Heavy Quark Masses (from QCD Sum Rules) and their impact on the muon g-2

Pere Masjuan
Universitat Autònoma de Barcelona
(masjuan@ifae.es)

Work ongoing in collaboration with Jens Erler and Hubert Spiesberger
Eur. Phys.J.C (20I7) 77:99, 202I.XXXX

2nd of June, 202I

UAB
Universitat Autònoma de Barcelona

Outline

- Motivation and Introduction
- Using Sum Rules to extract me
- overview
- our proposal for charm and bottom
- Impact on the muon g-2
- Conclusions and outlook

Motivation: why precise m_{Q} ?

Higgs decay $\sim \overline{m_{b}}\left(M_{H}\right)^{2}$
$\Gamma\left(B \rightarrow X_{u} l \nu\right) \sim G_{F}^{2} m_{b}^{5}\left|V_{u b}\right|^{2}$
$\Gamma\left(B \rightarrow X_{c} l \nu\right) \sim G_{F}^{2} m_{b}^{5} f\left(m_{c}^{2} / m_{b}^{2}\right)\left|V_{c b}\right|^{2}$
$B \rightarrow K\left(^{*}\right) \ell \ell$
$B \rightarrow D\left(^{*}\right) \ell \nu$
(pQCD contributions on FFs depend on m_{q})

Yukawa unification
[Baer et al '00]
$\frac{\delta m_{b}}{m_{b}} \sim \frac{\delta m_{t}}{m_{t}}$

$$
\text { if } \delta m_{t} \sim 1 \mathrm{GeV} \Rightarrow \delta m_{b} \sim 25 \mathrm{MeV}
$$

Motivation: why precise m_{Q} ?

γ-spectroscopy

$$
m(\Upsilon(1 S))=2 M_{b}-\mathcal{C} \alpha^{2} M_{b}+\cdots
$$

Lattice QCD

$$
M_{H^{(*)}}=m_{h}+\bar{\Lambda}+\frac{\mu_{\pi}^{2}}{2 m_{h}}-d_{H^{(*)}} \frac{\mu_{G}^{2}\left(m_{h}\right)}{2 m_{h}}+\mathrm{O}\left(m_{h}^{-2}\right)
$$

QCD Sum Rules

$$
\int \frac{\mathrm{d} s}{s^{n+1}} R_{q}(s) \sim\left(\frac{1}{m_{q}}\right)^{2 n}
$$

Motivation: why precise mQ ?

Snapshot from PDG

VALUE (GeV)	DOCUMENT ID			TECN
$\mathbf{1 . 2 7} \pm \mathbf{0 . 0 2}$	OUR E	VALUATION		
1.266 ± 0.006	1	NARISON	2020	THEO
$1.290{ }_{-0.053}^{+0.077}$	2	ABRAMOWICZ	2018	HERA
1.273 ± 0.010	3	BAZAVOV	2018	LATT
1.2737 ± 0.0077	4	LYTLE	2018	LATT
1.223 ± 0.033	5	PESET	2018	THEO
1.279 ± 0.008	6	CHETYRKIN	2017	THEO
1.272 ± 0.008	7	ERLER	2017	THEO
1.246 ± 0.023	8	KIYO	2016	THEO
1.288 ± 0.020	9	DEHNADI	2015	THEO
1.348 ± 0.046	10	CARRASCO	2014	LATT
$1.24 \pm 0.03_{-0.07}^{+0.03}$	11	ALEKHIN	2013	THEO
1.159 ± 0.075	12	SAMOYLOV	2013	NOMD
1.278 ± 0.009	13	BODENSTEIN	2011	THEO
$1.28{ }_{-0.06}^{+0.07}$	14	LASCHKA	2011	THEO
$1.196 \pm 0.059 \pm 0.050$	15	AUBERT	2010A	BABR
1.25 ± 0.04	16	SIGNER	2009	THEO
ere Masjuan	2021			5

Motivation: why precise m_{Q} ?

Snapshot from PDG

VALUE (GeV)	DOCUMENT ID			TECN
$\mathbf{4 . 1 8}_{-0.02}^{+0.03}$	OUR EVALUATION of $\overline{\text { MS }}$ Mass.			
4.197 ± 0.008	1	NARISON	2020	THEO
$4.049{ }_{-0.118}^{+0.138}$	2	ABRAMOWICZ	2018	HERA
4.195 ± 0.014	3	BAZAVOV	2018	LATT
4.186 ± 0.037	4	PESET	2018	THEO
4.197 ± 0.022	5	KIYO	2016	THEO
4.183 ± 0.037	6	ALBERTI	2015	THEO
$4.203{ }_{-0.034}^{+0.016}$	7	BENEKE	2015	THEO
4.196 ± 0.023	8	COLQUHOUN	2015	LATT
4.176 ± 0.023	9	DEHNADI	2015	THEO
4.21 ± 0.11	10	BERNARDONI	2014	LATT
$4.169 \pm 0.002 \pm 0.008$	11	PENIN	2014	THEO
4.166 ± 0.043	12	LEE	20130	LATT
4.247 ± 0.034	13	LUCHA	2013	THEO
4.171 ± 0.009	14	BODENSTEIN	2012	THEO
4.29 ± 0.14	15	DIMOPOULOS	2012	LATT
$4.18{ }_{-0.04}^{+0.05}$	16	LASCHKA	2011	THEO
$4.186 \pm 0.044 \pm 0.015$	17	AUBERT	2010A	BABR
4.163 ± 0.016	18	CHETYRKIN	2009	THEO
4.243 ± 0.049	19	SCHWANDA	2008	BELL

