Charm spectroscopy from amplitude analyses in B(s) decays at LHCb

Melissa Cruz Torres^{1,2} on behalf of the LHCb collaboration

¹ Universidad Nacional Autónoma de Honduras (UNAH), Honduras
² Centro Brasileiro de Pesquisas Físicas (CBPF), Brazil

June 2nd, 2021

Introduction

 Charm meson spectroscopy is of great interest, theoretically and experimentally, as a testing ground for quark-models predictions in the Standard Model.

Production of conventional and exotic charm states from B-decays

- Well defined initial state
- Low background
- Kinematics constraint

Exotic measurements through amplitude analysis techniques

- Dalitz plot is the visual representation of the phase space
- Perform fits as function of the phase space variables
- ullet Two kinematics variables m_{12}^2 , m_{23}^2
- Complex phases and magnitudes can be extracted (interference of resonance)
- Lineshapes and spin can be extracted

The LHCb Experiment

- It is a single-arm forward spectrometer designed for the study of *B* and *D* mesons.
- It covers a pseudo-rapidity range of 2 $< \eta < 5$
- run I data: $\mathcal{L}=3.0~\mathrm{fb^{-1}}$ from pp collisions at 7 TeV (2011) and 8 TeV (2012) in the center-of-mass-energy
- run II data: $\mathcal{L}=6.0~\mathrm{fb^{-1}}$ from pp collisions at 13 TeV (2015-2018)

Int. J. Mod. Phys A 30, 1530022 (2015)

Outline

- Observation of a new excited D_s^+ meson in $B^0 \to D^- D^+ K^+ \pi^-$ decays
 - \bullet $\mathcal{L}=5.4~\text{fb}^{-1}$, run II data from 2016 to 2018, Phys. Rev. Lett. 126 (2021) 122002
- Determination of quantum numbers for several excited charmed mesons observed in $B^- \to D^{*+} \pi^- \pi^-$
 - \bullet $\mathcal{L}=4.7~\text{fb}^{-1}$, run I 2011+2012 and run II 2015+2016 data , Phys. Rev. D101 (2020) 032005
- Amplitude analysis of $B^+ \to D^+ D^- K^+$ decays
 - \bullet $\mathcal{L}=9~\text{fb}^{-1}$, run I 2011 + 2012 and run II 2015 to 2018 data , Phys. Rev. D102 (2020) 112003
- Model-independent studies of $B^+ \to D^+D^-K^+$ decays
 - \bullet $~\mathcal{L}=9~\text{fb}^{-1},$ run I 2011 + 2012 and run II 2015 to 2018 data , Phys. Rev. Lett. 125 (2020) 242001

Observation of a new excited D_s^+ meson in $B^0 \to D^- D^+ K^+ \pi^-$ decays

Phys. Rev. Lett. 126 (2021) 122002

Motivation

- The study of the charm-strange spectrum is rich in structures ⇒ interesting place for testing theories.
 - Some states are already experimentally well established
 - But some predicted states are still not observed

- The 2¹S₀ state ⇒ Predicted as the radial excitation of the pseudoscalar D_s⁺ state; the lightest with mass around 2.6 GeV.
- Two *D*-wave states (mass around 2.86 GeV): $1^3D_2(2^-)$ and $1^1D_2(2^-)$
- Three *P*-wave states with mass around 3 GeV: $2^3P_0(0^+)$, $2^1P_1(1^+)$ and $2^3P_2(2^+)$

meson states - $n^{2S+1}L_J$, spin-parity - J^P

Observation of a new excited D_s^+ meson in $B^0 \to D^- D^+ K^+ \pi^-$ decays

Motivation

- D_s states has been observed in $B \to D\bar{D}K$ decays [Phys.Rev.Lett.100(2008)092001]
- Most studies has been focused in excited D_s^+ decaying into DK
 - Only sensitive to D_s^+ natural spin-parity states.
- •The $D^+K^+\pi^-$ allows to access all spin-parity D_s states in a large mass range
 - If restricted the $K\pi$ system to a low mass region (below the threshold of the $K^*(892)^0$), then only the D_s^+ resonance with unnatural spin-parity $(J^P=0^-, 1^+, 2^-,...)$ can decay into $DK\pi$.
 - Offers the possibility to search for the missing $D_s(2S)$ state, with mass around 2.6 GeV and $J^P = 0^-$.

Observation of a new excited D_s^+ meson in $B^0 \to D^- D^+ K^+ \pi^-$ decays

Extraction of the signal and background yields from unbinned maximum likelihood fit [Phys. Rev. Lett. 126 (2021) 122002], run II data 2016 to 2018.

- Fit to the B^0 spectrum in the low $K^+\pi^-$ region ($m(K\pi) < 0.75$ GeV)
- 444 \pm 27 B^0 signal candidates

Dalitz plot in the square mass of D^+D^- vs $D^+K^+\pi^-$

- For candidates with masses within 20 MeV of the known B^0 mass
- Clear cluster of candidates observed in the $D^+K^+\pi^-$ mass \approx 2.6 GeV \triangleright Excess of data!
- Small peak at the threshold correspond $D_{\rm s1}(2536)^+$ state.

Observation of a new excited D_s^+ meson in $B^0 o D^- D^+ K^+ \pi^-$ decays

ullet To study the structures in the $D^+K^+\pi^-$ system an amplitude analysis is performed in the low $K^+\pi^-$ mass region. Amplitude constructed using the Helicity formalism

Decay chain:
$$B^0 \to \bar{D}D_{sI}$$
, $D_{sI} \to DK_n^*$, $K_n^* \to K\pi$.

