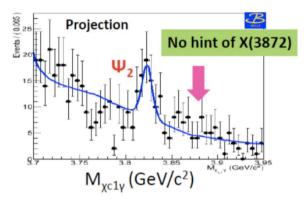
CHARM 2021 Mexico (online)

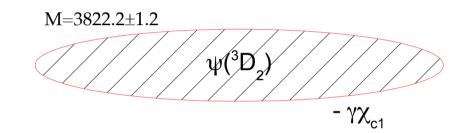
Outline

Search for the $\eta_{c2}(1^1D_2)$ in B decays

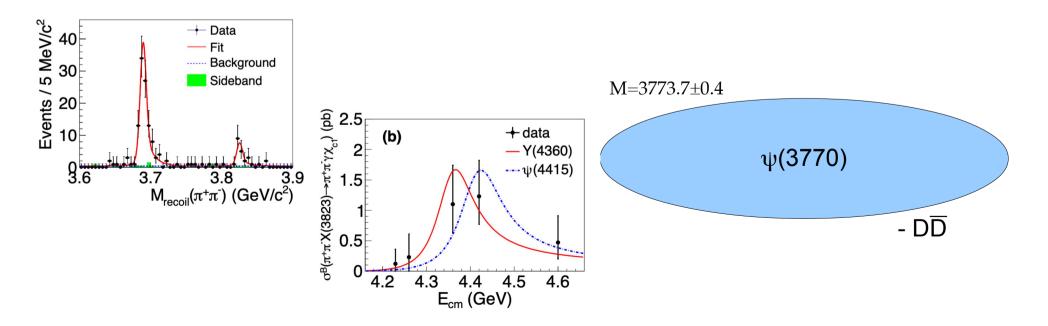
Evidence of $\gamma\gamma^* \rightarrow X(3872)$

Search for X(3872) $\rightarrow \chi_{c1} \pi^0$

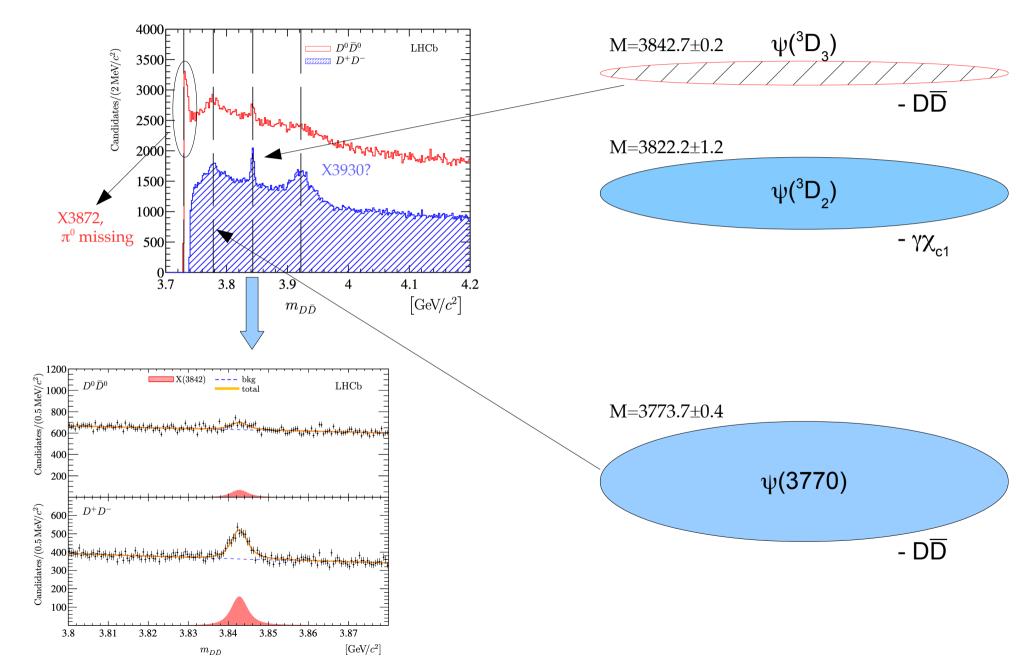

Search for $\chi_c(2P)$ states in $\gamma\gamma \rightarrow \gamma\psi'$


Y(4626) in $D_s\overline{D}_{s1}$ (2536) and $D_s\overline{D}_{s2}$ (2573)

Search for doubly charged DDK


Charmonium 1D triplet: J=2

First evidence in B decays Belle: PRL 111,032001(2013)

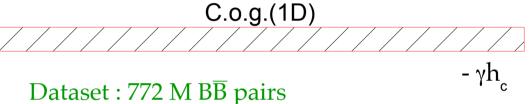


Observation in dipion transitions from $\psi(4400)$ BES: PRL 115,011803(2015)

Charmonium 1D triplet: J=3

Observation in pp collisions LHCB:JHEP 07 (2019) 035

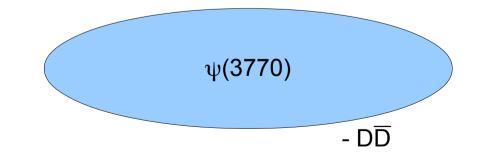
Charmonium 1D singlet: search for J=2

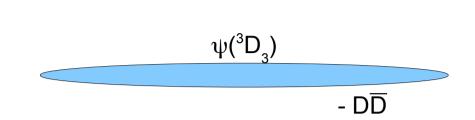

The spin singlet 1D state $\eta_2(1^1D_2)$ is expected to: - be located at the cog of triplet D states $\psi(^{3}D_{2})$ - decay to γh_{c} (can't decay to $D\overline{D}$) M=3842.7±0.2 - be produced in B decays at a rate comparable to - DD the $\psi(1^{3}D_{2})$, and the $\chi_{c}(1^{3}P_{2})$ M=3822.2+1.2 C.o.g.(1D) $\psi(^{3}D_{2})$ $M_{cog} = 3822.0$ $-\gamma h_c$ $-\gamma\chi_{c1}$ BR(B to K cc) -..... • • + ?? M=3773.7±0.4 10⁻⁵ 1¹S₀ 1³S₁ 1³P₀ 1³P₁ 1¹P₁ 1³P₂ 2¹S₀ 2³S₁ 1³D₁ 1³D₂ 1¹D₂ X3872 X4160 ψ(3770) $\blacksquare B^+ \rightarrow c\bar{c} K^+ \qquad \blacksquare B^+ \rightarrow c\bar{c} K^{+*}$ $\blacksquare B^0 \rightarrow c\bar{c} K^0 \qquad \blacksquare B^0 \rightarrow c\bar{c} K^{0*}$ - DD