QCD Sum Rules

QCD Sum Rules

$$
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \quad \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)=4 \pi \alpha_{\mathrm{em}}(s)^{2} / 3 s
$$

[PDG]

QCD Sum Rules

Zoom into the open-charm threshold
[PDG]

QCD Sum Rules

Zoom into the open-bottom threshold

QCD Sum Rules

Zoom into the open-charm threshold

ODDSum Rules

Zoom into the open-charm threshold

$$
R(s)=R_{\mathrm{uds}}(s)+R_{q}(s) \quad R_{q}(s)=R_{q}^{\mathrm{Res}}(s)+R_{q}^{\mathrm{th}}(s)+R_{q}^{\mathrm{cont}}(s)
$$

ODS Sum Rules

Using the optical theorem:

$$
R(s)=12 \pi \operatorname{Im}[\Pi(s+i \epsilon)]
$$

$\Pi_{q}(s)$ is the correlator of two heavy-quark vector currents which can be calculated in pQCD order by order in α_{s} and satisfies a Dispersion Relation:

$$
12 \pi^{2} \frac{\hat{\Pi}_{q}(0)-\hat{\Pi}_{q}(-t)}{t}=\int_{4 m_{q}^{2}}^{\infty} \frac{\mathrm{d} s}{s} \frac{R_{q}(s)}{s+t}
$$

$$
\hat{\Pi}_{q}(s) \text { in } \overline{M S}
$$

For $\mathrm{t} \rightarrow 0$

$$
\mathcal{M}_{n}:=\left.\frac{12 \pi^{2}}{n!} \frac{d^{n}}{d t^{n}} \hat{\Pi}_{q}(t)\right|_{t=0}=\int_{4 m_{q}^{2}}^{\infty} \frac{\mathrm{d} s}{s^{n+1}} R_{q}(s)
$$

QCD Sum Rules

$\hat{\Pi}_{q}(s)$ can be Taylor expanded:

$$
\Pi_{q}(t)=Q_{q}^{2} \frac{3}{16 \pi^{2}} \sum_{n \geq 0} \bar{C}_{n}\left(\frac{t}{4 \hat{m}_{q}^{2}}\right)^{n}
$$

QCD Sum Rules

$$
\begin{aligned}
\hat{\Pi}_{q}(s) & \text { can be Taylor expanded: } \\
\Pi_{q}(t) & =Q_{q}^{2} \frac{3}{16 \pi^{2}} \sum_{n \geq 0} \bar{C}_{n}\left(\frac{t}{4 \hat{m}_{q}^{2}}\right)^{n} \\
\mathcal{M}_{n}^{\mathrm{pQCD}} & =\frac{9}{4} Q_{q}^{2}\left(\frac{1}{2 \hat{m}_{q}\left(\hat{m}_{q}\right)}\right)^{2 n} \bar{C}_{n} \\
\mathcal{M}_{0} & \mathcal{M}_{1} \\
\mathcal{M}_{2} & \mathcal{M}_{3} \\
\mathcal{M}_{4} & \mathcal{M}_{5} \\
\bar{C}_{n} & =\bar{C}_{n}^{(0)}+\left(\frac{\hat{\alpha}}{\pi}\right) \bar{C}_{n}^{(1)}+\left(\frac{\hat{\alpha}}{\pi}\right)^{2} \bar{C}_{n}^{(2)}+\left(\frac{\hat{\alpha}}{\pi}\right)^{3} \bar{C}_{n}^{(3)}+\mathcal{O}\left(\frac{\hat{\alpha}}{\pi}\right)^{4}
\end{aligned}
$$

[et al, 08]
[Chetyrkin, Steinhauser'06]
[Melnikov, Ritberger'03]
[Kiyo et al '09]
[Hoang et al '09]
[Greynat et al '09]