- •Three D_s^+ components with unnatural spin-parity considered:
 - A new D_{sJ}^+ state at 2.6 GeV (three hypothesis: $0^-, 1^+$ and 2^+)
 - The $J^P = 1^+ D_{s1}(2536)^+$ state
 - A $J^P = 0^-$ nonresonant (NR) component
- For the $K^+\pi^-$ system
 - Modeled by $J^P = 0^+ K_0^* (700)^0$ for all three D_s^+ components.

 $D_{sJ}^+,\,K_0^*(700)^0$ and $D_{s1}(2536)^+$ are described by relativistic Breit-Wigner functions

Best fit results: $J^P = 0^-$ projections in the $DK\pi$ and $K\pi$ systems and $cos(\theta_{Ds})$

	Fit fraction $(\times 10^{-2})$
$D_{s0}(2590)^+$	$63 \pm 9 \text{ (stat)} \pm 9 \text{ (syst)}$
$D_{s1}(2536)^{+}$	$3.9 \pm 1.4 (stat) \pm 0.8 (syst)$
NR	$51 \pm 11 \text{ (stat)} \pm 19 \text{ (syst)}$
D_{s0}^+ –NR	$-18 \pm 18 \text{ (stat)} \pm 24 \text{ (syst)}$
D_{s1}^{+} / D_{s0}^{+}	$6.1 \pm 2.4 (stat) \pm 1.4 (syst)$

- Best fit with D_{sk} , $J^P=0^-$ mass = 2591 \pm 6 \pm 7 MeV
- Γ = 89 \pm 16 \pm 12 MeV

$$D_{sk}$$
, $J^P = 0^- \rightarrow D_{s0}(2590)^+$

Summary

Phys. Rev. Lett. 126 (2021) 122002

• High mass in D^+D^- and low mass $D^+\pi^-$ are well described as reflections of $D_{\rm s0}(2590)^+$.

- A new excited D_s^+ meson is observed in the $D^+K^+\pi^-$ system of $B^0 \to D^-D^+K^+\pi^-$ decays.
 - From amplitude analysis performed in the low $K^+\pi^-$ region:
 - $m = 2591 \pm 6 \pm 7 \text{ MeV}$
 - $\Gamma = 89 \pm 16 \pm 12 \text{ MeV}$
 - $J^P = 0^-$
- The new resonance, denoted as $D_{s0}(2590)^+$, is a good candidate to be the missing $D_s(2^1S_0)^+$ state \Rightarrow the radial excitation of the pseudoscalar D_s^+ meson.

- Determination of quantum numbers for several excited charmed mesons observed in $B^- \to D^{*+} \pi^- \pi^-$
 - $\mathcal{L}=4.7~{
 m fb^{-1}}$, run I 2011+2012 and run II 2015+2016 data, Phys. Rev. D101 (2020) 032005

Determination of quantum numbers for several excited charmed mesons observed in

$$B^- \to D^{*+} \pi^- \pi^-$$

Phys. Rev. D101 (2020) 032005

- Spin-parity information is crucial to associate observed and predicted resonances
- $D\pi$ final states enables a search for natural spin-parity resonances $J^P = 0^+, 1^-, 2^+, \dots$, labeled as D^*
- $D^*\pi$ spectrum enables for both, natural and unnatural spin-parity resonances $J^P = 0^-, 1^+, 2^-, \dots$ indicated as D
 - \bullet Search for excited mesons, D_{I} , performed using two different approached:
 - Using inclusive reactions
 - Through amplitude analysis of exclusive B decays
- The amplitude analysis of B decays allows a full spin-parity analysis of charmed mesons.
- Backgrounds are usually low and well understood.

In this work the study of D_J spectroscopy in the $D^{*+}\pi^-$ system through an amplitude analysis of the decay channel $B^- \to D^{*+}\pi^-\pi^-$ is performed

Determination of quantum numbers for several excited charmed mesons observed in

$$B^- \to D^{*+}\pi^-\pi^-$$

Phys. Rev. D101 (2020) 032005

The decay tree proceed as: $B^- \to R^0 \pi_2^-$, where $R^0 \to D^0 \pi^+ \pi_1^-$

The $B^- \to D^{*+} \pi^- \pi^-$ invariant mass after selection

Spectrum after multivariate selection to remove combinatorial background.

Signal candidates

• $N_{sig}=79120$ where 48.5% and 51.5% are from run I and run II, respectively.

The $B^- \to D^{*+}\pi^-\pi^-$ Dalitz plot

ullet Two indistinguishable π^- mesons in the final states. Dalitz plot constructed in the $m^2(D^{*+}\pi^-)_{high}$ and $m^2(D^{*+}\pi^-)_{low}$ variables (Phys. Rev. D101 (2020) 032005)

- ullet Clear vertical bands in the 6 GeV² mass \Rightarrow presence of well known $D_1(2420)$ and $D_2^*(2460)$ resonances
- Presence of further weaker bands at higher mass region \Rightarrow Not so visible in the mass projection and thus, an angular analysis needed to separate the different contributions.

An amplitude analysis to extract:

- fractions and phases of the charmed resonances contributing to the decay
- Measure their parameters and quantum numbers.