Charmonium 1D singlet: search for J=2

The spin singlet 1D state $\eta_{c2}(1^{1}D_{2})$ is expected to:

- be located at the cog of triplet D states
- decay to γh_c (can't decay to $D\overline{D}$)

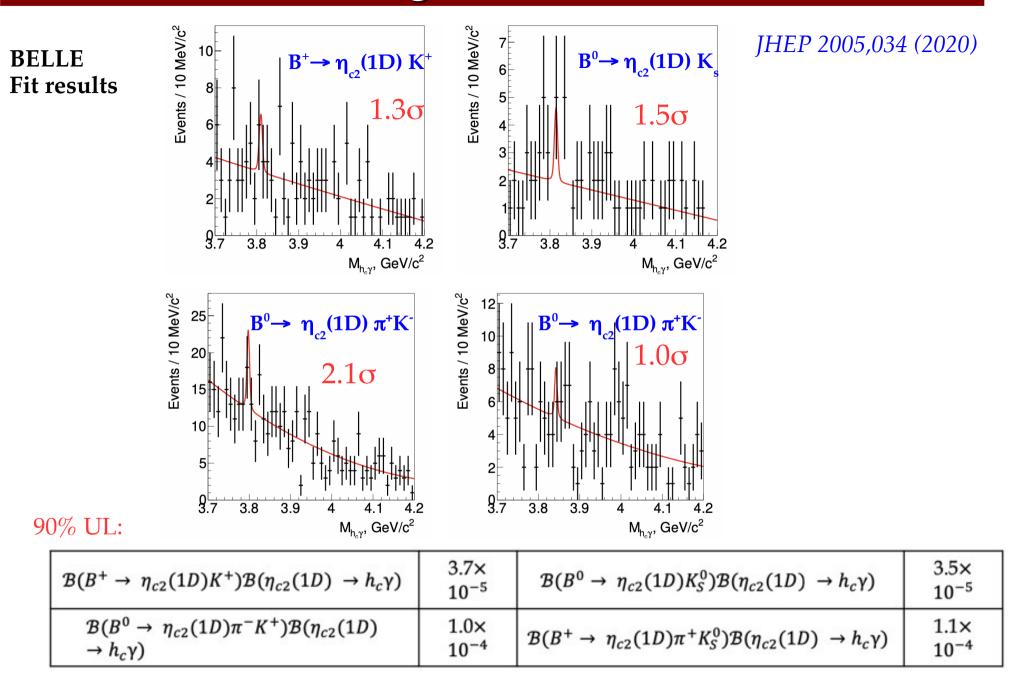

- be produced in B decays at a rate comparable to the $\psi(1^3D_{_2})$, and the $\chi_{_{C}}(1^3P_{_2})$

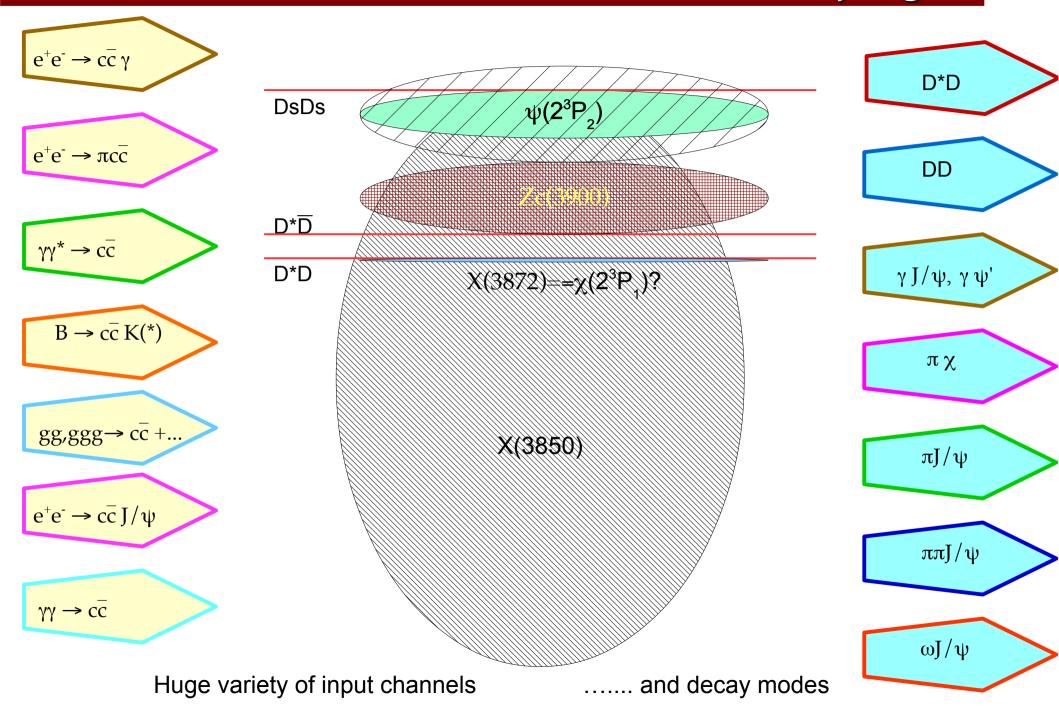


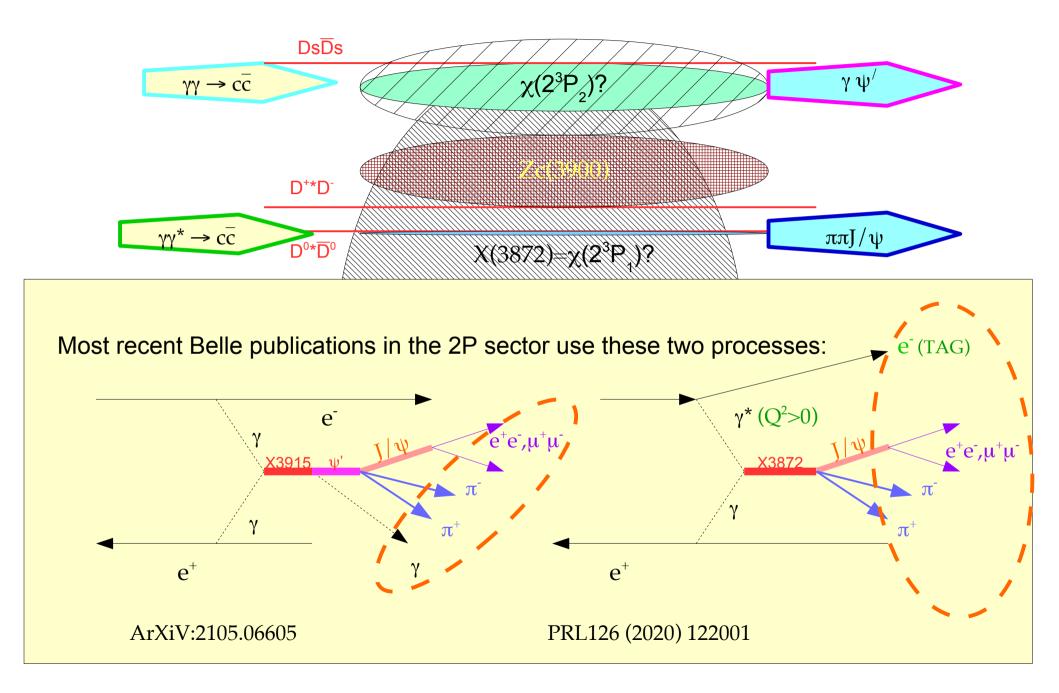
B decays to: $B^+ \rightarrow \eta_{c2}(1D) K^+$, $\eta_{c2}(1D) \pi^+ K_s + c.c.$ $B^0 \rightarrow \eta_{c2}(1D) K_s$, $\eta_{c2}(1D) \pi^+ K^- + c.c.$


