Charm (and bottom) baryons and charmonium excitations from the lattice

M. Padmanath

Mainz, Germany

10th International Workshop on Charm Physics 02nd June, 2021

Charm and bottom baryons

Heavy baryons

A significant fraction of them are heavy baryons. LHCb public: https://lhcb-public.web.cern.ch/ An equally similar collection from Belle and interesting prospects at STCF.

M. Padmanath

Helmholtz Institut Mainz (3 of 27)

Hadron spectroscopy on the lattice

• Euclidean two point current-current correlation functions

$$C_{ji}(t_f - t_i) = \langle 0 | O_j(t_f) \overline{O}_i(t_i) | 0 \rangle = \sum_n \frac{Z_i^{n*} Z_i^n}{2E_n} e^{-E_n(t_f - t_i)}$$

• Quark smearing to improve the overlap with ground states!

$$q(\mathbf{x},t) = \sum_{\mathbf{y}} S(\mathbf{x},\mathbf{y}) q_b(\mathbf{y},t)$$

• Correlation matrices out of large basis of hadron interpolating operators $(O_j(t))$ with desired quantum numbers.

$$O_j(t) = \sum_{\mathbf{x}} \overline{q}(\mathbf{x}, t) \Gamma_j(\mathbf{x}, t) q(\mathbf{x}, t)$$

• Variational study (GEVP) to extract physical information

$$C_{ji}(t)v_i^n = \lambda^n(t,t_0)C_{ji}(t_0)v_i^n$$

Singly charm baryons

Early quenched lattice calculations : Lewis *et al.* '01; Mathur *et al.* '02; Flynn *et al.* '03 Dynamical (light quark) investigations : Liu *et al.* '10

Doubly charm baryons

Another calculation of heavy baryon masses: QCDSF-UKQCD 1711.02485. Heavy baryon mass splittings : BMW Science**347** 1452 '15

Early quenched lattice calculations : Lewis *et al.* '01; Mathur *et al.* '02; Flynn *et al.* '03 Dynamical (light quark) investigations : Liu *et al.* '10

The first doubly charm baryon : Ξ_{cc}

 Ξ_{cc} isospin splitting (LQCD), 2.16(11)(17) MeV : BMW Science347 1452 '15 SELEX measurement (3519 MeV) : Mattson *et al.* PRL89 112001 '02

All lattice calculations disfavors SELEX peak to be a doubly charm baryon.

LHCb discovery of excited Ω_c^0 baryons

Aaij *et al.* (LHCb) PRL**118** 182001 '17 Confirmation by Belle : Yelton *et al.* (Belle) PRD**97** 051102 '18

c & b baryons and cc using lattice QCD

M. Padmanath

Helmholtz Institut Mainz (8 of 27)

Experiment vs. lattice predictions

Here	ΔE	=	Е	_	E_{Ω^0} .	
					775	

The new states correspond to the excited *p*-wave excitations.

MP & Mathur (HSC) PRL119 042001 '17

Energy	Expt.	Lattice	
$\Delta E_{\Omega_c^0(3119)}$	422(1)	464(20)	
$\Delta E_{\Omega_{c}^{0}(3090)}$	395(1)	409(19)	
$\Delta E_{\Omega_c^0(3066)}$	371(1)	383(21)	
$\Delta E_{\Omega_c^0(3050)}$	355(1)	341(18)	
$\Delta E_{\Omega_c^0(3000)}$	305(1)	304(17)	
$\Delta E_{\Omega^0(2770)}$	70.7(1)	65(11)	
$E_{\Omega_c^0} - \frac{1}{2}E_{\eta_c}$	1203(2)	1209(7)	

 $\begin{array}{l} \mbox{Spin 1/2, 3/2, 5/2} \\ \Omega_{ccc} : \mbox{HSC PRD} 90 \ 074504 \ '14 \\ \Xi_{cc} \ \mbox{and} \ \Omega_{cc} : \mbox{HSC PRD} 91 \ 094502 \ '15 \\ \Omega_c, \ \Sigma_c, \ \Lambda_c \ \mbox{and} \ \Xi_c : \ \mbox{CHARM 2013, 1311.4806} \end{array}$

On anisotropic $N_f = 2 + 1$ lattices $L \sim 1.9 \ fm, \ a_t m_c = 0.114$ and $m_{\pi} = 391 \ MeV$ Edwards *et al.* PRD**78** 054501 '08

Precise determination of bc hadron masses

Mathur, MP, Mondal 1806.04151

Results agree with experiment* and with other lattice calculations:

Brown et al 1409.0497; HPQCD 1207.5149, 1010.3848; Wurtz et al 1505.04410

M. Padmanath

Doubly heavy tetraquarks

For a sufficiently heavy Q: a strong interaction stable $qq'\bar{Q}\bar{Q}$ tetraquark.