The contributing amplitudes are parametrized using the nonrelativistic Zemach tensor formalism:

J^P	L	Amplitude	-
0-	1	$BW(m_{123})[t_3 \cdot p_3]$	•
1^+S	0	$BW(m_{123})[t_3 \cdot q_4]$	 List of amplitudes included in
1^+D	2	$\mathrm{BW}(m_{123})[p_3(t_3 \cdot p_3) - \frac{1}{3}(p_3 \cdot p_3)t_3] \cdot q_4$	the analysis
1-	1	$BW(m_{123})[(t_3 \times p_3) \cdot q_4]$	•
2-P	1	$\mathrm{BW}(m_{123})[\tfrac{1}{2}(t_3^ip_3^j+t_3^jp_3^i)-\tfrac{1}{3}(\boldsymbol{t_3}\cdot\boldsymbol{p_3})\delta^{ij}]\cdot[q_4^iq_4^j-\tfrac{1}{3} q_4 ^2\delta^{ij}]$	Phys. Rev. D101 (2020) 032005
2^-F	3	$\mathrm{BW}(m_{123})[(\boldsymbol{t_3} \cdot \boldsymbol{p_3})(p_3^i p_3^j - \tfrac{1}{3} p_3 ^2 \delta^{ij})] \cdot [q_4^i q_4^j - \tfrac{1}{3} q_4 ^2 \delta^{ij}]$	•
2+	2	$\mathrm{BW}(m_{123})[\tfrac{1}{2}[(\boldsymbol{t_3}\times\boldsymbol{p_3})^ip_3^j+p_3^i(\boldsymbol{t_3}\times\boldsymbol{p_3})^j]-\tfrac{1}{3}[(\boldsymbol{t_3}\times\boldsymbol{p_3})\cdot\boldsymbol{p_3}]\delta^{ij}\cdot[q_4^iq_4^j-\tfrac{1}{3} q_4 ^2\delta^{ij}]$	•
3-	3	$\begin{array}{l} \mathrm{BW}(m_{123})[(t_3 \times \mathbf{p_3})^i p_3^j p_3^j + (t_3 \times \mathbf{p_3})^k p_3^j p_2^j + (t_3 \times \mathbf{p_3})^j p_3^k p_3^k) - \\ \frac{1}{6}[\delta^{ij}(t_3 \times \mathbf{p_3})^k + \delta^{ik}(t_3 \times \mathbf{p_3})^j + \delta^{ik}(t_3 \times \mathbf{p_3})^i] p_3 ^2] \cdot \\ \frac{1}{6}[(p_4^i p_4^i p_4^k + p_4^k p_4^i p_4^j + p_4^i p_4^i p_4^k) - p_4^2(\delta^{ij} p_4^k + \delta^{ik} p_4^i + \delta^{jk} p_4^i)] \end{array}$	

Strategy

- As a first approach, the resonance (R⁰) lineshape is described by a complex relativistic Breit-Wigner function.
- Second approach: the resonance line shapes are described by quasi-model-independent method (QMI)
- Allow mixing between $J^P = 1^+$ amplitudes.
- Dalitz plot fit

$$\textbf{Likelihood function} \qquad \mathcal{L} = \prod_{n=1}^{N} \left[p \cdot \epsilon(\mathbf{x_n}) \frac{\sum_{i,j} c_i c_j^* A_i(\mathbf{x_n}) A_j^*(\mathbf{x_n})}{\sum_{i,j} c_i c_j^* I_{A_i A_j^*}} + (1-p) B(\mathbf{z_n}) \right]$$

$$f_i \equiv \frac{|c_i|^2 \int |A_i(\boldsymbol{x})|^2 \mathrm{d}\boldsymbol{x}}{\sum_{i,j} c_i c_j^* I_{A_i A_j^*}}.$$

• All charmed resonance contributions are included one by one. Resonances are kept if a significant likelihood increase ($\Delta(2\log\mathcal{L})>3$) is observed

List of resonance used in the amplitude analysis:

	Resonance	J^P	Mass [MeV]	Width [MeV]	Significance (σ)
П	$D_1(2420)$	1+	$2424.8 \pm 0.1 \pm 0.7$	$33.6 \pm 0.3 \pm 2.7$	
ı	$D_1(2430)$	1+	$2411 \pm 3 \pm 9$	$309 \pm 9 \pm 28$	
ı	$D_2^*(2460)$	2+	2460.56 ± 0.35	47.5 ± 1.1	
ı	$D_0(2550)$	0-	$2518 \pm 2 \pm 7$	$199 \pm 5 \pm 17$	53
ı	$D_1^*(2600)$	1-	$2641.9 \pm 1.8 \pm 4.5$	$149 \pm 4 \pm 20$	60
l	$D_2(2740)$	2-	$2751 \pm 3 \pm 7$	$102 \pm 6 \pm 26$	16
l	$D_3^*(2750)$	3-	$2753 \pm 4 \pm 6$	$66 \pm 10 \pm 14$	8.7
	D_1	1+	$2423.7 \pm 0.1 \pm 0.8$	$31.5 \pm 0.1 \pm 2.1$	
	D_1'	1+	$2452 \pm 4 \pm 15$	$444 \pm 11 \pm 36$	

- Upper section: list of of states giving significant contribution in the Dalitz plot fit
- Upper section: parameters using the QMI method
- Results in lower part from the mixing analysis

Quasi-Model-Independent amplitude

- 31 slices in the $D^{*+}\pi^-$ spectrum
- The process starts with a QMI fit to the $J^P = 1^+ S$ amplitude
- Then QMI J^P = 1+S amplitude is fixed and the QMI J^P = 0⁻ performed. The process continue by leaving one by one, free Breit-Wigner parameters for all considered resonance.

Phase

The fitted magnitude and phase of the 1^+S amplitude is presented. The red point indicate mass bin where the complex amplitude was fixed.

• Broad structure at threshold with corresponding phase motion \rightarrow (Phys. Rev. D101 (2020) 032005)

QMI for $J^P = 0^-$ amplitude

• Fitted amplitude and phase (Phys. Rev. D101 (2020) 032005)

- Activity at 2.8 GeV consistent with a resonance (new excited D_0^{\prime} resonance)
- Fitted parameters $m(D_0^{'})=2782\pm13$ MeV and $\Gamma(D_0^{'})=146\pm23$ MeV, with 3.2σ of significance.
 - However, an attempt to include this new possible resonance in the amplitude analysis gives a fraction consistent with zero.