With $\eta_{c2}(1D) \rightarrow \gamma \gamma \eta_{c}(1S)$ decays via h_{c} and $\eta_{c}(1S)$ reconstructed in 10 decay modes: $K^{+}K^{-}\pi^{0}$, $K^{+}K_{s}\pi^{-}$, $K_{s}K_{s}\pi^{0}$, $K^{+}K^{-}\eta$, $K^{+}K^{-}K^{+}K^{-}$, $\eta^{/}\pi^{+}\pi^{-}$, $p\overline{p}$, $p\overline{p}\pi^{0}$, $p\overline{p}\pi^{+}\pi^{-}$, $\Lambda\overline{\Lambda}$

- MVA using a multilayer perceptron NN
- Global optimization performed

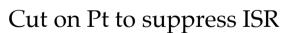


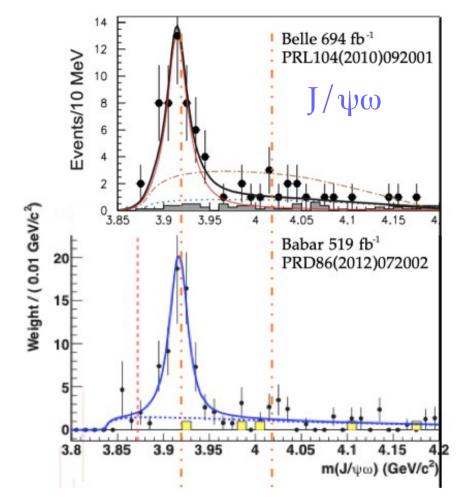

Belle: JHEP 2005,034 (2020)

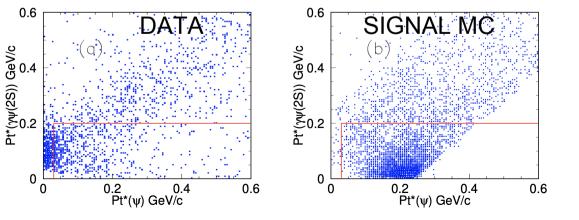

Charmonium 1D singlet: search for J=2

Charmonium 2P states: the 3850-3950 MeV jungle

Charmonium 2P states: the 3850-3950 MeV jungle

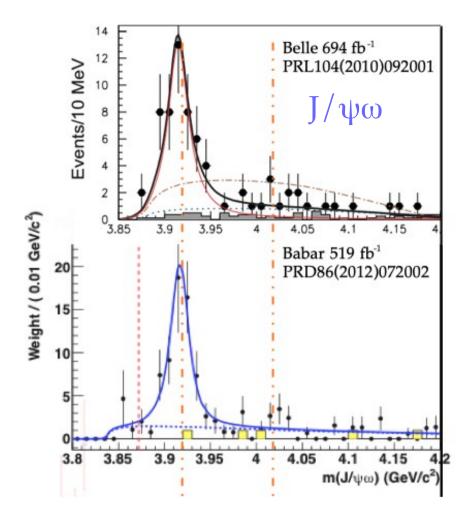

Charmonia from $\gamma\gamma$ in the 3.7-4.2 GeV range


The production of X(3915) in $\gamma\gamma$, with decay to $\psi\omega$, was observed by both Belle and Babar. PDG: $\Gamma\gamma\gamma \times BR(X(3915) \rightarrow \psi\omega) = 54\pm9 \text{ eV}$ (assuming JP=0+) Angular analyses disfavor 2+ and 0-.


But ... helicity 2 amplitude is dominant on helicity 0, for **pure** cc states ...

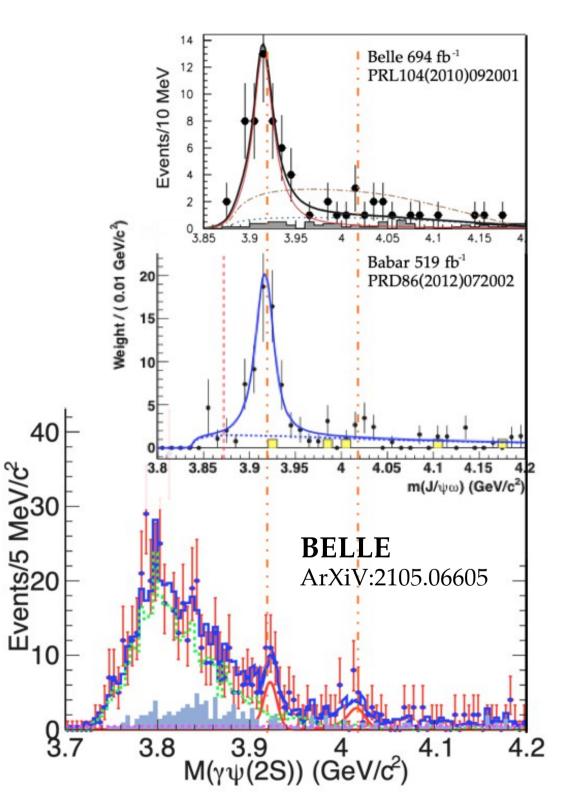
As $\Gamma(\chi_{c2}(2P) \rightarrow \gamma \psi')$ is expected ~300 keV, Γ ~20 MeV implies BR ~1.5% for this transition

```
Belle searched for \psi' \rightarrow \pi \pi J/\psi,
with J/\psi \rightarrow e^+e^-, \mu^+\mu^-
```