An extensive calculation of various flavor combinations: Hudspith *et al* 2006.14294 Argues no evidence for deeply bound states other than in doubly bottom axialvector channels.

Bicudo et al 2101.00723

Investigation on the nature of doubly bottom axialvector tetraquarks.

Bottom-charm tetraquarks

Ongoing investigation on bc tetraquarks. MP, Mathur (ILGTI) Indicates several finite volume energy levels close to and below the elastic threshold. Calls for a rigorous finite volume amplitude analysis for definitive statements.

Deutron-like heavy dibaryons

Junnarkar and Mathur 1906.06054

Find indications of large binding energy in bc system.

Charmonium spectra

Charmonium spectra

Rich energy spectrum. XYZ states.

 $\bar{c}c$ picture works well for states below open charm threshold. No single description for states above the open charm threshold.

Several lattice calculations assuming a $\bar{c}c$ picture. RQCD 2018; HSC 2012, 2016; Mohler *et al* 2013, Bali *et al* 2011

M. Padmanath

Olsen et al 1708.04012

Charmonium: channels focussed

 $D\bar{D}$ (and $D_s\bar{D}_s$) scattering. Involves only spinless scattering particles.

$$\begin{split} J^{PC} &= 1^{--} \text{, vector charmonia.} \\ \Gamma_{\psi(1D) \to D\bar{D}} / \Gamma \sim 93\%. \\ \text{Well understood below 4 GeV.} \\ \text{As a proof of concept.} \end{split}$$

 $J^{PC} = 0^{++}$, scalar charmonia. In search of the $\chi_{c0}(2P)$. Other excitations, if any exist! Three experimentally observed states. X(3860): Belle 1704.01872 X(3915): Belle hep-ex/0408126 X(3930): LHCb 2009.00026

Results are exploratory in nature, considering the assumptions involved.

Currently we ignore $\,\eta_{\,\rm C}\,\eta\,$ and all three particle channels $\,$ in our entire analysis.

How do we do?

- Ensemble : CLS
 - U101 $N_f = 2 + 1$, $L \sim 2$ fm, $N_{ev} = 90$
 - H105 $N_f = 2 + 1$, $L \sim 2.7$ fm, $N_{ev} = 150$
 - $m_\pi \sim~280$ MeV, $m_K \sim~467$ MeV
 - \circ Two charm quark masses: $m_D \sim~1762$ MeV and 1927 MeV
- Multiple excited state extraction Correlation matrices using a large basis of interpolating operators

$$\mathcal{C}_{ji}(t_f-t_i)=\langle 0|O_j(t_f)ar{O}_i(t_i)|0
angle =\sum_n rac{Z_n^{i*}Z_n^{j}}{2E_n}e^{-E_n(t_f-t_i)}$$

Operator state overlap factors : $Z_n^j = \langle 0 | O_j | n \rangle$. Physical state information from variational analysis of $C_{ii}(t_f - t_i)$.

- Finite volume spectrum including all relevant two-meson operators $\mathcal{O} = \bar{Q}\Gamma Q$, $(\bar{Q}\Gamma_1 q)_{1_c}(\bar{q}\Gamma_2 Q)_{1_c}$, $(\bar{Q}\Gamma_1 Q)_{1_c}(\bar{q}\Gamma_2 q)_{1_c}$.
- Determination of scattering amplitudes: Utilize "TwoHadronsInBox" toolbox. Morningstar et al. 1707.05817

Vector charmonium: finite volume spectrum

Piemonte et al, 1905.03506

Elastic analysis: Vector charmonia

1⁻⁻ channel in DD scattering in p-wave.

- Reaction matrix(K: $S = (1 + iK)(1 iK)^{-1}$): $K_1^{-1} = (\frac{G_1^2}{m_1^2 s} + \frac{G_2^2}{m_2^2 s})^{-1}$
- (Virtual) bound state constraint: $p^3 cot \delta_1 = (-)(p^2)\sqrt{-p^2}$.
- Results presented for heavier than physical charm quark mass.

Piemonte et al, 1905.03506

Spectrum summary: Vector charmonia

The coupling $g_{\psi(1D)\to\bar{D}D} = 18.9^{+0.8}_{-0.7}$ for light m_c : $g_{exp} = 18.7(9)$ Piemonte *et al.* 1905.03506

c & b baryons and cc using lattice QCD

Scalar charmonium: finite volume spectrum

Prelovsek et al, 2011.02542

Scalar charmonia around the $D\bar{D}$ threshold

• 0^{++} channel in $\overline{D}D$ scattering in *s*-wave.