QMI fit results for $J^P = 1^+ S$ and $J^P = 0^-$ amplitudes

Phys. Rev. D101 (2020) 032005

Resonance	J^P	fraction (%)	phase (rad)
$D_1(2420)$	1^+D	$59.8 \pm 0.3 \pm 2.9$	0
→ 1+S QMI	1+S	$28.3 \pm 0.3 \pm 1.9$	$-1.19 \pm 0.01 \pm 0.15$
$D_2^*(2460)$	2^{+}	$15.3 \pm 0.2 \pm 0.3$	$-0.71 \pm 0.01 \pm 0.48$
$D_1(2420)$	1+S	$2.8 \pm 0.2 \pm 0.5$	$1.43 \pm 0.02 \pm 0.31$
0^- QMI	0-	$10.6 \pm 0.2 \pm 0.7$	$1.94 \pm 0.01 \pm 0.19$
$D_1^*(2600)$	1-	$6.0 \pm 0.1 \pm 0.6$	$1.20 \pm 0.02 \pm 0.05$
$D_2(2740)$	$2^{-}P$	$1.9 \pm 0.1 \pm 0.4$	$-1.57 \pm 0.04 \pm 0.15$
$D_2(2740)$	2^-F	$3.2 \pm 0.2 \pm 1.1$	$1.11 \pm 0.04 \pm 0.29$
$D_3^*(2750)$	3-	$0.35 \pm 0.04 \pm 0.05$	$-1.17 \pm 0.07 \pm 0.31$
Sum		$128.2 \pm 0.6 \pm 3.8$	

- Model 1⁺S and 0⁻ with QMI using cubic spline
- All other resonances modeled as relativistic Breit-Wigner amplitudes

- Dominance of $D_1(2420)$ (1⁺D) and with important contributions from QMI 1⁺S and $D_2^*(2460)$.
- Sum of fractions larger than 100% indicating interference effects.

• Fit projections for Run 2 data (Phys. Rev. D101 (2020) 032005):

• Fit projections on $m(D^{*+}\pi^-)_{low}$ for all dataset, including all contributing amplitudes:

- Search for additional contributions and spin-parity determination
 - Additional contributions are tested by adding them to the reference fit.
 - No evidence is found for $D_1^*(2760)$ or $D_2^*(3000)$ contributions previously observed in the $B^- \to D^+\pi^-\pi^-$ decay.
 - Their statistical significance is found to be 2.4 and 0.0, respectively.

Results from the $J^P = 1^+$ mixing model

• The mixing can occur via common $D^*\pi$ decay channel

$$A^{D_1'} = A^{1S}\cos\omega - A^{1D}\sin\omega e^{i\psi},$$

$$A^{D_1} = A^{1S} \sin \omega + A^{1D} \cos \omega e^{-i\psi},$$

- $D_1^{'}$ and D_1 being the superposition of S- and D-wave amplitudes
- ω is the mixing angle and ψ a complex phase

Results Phys. Rev. D101 (2020) 032005

Resonance	J^P	fraction (%)	phase (rad)
D_1	1+	$58.9 \pm 0.7 \pm 2.5$	0
D'_1	1+	$21.9 \pm 2.2 \pm 3.0$	$-1.06 \pm 0.10 \pm 0.05$
$D_2^*(2460)$	2+	$14.0 \pm 0.2 \pm 0.3$	$2.66 \pm 0.09 \pm 0.15$
$0^- QMI$	0-	$6.5 \pm 0.2 \pm 1.5$	$2.03 \pm 0.09 \pm 0.28$
$D_1^*(2600)$	1-	$4.9 \pm 0.1 \pm 0.5$	$-2.24 \pm 0.09 \pm 0.11$
$D_2(2740)$	$2^{-}P$	$0.72 \pm 0.08 \pm 0.30$	$-2.59 \pm 0.10 \pm 0.53$
$D_2(2740)$	2^-F	$2.9 \pm 0.2 \pm 1.1$	$0.27 \pm 0.09 \pm 0.47$
$D_3^*(2750)$	3-	$0.70 \pm 0.05 \pm 0.10$	$1.54 \pm 0.10 \pm 0.33$
Sum		$110.4 \pm 2.3 \pm 4.4$	

Results from the $J^P = 1^+$ mixing model

• The resulting mixing parameter are (Phys. Rev. D101 (2020) 032005)

$$\omega = -0.063 \pm 0.019 \pm 0.004, \ \psi = -0.29 \pm 0.09 \pm 0.07$$

• consistent with Belle results (Phys. Rev. D93, 119901(2016)):

$$\omega = -0.010 \pm 0.03 \pm 0.02 \pm 0.02$$

$$\psi = 0.05 \pm 0.20 \pm 0.04 \pm 0.06$$

• The fitted $D_1^{'}$ and D_1 parameters are (Phys. Rev. D101 (2020) 032005)

$$m(D_1) = 2423.7 \pm 0.1 \pm 0.8 \; {
m MeV} \qquad {
m and} \qquad \Gamma(D_1) = 31.5 \pm 0.1 \pm 2.1 \; {
m MeV},$$
 $m(D_1^{'}) = 2452 \pm 4 \pm 15 \; {
m MeV} \qquad {
m and} \qquad \Gamma(D_1^{'}) = 444 \pm 11 \pm 36 \; {
m MeV}$

Measurements of branching fractions Phys. Rev. D101 (2020) 032005

The known branching fraction of $B^- \to D^{*+}\pi^-\pi^-$ is

$$\mathcal{B}(B^- \to D^{*+}\pi^-\pi^-) = (1.35 \pm 0.22) \times 10^{-3} \text{ (PDG)}$$

ullet The partial branching fraction is obtained as the multiplication of the B^- branching fraction and the fractional contribution from the amplitude analysis.