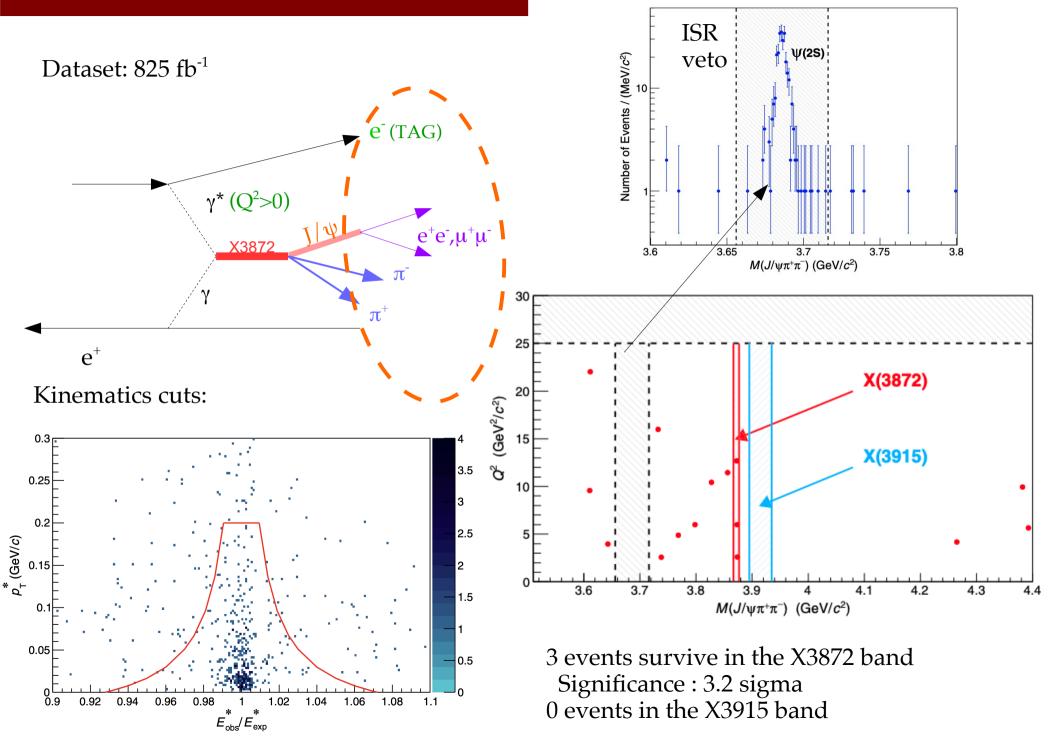



Charmonia from $\gamma\gamma$ in the 3.7-4.2 GeV range

The production of X(3915) in $\gamma\gamma$, with decay to $\psi\omega$, was observed by both Belle and Babar. PDG: $\Gamma\gamma\gamma \times BR(X(3915) \rightarrow \psi\omega) = 54\pm9 \text{ eV}$ (assuming JP=0+) Angular analyses disfavor 2+ and 0-.


But ... helicity 2 amplitude is dominant on helicity 0, for **pure** cc states ...

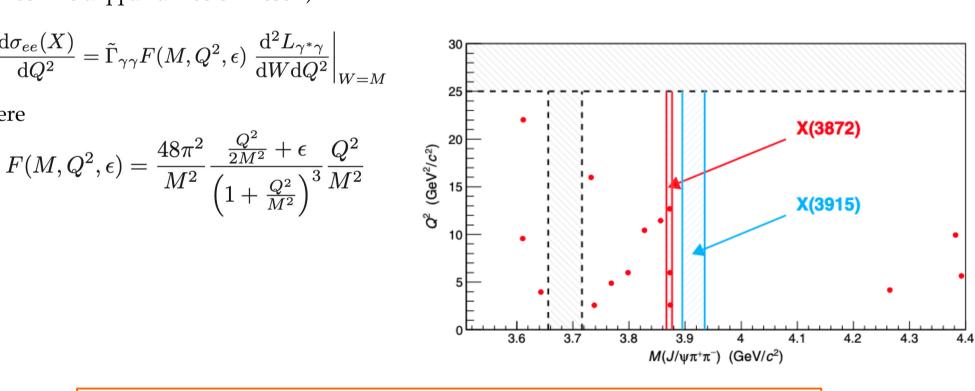
Let's look for radiative transitions to ψ '


Charmonia from $\gamma\gamma$ in the 3.7-4.2 GeV range

Resonant parameters	J = 0	J=2	
M_1	$3921.3 \pm 2.4 \pm 1.6$		
Γ_1	$0.0\pm5.3\pm2.0$		
$\Gamma_1^{ m UL}$	11.5		
$\Gamma_{\gamma\gamma}\mathcal{B}(R_1 o \gamma\psi(2S))$	$8.2\pm2.3\pm0.9$	$1.6\pm0.5\pm0.2$	
M_2	$4014.4 \pm 4.1 \pm 0.5$		
Γ_2	$6\pm16\pm12$		
$\Gamma_2^{ m UL}$	39.3		
$\Gamma_{\gamma\gamma}\mathcal{B}(R_2 o \gamma\psi(2S))$	$5.3\pm2.7\pm2.5$	$1.1\pm0.5\pm0.5$	
$\Gamma^{\mathrm{UL}}_{\gamma\gamma}\mathcal{B}(R_2 o\gamma\psi(2S))$	12.8	2.6	
$M_{X(3915)}$	3918.4 (fixed)		
$\Gamma_{X(3915)}$	20 (fixed)		
$\Gamma_{\gamma\gamma}\mathcal{B}(X(3915) \to \gamma\psi(2S))$	$10.9\pm3.1\pm1.2$	$2.2\pm0.6\pm0.2$	
$M_{Z(3930)}$		3922.2 (fixed)	
$\Gamma_{Z(3930)}$		35 (fixed)	
$\Gamma_{\gamma\gamma}\mathcal{B}(Z(3930) \to \gamma\psi(2S))$		$2.4\pm0.7\pm0.4$	

Evidence of X(3872) in $\gamma\gamma^*$

PRL 126, 122001 (2021)