- Reaction matrix(K: $S = (1 + iK)(1 iK)^{-1}$): $K_1^{-1}/\sqrt{s} = a + b s$
- Bound state constraint: $pcot\delta_0 = -\sqrt{-p^2}$.
- A shallow bound state with B.E.: $m 2m_D = -4.0^{+3.7}_{-5.0}$ MeV
- Results presented for heavier than physical charm quark mass.

Prelovsek et al, 2011.02542

Scalar charmonia around the $D\bar{D}$ threshold

- Signal: An enhancement in the $D\bar{D}$ rate just above threshold. $N_{D\bar{D}}\propto \rho |t|^2$
- Physics in a simulation with physical quark masses is yet to be performed.
- Predictions from phenomenological models.

hep-ph/0612179, 1305.4487, 1605.09649

Evidences in the experiments

0708.3812, 0712.1758

Scalar charmonia around the $D_s^+ D_s^-$ threshold

 $J\psi-\omega$ and $\eta_c\eta$ are not included in the amplitude analysis.

• Reaction matrix(K: $S = (1 + iK)(1 - iK)^{-1}$):

$$\frac{(\tilde{K}^{-1})^{\prime=0}}{\sqrt{s}} = \begin{pmatrix} a_{11} + b_{11}s & a_{12} \\ a_{12} & a_{22} + b_{22}s \end{pmatrix}$$

• The near threshold pole leads to a dip in $D\bar{D} \rightarrow D\bar{D}$ rate and an enhancement in $D_s^+ D_s^- \rightarrow D_s^+ D_s^-$ and $D\bar{D} \rightarrow D_s^+ D_s^-$ rates. Prelovsek *et al.* 2011.02542

Scalar charmonia around the $D_s^+ D_s^-$ threshold

- The near threshold pole couples strongly (weakly) to $D_s^+ D_s^- (D\bar{D})$. Possibly related to X(3915) and/or X(3930).
- Another pole in sheet -- with strong coupling to $D\overline{D}$. Responsible for the peak structure in $D\overline{D} \rightarrow D\overline{D}$ rate above the threshold.
- This pole could be related to the X(3860) observed by Belle.

Spectrum summary: 0⁺⁺ charmonia

Results presented for the heavier than physical charm quark mass.

Prelovsek et al, 2011.02542

Remarks and future plans

- * Lattice results for heavy baryons and more:
 - Singly and doubly charmed baryons.
 - Charmed-bottom hadrons.
 - Doubly heavy tetraquarks.
 - Heavy dibaryons.
- * Charmonium studies:
 - Several lattice calculations assuming $\bar{c}c$ picture.
 - Beyond the $\bar{c}c$ picture: Vector channel as a proof of concept.
 - Beyond the cc picture: Scalar channel.
 - A shallow (virtual) bound state pole near $D\bar{D}$ threshold.
 - A pole near $D_s^+D_s^-$ threshold leading to a dip in $D\bar{D}$ rate. Possibly related to X(3915) and/or X(3930).
 - A resonance pole with strong coupling to $D\overline{D}$ channel. Possibly related to X(3860).

Thank you

Back up slides

Scalar charmonia around the $D\bar{D}$ threshold

Pole distribution of shallow (virtual) bound state in $D\overline{D}$.

Prelovsek et al, 2011.02542

Dip in the $\rho |t_{D\bar{D} \to D\bar{D}}|^2$

No dip in the $\rho |t_{D\bar{D}\rightarrow D\bar{D}}|^2$

Prelovsek et al, 2011.02542

Scalar charmonia around the $D_s^+ D_s^-$ threshold

Pole distribution in $D_s^+ D_s^-$ complex momentum plane.

Prelovsek et al, 2011.02542

Elastic analysis: vector charmonia

- (Virtual) bound state constraint: $p^3 cot \delta_l = (-)(p^2)\sqrt{-p^2}$
- Two bound states at heavier charm quark mass.
- A bound state and a resonance at lighter charm quark mass.
- An inevitable contamination $J^{PC} = 3^{--}$ excitation and I = 3 partial wave in the lattice spectra.

• Reaction matrix,
$$K = \begin{pmatrix} K_1 & 0 \\ 0 & K_3 \end{pmatrix}$$
, with $K_3 = \frac{G_3^2}{m_3^2 - s}$

Piemonte et al, 1905.03506

Residues (c1): scalar charmonia

Prelovsek et al, 2011.02542

Residues (c2): scalar charmonia

Prelovsek et al, 2011.02542