Resonance	J^P	$\mathcal{B}(B^- \to R^0 \pi^-) \times \mathcal{B}(R^0 \to D^{*+} \pi^-) \times 10^{-4}$		
		This analysis	Belle collaboration	
$D_1(2420)$	1+	$8.42 \pm 0.08 \pm 0.40 \pm 1.40$		
$D_1(2430)$	1+S	$3.51 \pm 0.06 \pm 0.23 \pm 0.57$		
$D_2^*(2460)$	2^{+}	$2.08 \pm 0.03 \pm 0.14 \pm 0.34$	$1.8 \pm 0.3 \pm 0.3 \pm 0.2$	
$D_0(2550)$	0-	$0.72 \pm 0.01 \pm 0.07 \pm 0.12$		
$D_1^*(2600)$	1-	$0.68 \pm 0.01 \pm 0.07 \pm 0.11$		
$D_2(2740)$	2-	$0.33 \pm 0.02 \pm 0.14 \pm 0.05$		
$D_3^*(2750)$	3-	$0.11 \pm 0.01 \pm 0.02 \pm 0.02$		
D_1	1+	$7.95 \pm 0.09 \pm 0.34 \pm 1.30$	$6.8 \pm 0.7 \pm 1.3 \pm 0.3$	
D_1'	1+	$2.96 \pm 0.30 \pm 0.41 \pm 0.48$	$5.0 \pm 0.4 \pm 1.0 \pm 0.4$	

- Comparison with Belle measurements are shown
- Third uncertainty due to absolute measurement of $\mathcal{B}(B^- \to D^{*+}\pi^-\pi^-)$

Summary

- A four body amplitude analysis in the $B^- \to D^{*+}\pi^-\pi^-$ decay is performed using pp data collected by the LHCb detector
- Fractional contributions and relative phases for resonances contributions are measured
- The data allow for several quasi-model-independent searches for the presence of new states
- Quantum numbers, parameters and branching fractions are measured for $D_1(2420)$, $D_1(2430)$, $D_0(2550)$, $D_1^*(2600)$, $D_2(2740)$ and $D_3^*(2750)$ resonances.
- The $J^P = 1^+ S$ and $J^P = 0^-$ QMI amplitudes give indication for the presences of D_1 and D_0' resonances in the 2.80 GeV mass region.
- The data is fitted allowing for mixing between D_1 ad D_1' resonances. The mixing angle deviates from zero by 2.3 σ .

- Amplitude analysis of $B^+ \rightarrow D^+ D^- K^+$ decays
 - \bullet $\mathcal{L}=9~\text{fb}^{-1}$, run I 2011 + 2012 and run II 2015 to 2018 data , Phys. Rev. D102 (2020) 112003
- Model-independent studies of $B^+ \to D^+ D^- K^+$ decays
 - \bullet $\mathcal{L}=9~{
 m fb}^{-1}$, run I 2011 + 2012 and run II 2015 to 2018 data , Phys. Rev. Lett. 125 (2020) 242001

Amplitude analysis and model-independent studies of $B^+ \to D^+D^-K^+$ decays

- The $B^+ \to D^{(*)+}D^{(*)-}K^+$ family of decays offers a good laboratory to study charmonium states
- ullet Branching fractions measurement have been performed o Recent results by LHCb; but not prior analysis to their resonant structure exist.

$$B^+ o D^+ D^- K^+$$
 provides a clean environment to study charmonium states:

Resonances in the D^-K^+ system: For the D^+K^+ states $(c\bar{d}\bar{s}u)$

Would indicate exotic contribution

- •With unprecedented pure sample obtained by LHCb the first $B^+ \to D^+ D^- K^+$ amplitude analysis is presented
- \bullet A model-independent analysis is performed to study the resonant structures in the D^+D^- channel

Amplitude analysis and model-independent studies of $B^+ \to D^+D^-K^+$ decays

- \bullet Data sample of 9 fb⁻¹, Full run I + run II data
- ullet B reconstructed as $B^+ o (K^-\pi^+\pi^+)_{D^+}(K^+\pi^-\pi^-)_{D^-}K^+$
- After selection criteria, an extended maximum likelihood fit is applied to $m(D^+D^-K^+)$ invariant mass

Phys. Rev. D102 (2020) 112003

Results:

Year	Signal	Background
2011	84 ± 9	_
2012	217 ± 15	16 ± 5
2015	41 ± 6	_
2016	300 ± 18	19 ± 6
2017	302 ± 18	21 ± 6
2018	359 ± 19	15 ± 5

- ★ Total of 1374 candidates
- * Signal window: $|m(B^+ 5280)| < 20 \text{ MeV}/c^2$
- ★ 1260 candidates, purity > 99.5%

Amplitude analysis and model-independent studies of $B^+ \to D^+D^-K^+$ decays

The projection of candidates in Dalitz plot for the signal window (run II data) Phys. Rev. D102 (2020) 112003

- Data projection of each system
- Clear excess at $\approx 8.25 \text{ GeV}^2/c^4$ (also observed for run I data) in D^-K^+ .

Strategy

The distribution of $B^+ \to D^+D^-K^+$ events across the Dalitz plot is fitted using a PDF with signal and background contributions and as function of the B phase space.

The signal PDF is defined as:

$$\mathcal{P}_{\rm sig}(\vec{x}) = \frac{1}{\mathcal{N}} \times \epsilon_{\rm total}(\vec{x}) \times |\mathcal{A}_{\rm sig}(\vec{x})|^2$$

 \mathcal{N} is a normalization factor $\epsilon(\vec{x})$ is the total efficiency \vec{x} position in the Dalitz plot

The signal amplitude $(A_{sig}(\vec{x}))$ is constructed using the isobar formalism

$$A_{sig}(\vec{x}) = \sum c_j F_j(\vec{x})$$

 c_j are the coupling coefficient $F_j(\vec{x})$ dynamic information of each component.