Evidence of X(3872) in $\gamma\gamma^*$

- Dataset: 825 fb⁻¹
- 3 events survive in the X3872 band
- Significance : 3.2 sigma .
- The Partial width extraction from the number of observed events is model dependent (assumes that the X8342 is a qq axial vector meson)

$$\frac{\mathrm{d}\sigma_{ee}(X)}{\mathrm{d}Q^2} = \tilde{\Gamma}_{\gamma\gamma} F(M, Q^2, \epsilon) \left. \frac{\mathrm{d}^2 L_{\gamma^*\gamma}}{\mathrm{d}W \mathrm{d}Q^2} \right|_{W=N}$$

where

 $\tilde{\Gamma}_{\gamma\gamma}\mathcal{B}(X \to J/\psi\pi^+\pi^-) = 5.5^{+4.1}_{-3.8} \text{ (stat.)} \pm 0.7 \text{ (syst.) eV}$

PRL 126, 122001 (2021)

We then get

$$N_{\rm sig} = L_{\rm int} \mathcal{B}(X \to J/\psi \pi^+ \pi^-) \mathcal{B}(J/\psi \to \ell^+ \ell^-)$$
$$\times \tilde{\Gamma}_{\gamma\gamma} \int_{Q^2_{\rm min}}^{Q^2_{\rm max}} \mathrm{d}Q^2 F(M, Q^2, \epsilon) \varepsilon_{\rm eff}(Q^2) \left. \frac{\mathrm{d}^2 L_{\gamma^* \gamma}}{\mathrm{d}W \mathrm{d}Q^2} \right|_{W=M}$$

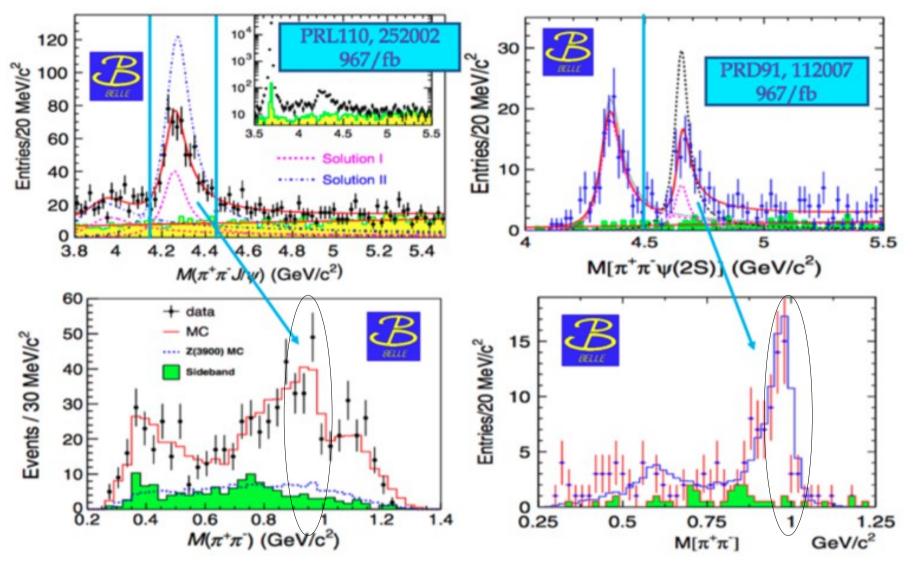
And integrating Q^2 in the range [1.5,25] GeV²/c², we obtain:

$$\tilde{\Gamma}_{\gamma\gamma}\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-) = (1.88 \pm 0.24) \text{ eV} \times N_{\text{sig}}$$

Search for X3872,X3915 $\rightarrow \chi_{c1}(1P)\pi^0$

() 200 Me/ S) 150 Events/ BES-III PRL122(2019)22001 Belle (772M BB decays at Y(4S)) 100 PRD 99 (2019) 111101 X(3872) observed in $e^+e^- \rightarrow \gamma X(3872)$ 50 in the region 4.15 < Ecm < 4.30 GeV $BR(B^{+} \rightarrow K^{+}\chi_{c1}\pi^{0}) = 3.3x10-4$ -0.05 0.05 -0.1 0 0.1 ΔE (GeV) mostly dominated by the K* band χc1 5 K* veto: 791.8 $< M(K^{+}\pi^{0}) < 991.8 \text{ MeV}/c^{2}$ 16 Events/ (5 MeV/c²) 3 2 3.75 3.80 3.95 4.00 3.85 3.90 3.75 3.8 3.85 3.9 3.95 4.05 4 $M(\pi^{0}\chi_{c1})$ [GeV/c²] $M(\chi_{c1}^{}\pi^0)~(\text{GeV/c}^2)$ Belle obtains these 90% upper limits: BR comparable with $\psi \pi^+ \pi^-$: $\mathcal{B}(B^+ \to X(3872)K^+) \times \mathcal{B}(X(3872) \to \chi_{c1}\pi^0) < 8.1 \times 10^{-6}$ $\mathcal{B}(B^+ \to X(3915)K^+) \times \mathcal{B}(X(3915) \to \chi_{c1}\pi^0) < 3.8 \times 10^{-5}$ $R_{\chi_{c1}/\psi}^X = \frac{\mathcal{B}(X(3872) \to \chi_{c1}\pi^0)}{\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)} = 0.88^{+0.33}_{-0.27} \pm 0.10$

$$\frac{R_{\chi_{c1}/\psi}^X < 0.97 \text{ (90\% CL)}}{R_{\chi_{c1}/\psi}^X < 0.97 \text{ (90\% CL)}}$$


Does not contradict BES-III measurement More statistics needed

₂₅₀⊧(a)

 $B \rightarrow K_{1}^{+}\chi_{c1}(1P)\pi^{0}$

Y(4626): $e^+e^- \rightarrow D^+D_{s1}(2536)/D_{s1}(2573) + c.c.$

Base idea:

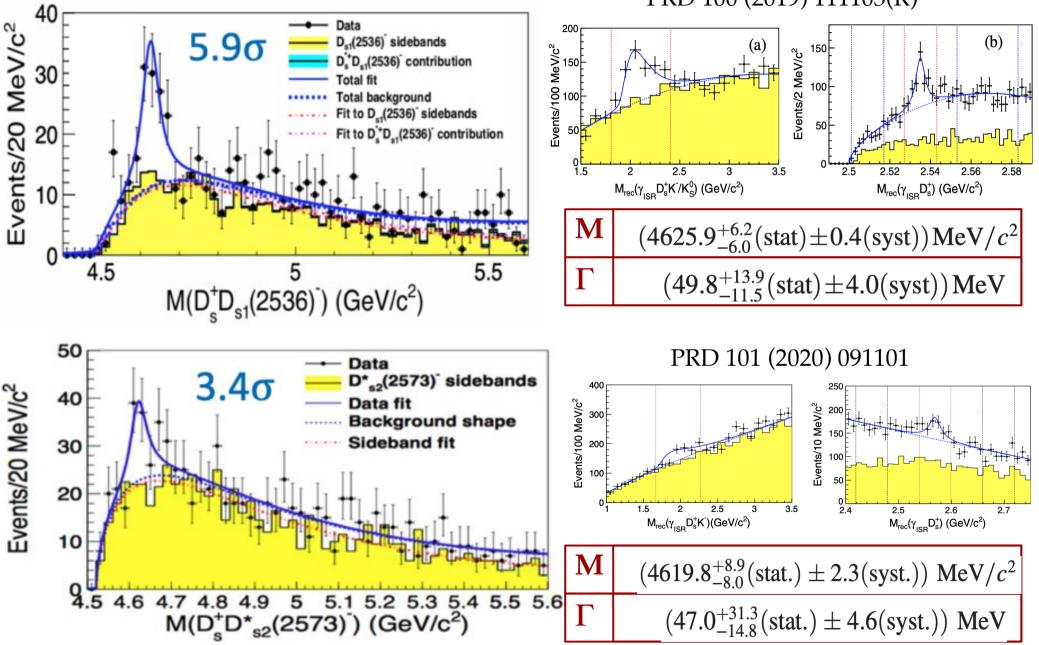

The dipion pair in both Y(4260) and Y(4660) peaks resonates at the mass of the $f_0(980)$, which has also a ss component.

Y(4626): $e^+e^- \rightarrow D_s^+D_{s1}^-(2536)/D_{s1}^-(2573) + c.c.$

Datasets: 89.5+711+121=921.9 fb-1 (@ $\sqrt{s}=10.52,10.58,10.86$ GeV)

Analysis strategy:

 $D_{s1}^{-1}(2536) \rightarrow D^{*0}K^{-} \mid D^{*-}K_{s}; D_{s2}^{-1}(2573) \rightarrow D^{0}K^{-} \mid D^{-}K_{s}$ $D_{s}^{+} \text{ reconstruction in 8 final states: } \phi\pi^{+}, \overline{K}^{*0}K^{+}, K_{s}K^{+}, K^{+}K^{-}\pi^{+}\pi^{0}, K^{*+}K_{s'}\eta\pi^{+}, \eta^{+}\pi^{+}$


Signal :

- D^{*0}/D^{*-} in the $M_{rec}(\gamma_{ISR}, D_{s}, K^{-}/K_{s})$ distribution for $D_{s1}(2536)$
- D^0/D^- in the $M_{rec}(\gamma_{ISR}, D_s, K^-/K_s)$ distribution for $D_{s1}(2573)$

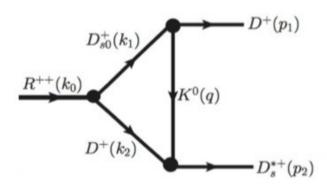
An unbinned simultaneous likelihood fit:

- Signal: a *BW* convolved with a Gaussian function, then multiplied by an efficiency function
- A non-resonant contribution: a twobody phase space form
- D_{s1}(2536)⁻ mass sidebands: a threshold function
- $e^+e^- \rightarrow D_s^{*+}D_{s1}(2536)^-$ background contribution: a threshold function

Y(4626): $e^+e^- \rightarrow D_s^+D_{s1}^-(2536)/D_{s1}^-(2573) + c.c.$

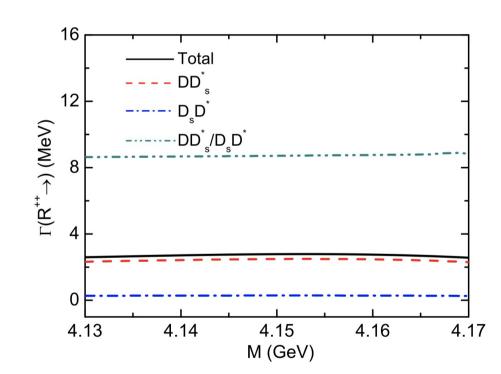
PRD 100 (2019) 111103(R)

Following the LHCB discovery of doubly charmed baryons , a plethora of papers suggested the search for doubly heavy same-sign bound states, initiated by Karliner, Rosner PRL119 (2017) 20, 202001, and Eichten, Quigg PRL 119 (2017) 20, 202002


State	J^P	$m(Q_i Q_j \bar{q}_k \bar{q}_l)$	Decay Channel	\mathcal{Q} [MeV]
{ <i>cc</i> }[<i>ūd</i>]	1+	3978	D ⁺ D ^{*0} 3876	102
$\{cc\}[\bar{q}_k\bar{s}]$	1^+	4156	D ⁺ D ^{*+} _s 3977	179
$\{cc\}\{\bar{q}_k\bar{q}_l\}$	$0^+, 1^+, 2^+$	4146, 4167, 4210	D ⁺ D ⁰ , D ⁺ D ^{*0} 3734, 3876	412, 292, 476
$[bc][\overline{u}\overline{d}]$	0+	7229	B^-D^+/B^0D^0 7146	83
$[bc][\bar{q}_k\bar{s}]$	0+	7406	<i>B</i> _s <i>D</i> 7236	170
$[bc]\{ar{q}_kar{q}_l\}$	1^+	7439	<i>B</i> * <i>D</i> / <i>BD</i> * 7190/7290	249
$\{bc\}[\overline{u}\overline{d}]$	1^{+}	7272	<i>B</i> * <i>D</i> / <i>BD</i> * 7190/7290	82
$\{bc\}[\bar{q}_k\bar{s}]$	1^+	7445	<i>DB</i> [*] 7282	163
$\{bc\}\{\bar{q}_k\bar{q}_l\}$	$0^+, 1^+, 2^+$	7461,7472,7493	<i>BD</i> / <i>B</i> * <i>D</i> 7146/7190	317, 282, 349
$\{bb\}[\overline{u}\overline{d}]$	1+	10482	$B^-ar{B}^{*0}$ 10603	-121
$\{bb\}[ar{q}_kar{s}]$	1+	10643	$ar{B}ar{B}_{s}^{*}/ar{B}_{s}ar{B}^{*}$ 10695/10691	-48
$\{bb\}\{\bar{q}_k\bar{q}_l\}$	$0^+, 1^+, 2^+$	10674, 10681, 10695	$B^{-}B^{0}, B^{-}B^{*0}$ 10559, 10603	115, 78, 136
			0.0	· D (0 010