Signal model content

Strategy I

- ullet Expect only charmonium resonance in D^+D^-
- ullet Expect natural J^P to pseudoscalars and suppressed high-spin

Signal model content: excluding D^-K^+ resonances

Strategy I

Phys. Rev. D102 (2020) 112003

- Not excluded possible spin-0 contribution to χ_{c2} (3930)
- m and Γ of $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$ allowed to float
- An exponential S-wave included in the D⁻K⁺ system
 - nonresonant component

components included in model

(Parameter as given by the PDG)

Partial wave (J^{PC})	Resonance	Mass (MeV/c^2)	Width (MeV)
S wave (0++)	$\chi_{c0}(3860)$	3862 ± 43	201 ± 145
	X(3915)	3918.4 ± 1.9	20 ± 5
P wave (1)	$\psi(3770)$	3778.1 ± 0.9	27.2 ± 1.0
	$\psi(4040)$	4039 ± 1	80 ± 10
	$\psi(4160)$	4191 ± 5	70 ± 10
	$\psi(4260)$	4230 ± 8	55 ± 19
	$\psi(4415)$	4421 ± 4	62 ± 20
D wave (2 ⁺⁺)	$\chi_{c2}(3930)$	3921.9 ± 0.6	36.6 ± 2.1
E (2)	V/2040\	2040 71 0.00	0.70 0.60

 $\psi(3770)$ mass and $\chi_{c2}(3930)$ and $\chi(3842)$ mass

and width taken from JHEP 1907 (2019) 035

Results

- LHCb andidates / (17.3 MeV/c $m(D^-K^+)$ [GeV/c²]
 - ψ (3770) \rightarrow D⁺ D⁻ $w(4040) \to D^+ D^-$
 - ψ (4160) \rightarrow D⁺ D
 - ψ (4415) \rightarrow D⁺ D Nonresonant

- ψ(3770) taken as reference
- Better fit adding 'χ_{c0}(3930)'
- No constraint on '\(\chi_C I\)(3930)' mass and width

Clear disagreement at $m(D^-K^+)\approx 2.9~{\rm GeV}/c^2$

Signal model content: including D^-K^+ resonances

Doing a zoom $(m(D^+D^-) > 4 \text{ GeV}/c^2)$

⇒ Clear indication of necessity to include resonant structures in $m(D^-K^+)$ Phys. Rev. D102 (2020) 112003

Strategy II

Constructing a baseline model (adding D^-K^+ resonances)

- Adding resonance contributions to better describe the data
- Best fit when adding a spin-0 and spin-1 D^-K^+ resonance
- The spin-0 and spin-1 D^-K^+ contributions are labeled as $X_0(2900)$ and $X_1(2900)$
- •But no exclusion of the possibility of hadronic effects: such as rescattering
 - Testing this hypothesis require new theoretical models
 - Larger data samples

Signal model content: including D^-K^+ resonances

Phys. Rev. D102 (2020) 112003

- Nonresonant contribution still needed in the D^-K^+ system
- The $D\bar{D}$ structure at $\chi_{cJ}(3930)$ region \to found indeed that spin-0 and spin-2 contributions are necessary

Baseline model

Resonance	Magnitude	Phase (rad)	Fit fraction (%)		
D+D- resona	ances				
$\psi(3770)$	1 (fixed)	0 (fixed)	$14.5 \pm 1.2 \pm 0.8$		
$\chi_{c0}(3930)$	$0.51 \pm 0.06 \pm 0.02$	$2.16 \pm 0.18 \pm 0.03$	$3.7 \pm 0.9 \pm 0.2$		
$\chi_{c2}(3930)$	$0.70 \pm 0.06 \pm 0.01$	$0.83 \pm 0.17 \pm 0.13$	$7.2 \pm 1.2 \pm 0.3$		
$\psi(4040)$	$0.59 \pm 0.08 \pm 0.04$	$1.42 \pm 0.18 \pm 0.08$	$5.0 \pm 1.3 \pm 0.4$		
$\psi(4160)$	$0.67 \pm 0.08 \pm 0.05$	$0.90 \pm 0.23 \pm 0.09$	$6.6 \pm 1.5 \pm 1.2$		
$\psi(4415)$	$0.80 \pm 0.08 \pm 0.06$	$-1.46 \pm 0.20 \pm 0.09$	$9.2 \pm 1.4 \pm 1.5$		
D^-K^+ resonances					
$X_0(2900)$	$0.62 \pm 0.08 \pm 0.03$	$1.09 \pm 0.19 \pm 0.10$	$5.6 \pm 1.4 \pm 0.5$		
$X_1(2900)$	$1.45 \pm 0.09 \pm 0.03$	$0.37 \pm 0.10 \pm 0.05$	$30.6 \pm 2.4 \pm 2.1$		
Nonresonant	$1.29 \pm 0.09 \pm 0.04$	$-2.41 \pm 0.12 \pm 0.51$	$24.2 \pm 2.2 \pm 0.5$		

Parameters for $\chi_{c0,2}(3930)$ and $X_{c0,1}(2900)$ determined from the fit

Resonance	Mass (GeV/c^2)	Width (MeV)
$\chi_{c0}(3930)$	$3.9238 \pm 0.0015 \pm 0.0004$	$17.4 \pm 5.1 \pm 0.8$
$\chi_{c2}(3930)$	$3.9268 \pm 0.0024 \pm 0.0008$	$34.2 \pm 6.6 \pm 1.1$
$X_0(2900)$	$2.866 \pm 0.007 \pm 0.002$	$57 \pm 12 \pm 4$
$X_1(2900)$	$2.904 \pm 0.005 \pm 0.001$	$110 \pm 11 \pm 4$