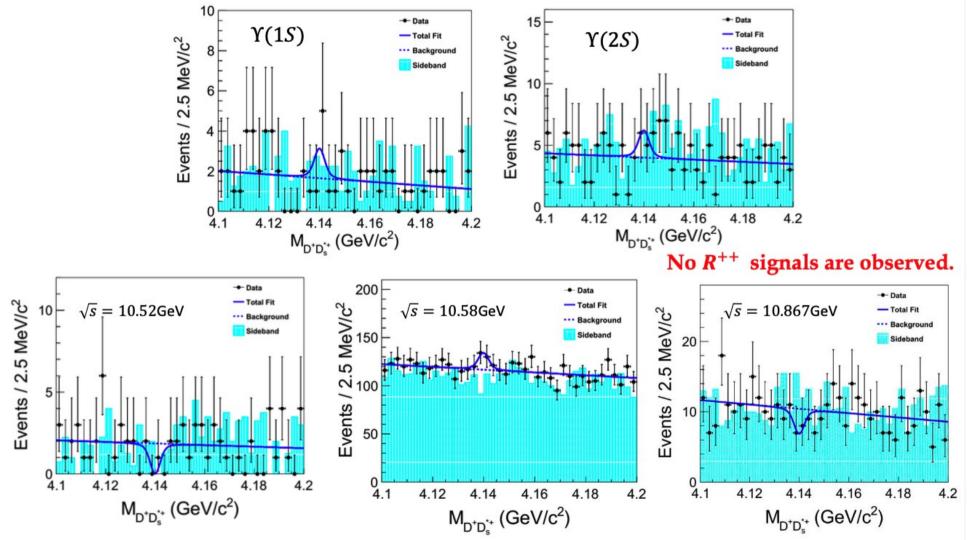
C.Quigg, Beauty 2019

Following the LHCB discovery of doubly charmed baryons , a plethora of papers suggested the search for doubly heavy same-sign tetraquarks, initiated by Karliner, Rosner PRL119 (2017) 20, 202001, and Eichten, Quigg PRL 119 (2017) 20, 202002

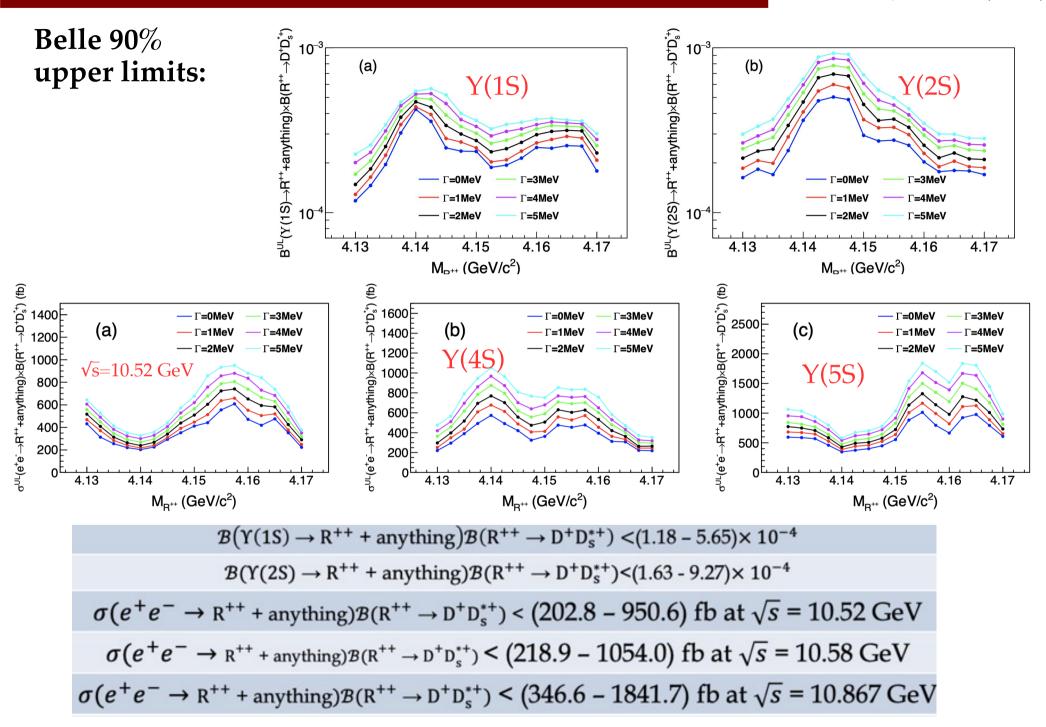

State	J^P	$m(Q_i Q_j \bar{q}_k \bar{q}_l)$	Decay Channel	$\mathcal Q$ [MeV]
{ <i>cc</i> }[<i>ūd</i>]	1+	3978	D+D* ⁰ 3876	102
$\models \{cc\}[\bar{q}_k\bar{s}]$	1^+	4156	$D^+D_s^{*+}$ 3977	179
$\{cc\}\{\bar{q}_k\bar{q}_l\}$	$0^+, 1^+, 2^+$	4146, 4167, 4210	D^+D^0, D^+D^{*0} 3734, 3876	412, 292, 476

A narrow DDK state (total width ~2.5 MeV) is predicted between 4.13 and 4.17 GeV Huang et al, PRD 101 (2020) 014022

Belle searched for peaks in inclusive $D^+D_s^{*+}$ reconstructed in these modes:


- $D^+ \to K^- \pi^+ \pi^- / K_s^0 (\to \pi^+ \pi^-) \pi^+$
- $D_s^{*+} \rightarrow D_s^+ \gamma$
- $D_s^+ \to \phi \pi^+ / \overline{K}^{*0} K^-$

Datasets: 952.5 fb⁻¹ Y(1,2,4,5S) and 10.52 GeV


PRD 102, 112001 (2020)