Results

Projections in the $\chi_{cJ}(3930)$ region (Phys. Rev. D102 (2020) 112003)

Significance of resonant structures

Test $t = -2(\log(\mathcal{L}(H_1)) - \log(\mathcal{L}(H_0)))$

 H_0 : Model with no D^-K^+ resonances

H₁: Baseline fit model

Dashed line: values found in data

a) H_0 : Model with no D^-K^+ resonances, H_1 : Baseline fit model

favoured the H1 hypothesis

b), c), d) H_0 : Model with single $\chi_{c0,1,2}$ resonances H_1 fit model with resonance or both, spin-0 and spin-2

Favoured to spin-0 and spin-2 combination

Model-independent studies of $B^+ \to D^+D^-K^+$ decays

- Consider the distribution of the cosine of D^+D^- helicity angle $(h(D^+D^-))$ in terms of Legendre Polynomials
- Decomposition in slices of $m(D^+D^-)$

Coefficient in the expansion: $\langle Y_k^j \rangle = \sum w_l P_k (h_l(D^+D^-))$ (k-th unnormalised moment)

Phys. Rev. Lett. 125 (2020) 242001

Truncate expansion up to spin-2

$$(k_{max} = 4)$$

$$(k_{max} =$$

Clear discrepancy around $m(D^-K^+) =$ 2.9 GeV/ c^2

Construct PDF in $m(D^+D^-)$ to build a test-statistic

$$t = -2 \sum_{l=1}^{N^{\mathrm{Data}}} s_l \log \left(\frac{\mathcal{P}\left(m_l(D^-K^+)|H_0\right)/I_{H_0}}{\mathcal{P}\left(m_l(D^-K^+)|H_1\right)/I_{H_1}} \right)$$

Hypothesis that only D^+D^- resonances up to spin-2 are present is rejected at the 99.99%, (3.9σ)

Summary

- First amplitude analysis for the decay channel $B^+ \to D^+ D^- K^+$
- ullet Dalitz plot distribution cannot be explained using only resonance in the D^+D^- system
 - Conclusion supported by a model-independent analysis
- Good data description by including new spin-0 and spin-1 resonance in the D⁻K⁺ channel:

```
X_0(2900): m = 2.866 \pm 0.007 \pm 0.002 GeV/c^2, \Gamma = 57 \pm 12 \pm 4 MeV X_1(2900): m = 2.904 \pm 0.005 \pm 0.001 GeV/c^2, \Gamma = 110 \pm 11 \pm 4 MeV
```

- This constitute the first observation of exotic hadron with open flavour
- ullet It was found necessary to include both spin-0 and spin-2 states in the $\chi_{cJ}(3930)$ region

```
\chi_{c0}(3930)\colon m = 3.9238\pm0.0015\pm0.0004 GeV/c^2, \Gamma=17.4\pm5.1\pm0.8 MeV \chi_{c2}(3930)\colon m = 3.9268\pm0.0024\pm0.0008 GeV/c^2, \Gamma=34.2\pm6.6\pm1.1 MeV
```

Final comments

- A lot of work ongoing at the LHCb experiment in the exploration of b and c data
- Great potentiality in the study of charm spectroscopy from B decays
- High expectation for the Run 3 and an upgraded LHCb detector: exciting prospects for further discoveries in this area.

BACK UP

Dalitz plot

- \star The Dalitz plot (DP) is a tool widely used in the study of three-body decays.
- * It is the representation of the phase space of a decay.
- * It can be defined in terms of two out of three following invariants:

$$m_{12}^2 = (p_1 + p_2)^2,$$

 $m_{13}^2 = (p_1 + p_3)^2,$
 $m_{23}^2 = (p_2 + p_3)^2.$

The event distribution in Dalitz plot is proportional to the square of the decay amplitude.

$$d\Gamma = \frac{1}{256\pi^3 M^3} |A|^2 dm_{ij}^2 dm_{ik}^2,$$

* Being so, any non-uniform distribution of points in the Dalitz plot directly reflects the dynamic in the decay.

Angles definition to distinguish between different J^P contributions:

- \bullet θ_H is useful in discriminating between natural and unnatural spin-parity resonance.
- Two dimensional distribution of $cos(\theta_H)$ vs $m(D^{*+}\pi^-)_{low}$

The two vertical lines are due to $D_1(2420)$ and $D_2^*(2462)$ (follow the $1-h\cos^2(\theta_H)$ and $\sin^2(\theta_H)$ distribution respectively. h < 1 depends on the properties of the decay.

Quasi-Model-Independent amplitude

QMI used to describe broad $J^{P}=1^{+}S$ amplitudes and to search for additional resonances.

- The $D^{*+}\pi^-$ spectrum is divided in 31 slices with nonuniform bin widths.
- The fit is performed using as free parameters the real and imaginary parts of the amplitude in each bin.
- $J^P = 1^+ D$ narrow amplitude is taken as reference
- To search for QMI parameters is performed using random search and QMI amplitudes are introduced one by one.
- A second interaction was started from final values of the first fit.
- The fit converges at the second iteration giving positive covariance matrix

Determination of quantum numbers for several excited charmed mesons observed in

$$B^- \rightarrow D^{*+}\pi^-\pi^-$$

Measured parameters and quantum numbers in this analysis vs other analysis/experiments

Resonance	J^P	Decays	Mass [MeV]	Width [MeV]	References
$D_0(2550)^0$	0-	$D^{*+}\pi^{-}$	$2518 \pm 2 \pm 7$	$199 \pm 5 \pm 17$	This work
$D_J(2550)^0$		$D^{*+}\pi^{-}$	$2539.4 \pm 4.5 \pm 6.8$	$130 \pm 12 \pm 13$	BaBar [11]
$D_J(2580)^0$		$D^{*+}\pi^{-}$	$2579.5 \pm 3.4 \pm 3.5$	$177.5 \pm 17.8 \pm 46.0$	LHCb [12]
$D_1^*(2600)^0$	1-	$D^{*+}\pi^{-}$	$2641.9 \pm 1.8 \pm 4.5$	$149 \pm 4 \pm 20$	This work
$D_J^*(2600)^0$		$D^{+}\pi^{-}$	$2608.7 \pm 2.4 \pm 2.5$	$93 \pm 6 \pm 13$	BaBar [11]
$D_J^*(2650)^0$		$D^{*+}\pi^{-}$	$2649.2 \pm 3.5 \pm 3.5$	$140.2 \pm 17.1 \pm 18.6$	LHCb [12]
$D_1^*(2680)^0$		$D^{+}\pi^{-}$	$2681.1 \pm 5.6 \pm 4.9$	$186.7 \pm 8.5 \pm 8.6$	LHCb [14]
$D_2(2740)^0$	2-	$D^{*+}\pi^{-}$	$2751 \pm 3 \pm 7$	$102 \pm 6 \pm 26$	This work
$D_J(2750)^0$		$D^{*+}\pi^{-}$	$2752.4 \pm 1.7 \pm 2.7$	71 ± 6 ± 11	BaBar [11]
$D_J(2740)^0$		$D^{*+}\pi^{-}$	$2737.0 \pm 3.5 \pm 11.2$	$73.2 \pm 13.4 \pm 25.0$	LHCb [12]
$D_3^*(2750)^0$	3-	$D^{*+}\pi^{-}$	$2753 \pm 4 \pm 6$	66 ± 10 ± 14	This work
$D_J^*(2760)^0$		$D^{*+}\pi^{-}$	$2761.1 \pm 5.1 \pm 6.5$	$74.4 \pm 3.4 \pm 37.0$	LHCb [12]
		$D^{+}\pi^{-}$	$2760.1 \pm 1.1 \pm 3.7$	$74.4 \pm 3.4 \pm 19.1$	LHCb [12]
		$D^{+}\pi^{-}$	$2763.3 \pm 2.3 \pm 2.3$	$60.9 \pm 5.1 \pm 3.6$	BaBar [11]
$D_J^*(2760)^+$		$D^0\pi^+$	$2771.7 \pm 1.7 \pm 3.8$	$66.7 \pm 6.6 \pm 10.5$	LHCb [12]
$D_3^*(2760)^+$	3-	$D^0\pi^-$	$2798 \pm 7 \pm 1$	$105 \pm 18 \pm 6$	LHCb [13]
$D_3^*(2760)^0$	3-	$D^{+}\pi^{-}$	$2775.5 \pm 4.5 \pm 4.5$	$95.3 \pm 9.6 \pm 7.9$	LHCb [14]

Fit results from amplitude analysis used for the computation of partial branching fractons

$D_1(2430)$ 1^+S $26.0 \pm 0.4 \pm 1.7$ $-1.57 \pm 0.02 \pm 0.08$ $D_2^*(2460)$ 2^+ $15.4 \pm 0.2 \pm 0.1$ $-0.77 \pm 0.01 \pm 0.01$	Resonance	J^P	fraction (%)	phase (rad)
$D_2^*(2460)$ 2 ⁺ 15.4 ± 0.2 ± 0.1 $-0.77 \pm 0.01 \pm 0.01$	$D_1(2420)$	1^+D	$56.5 \pm 0.3 \pm 1.1$	0
			$26.0 \pm 0.4 \pm 1.7$	$-1.57 \pm 0.02 \pm 0.08$
$D_1(2420)$ 1+S 5.9 ± 0.5 ± 2.9 1.69 ± 0.02 ± 0.06	$D_2^*(2460)$	2+	$15.4 \pm 0.2 \pm 0.1$	$-0.77 \pm 0.01 \pm 0.01$
	$D_1(2420)$	1+S	$5.9 \pm 0.5 \pm 2.9$	$1.69 \pm 0.02 \pm 0.06$
$D_0(2550)$ 0 ⁻ 5.3 ± 0.1 ± 0.5 1.50 ± 0.02 ± 0.06	$D_0(2550)$	0-	$5.3 \pm 0.1 \pm 0.5$	$1.50 \pm 0.02 \pm 0.06$
$D_1^*(2600)$ 1 $-$ 5.0 \pm 0.1 \pm 0.5 $-$ 0.76 \pm 0.02 \pm 0.03	$D_1^*(2600)$	1-	$5.0 \pm 0.1 \pm 0.5$	$0.76 \pm 0.02 \pm 0.03$
$D_2(2740)$ 2^-P $0.57 \pm 0.07 \pm 0.23$ $-2.14 \pm 0.07 \pm 0.16$	$D_2(2740)$	2^-P	$0.57 \pm 0.07 \pm 0.23$	$-2.14 \pm 0.07 \pm 0.16$
$D_2(2740)$ 2^-F $1.9 \pm 0.1 \pm 1.0$ $0.49 \pm 0.04 \pm 0.40$	$D_2(2740)$	2^-F	$1.9 \pm 0.1 \pm 1.0$	$0.49 \pm 0.04 \pm 0.40$
$D_3^*(2750)$ 3 ⁻ $0.78 \pm 0.06 \pm 0.13$ $-1.54 \pm 0.05 \pm 0.04$	$D_3^*(2750)$	3-	$0.78 \pm 0.06 \pm 0.13$	$-1.54 \pm 0.05 \pm 0.04$
Sum 117.3 \pm 0.8 \pm 3.8	Sum		$117.3 \pm 0.8 \pm 3.8$	