Belle results

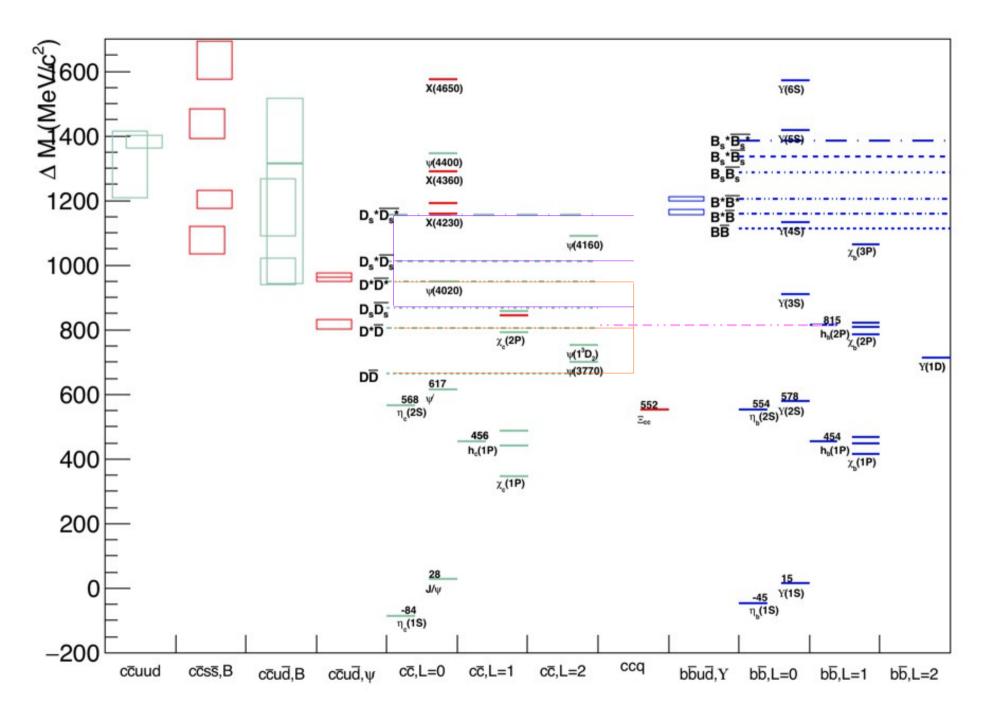
Fits assuming mass M=4.14 GeV/c2 and width Γ =2 MeV

PRD 102, 112001 (2020)

In conclusion ...

11 years after the end of data taking BELLE is still actively contributing to the understanding of the jungle of states discovered in the first decade of the 3rd millenium.

Getting ready for the large datasets from BELLE-II, we keep analysing our rich dataset to react to the new discoveries done by BES-III and LHC experiments.


In conventional charmonium, the last years have seen the completion of 1D wave triplet. Upper limits from the first search for the 1D wave singlet in B decays were given.

Searching for X3872 decay to $\pi^0 \chi_{c1}^{-1}$, BELLE unexpectedly find more coupling to X3915: more statistics is needed, again

The radiative decays to ψ' from the 2P jungle region are explored for the first time, hinting for signals from X(3915) and 4.02 GeV

LHCB discovery of double charm baryons and double J/ψ has suggested new ideas for further explorations on our old datasets: *more results to come!*

CHARM2021

Still many results from Belle on charmonia and XYZ

The study of $\gamma\gamma \rightarrow \gamma\psi(2S)$ at Belle X.L. Wang, B.S. Gao, W.J. Zhu, et al. (Belle Collaboration), submitted to PRD Belle preprint 2021-08, KEK Preprint 2021-4, arXiv:2105.06605 [hep-ex]

Evidence for X(3872) \rightarrow J/ $\psi\pi$ + π - produced in single-tag two-photon interactions Y.Teramoto, et al. (Belle Collaboration), published in PRL 126, 122001 (2021 March 23) Belle preprint 2020-08, KEK Preprint 2020-7, arXiv:2007.05696 [hep-ex]

Search for a doubly-charged DDK bound state in Y(1S,2S) inclusive decays and via direct production in e+e- collisions at $\sqrt{s} = 10.520$, 10.580, and 10.867 GeV Y.Li, S.Jia, C.P.Shen, et al. (Belle Collaboration), published in PRD 102, 112001 (2020 December 1) Belle preprint 2020-10, KEK Preprint 2020-11, arXiv:2008.13341 [hep-ex]

Evidence for a vector charmonium-like state in $e^+e^- \rightarrow D_{s^+}D_{s^2}(2573) + c.c.$ S.Jia, et al. (Belle Collaboration), published in PRD 101, 091101(R) (2020 May 12) Belle preprint 2020-05, KEK Preprint 2020-1, arXiv:2004.02404 [hep-ex]

First search for the $\eta_{c2}(1D)$ in B decays at Belle K.Chilikin, et al. (Belle Collaboration), published in JHEP 2005, 034 (2020 May 08) Belle preprint 2020-02, KEK Preprint 2019-58, arXiv:2003.08335 [hep-ex]

Observation of a vector charmonium-like state in e+e- → D_sD_{s1}(2536) + c.c.
S.Jia, C.P.Shen, et al. (Belle Collaboration), published in
PRD 100, 111103(R) (2019 December 31)
Belle preprint 2019-20, KEK Preprint 2019-42, arXiv:1911.00671 [hep-ex]

Still many results from Belle on charmonia and XYZ

Search for $B_0 \rightarrow X(3872) \gamma$ PC.Chou, et al. (Belle Collaboration), published in PRD 100, 012002 (2019 July 19) Belle preprint 2019-08, KEK Preprint 2019-6, arXiv:1905.11718 [hep-ex]

Search for X(3872) and X(3915) decay into $\chi_{c1}\pi^{0}$ in B decays at Belle V.Bhardwaj, S.Jia, et al. (Belle Collaboration), published in PRD 99, 111101 (R) (2019 June 12) Belle preprint 2019-07, KEK Preprint 2019-5, arXiv:1904.07015 [hep-ex]

Search for the B \rightarrow Y(4260) K, Y(4260) \rightarrow J/ $\psi\pi^+\pi^-$ decays R.Garg, et al. (Belle Collaboration), published in PRD 99, 071102 (R) (2019 April 12) Belle preprint 2019-01, KEK Preprint 2018-86, arXiv:1901.06470 [hep-ex]

Observation of e+e- → γχ_{c1} and search for e+e- → γχ_{c0}, γχ_{c2}, and γη_c at √s near 10.6 GeV at Belle S.Jia, X.L.Wang, C.P.Shen, C.Z.Yuan, et al. (Belle Collaboration), published in PRD98, 092015 (2018 November 30)
Belle preprint 2018-22, KEK Preprint 2018-55, arXiv:1810.10291 [hep-ex]

Search for $\Upsilon(1S,2S) \rightarrow Z_{c}^+Z_{c}^{()}$ and $e^+e^- \rightarrow Z_{c}^+Z_{c}^{()}$ at $\sqrt{s} = 10.52$, 10.58, and 10.867 GeV S.Jia, C.P.Shen, C.Z.Yuan, et al. (Belle Collaboration), published in PRD97, 112004 (2018 June 14) Belle preprint 2018-02, KEK Preprint 2017-65, arXiv:1805.02308 [hep-ex]

Measurement of $\eta_c(1S)$, $\eta_c(2S)$ and non-resonant eta' π + π - production via two-photon collisions Q.N.Xu, et al. (Belle Collaboration), published in PRD98, 072001 (2018 October 3) Belle preprint 2018-06, KEK Preprint 2017-71, arXiv:1805.03044 [hep-ex]