ODS Sum Rules

Sum Rules:

$$
\mathcal{M}_{n}=\int_{4 m_{q}^{2}}^{\infty} \frac{\mathrm{d} s}{s^{n+1}} R_{q}(s)
$$

$$
\mathcal{M}_{n}^{\mathrm{pQCD}}=\frac{9}{4} Q_{q}^{2}\left(\frac{1}{2 \hat{m}_{q}\left(\hat{m}_{q}\right)}\right)^{2 n} \bar{C}_{n}
$$

R.h.s. from experiment

QCD Sum Rules

$$
R_{q}(s)=R_{q}^{\mathrm{Res}}(s)+R_{q}^{\mathrm{th}}(s)+R_{q}^{\mathrm{cont}}(s)
$$

$$
R_{q}^{\mathrm{Res}}(s)=\frac{9 \pi M_{R} \Gamma_{R}^{e}}{\alpha_{\mathrm{em}}^{2}\left(M_{R}\right)} \delta\left(s-M_{R}^{2}\right)
$$

$$
R_{q}^{\mathrm{th}}(s)=R_{q}(s)-R_{\text {background }}
$$

$$
\left(2 M_{D} \leq \sqrt{s} \leq 4.8 \mathrm{GeV}\right)
$$

$$
(\sqrt{s} \geq 4.8 \mathrm{GeV})
$$

Background

$$
R_{\text {background }}=R_{\mathrm{uds}}+R_{\mathrm{uds}(\mathrm{cb})}+R_{\mathrm{sing}}+R_{\mathrm{QED}}
$$

Using pQCD below threshold, calculate R , and extrapolate

Background

$$
R_{\text {background }}=R_{\mathrm{uds}}+R_{\mathrm{uds}(\mathrm{cb})}+R_{\mathrm{sing}}+R_{\mathrm{QED}}
$$

Background

$$
R_{\text {background }}=R_{\mathrm{uds}}+R_{\mathrm{uds}(\mathrm{cb})}+R_{\mathrm{sing}}+R_{\mathrm{QED}}
$$

Background

$$
R_{\text {background }}=R_{\mathrm{uds}}+R_{\mathrm{uds}(\mathrm{cb})}+R_{\mathrm{sing}}+R_{\mathrm{QED}}
$$

Non-perturbative effects

Non-perturbative effects due to gluon condensates to the moments are:
[Chetyrkin et al 'I2]

$$
\begin{gathered}
\mathcal{M}_{n}^{\text {nonp }}\left(\mu^{2}\right)=\frac{12 \pi^{2} Q_{q}^{2}}{\left(4 \hat{m}_{q}^{2}\right)^{n+2}} \text { Cond } a_{n}\left(1+\frac{\alpha_{s}\left(\hat{m}_{q}^{2}\right)}{\pi} b_{n}\right) \\
a_{n}, b_{n} \text { are numbers, and Cond }=\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle=(5 \pm 5) \cdot 10^{-3} \mathrm{GeV}^{4} \quad \text { [Dominguez et al '।4] } \\
\longrightarrow \text { from fits to tau data }
\end{gathered}
$$

$$
\frac{\mathcal{M}_{n}^{\text {nonp }}\left(\hat{m}_{c}\right)}{\mathcal{M}_{n}^{\text {th }}} \sim 0.5 \%-2 \% \longrightarrow \Delta \hat{m}_{c}\left(\hat{m}_{c}\right) \sim 2 \mathrm{MeV}-8 \mathrm{MeV}
$$

QCD Sum Rules

$$
R(s)=R_{\mathrm{uds}}(s)+R_{q}(s) \quad R_{q}(s)=R_{q}^{\mathrm{Res}}(s)+R_{q}^{\mathrm{th}}(s)+R_{q}^{\mathrm{cont}}(s)
$$

[Erler, P.M., Spiesberger 'I7]

QCD Sum Rules

Our approach is different

- We try to avoid local duality: consider global duality

Standard procedure: $\quad \mathscr{M}_{n}^{\mathrm{pQCD}}=R_{q}^{\mathrm{Res}}+\int_{D \bar{D}}^{s_{0}} \frac{\mathrm{~d} s}{s^{n+1}} R_{q}(s)+p Q C D(\mu)$
We really want: $\quad \mathscr{M}_{n}^{\mathrm{pQCD}}=R_{q}^{\mathrm{Res}}+\int_{D \bar{D}}^{\infty} \frac{\mathrm{d} s}{s^{n+1}} R_{q}(s)$

QCD Sum Rules

Our approach is different

- We try to avoid local duality: consider global duality
- Then, we do not use experimental data on threshold region, only resonances below threshold
- Experimental data in threshold used for error estimation
- How you do it then? Use two different moment equations to determine the continuum requiring self-consistency:
- extract the quark mass

$$
\mathscr{M}_{n}^{\mathrm{pQCD}}=R_{q}^{\mathrm{Res}}+\int_{D \bar{D}}^{\infty} \frac{\mathrm{d} s}{s^{n+1}} R_{q}^{\mathrm{cont}}(s)
$$

Charm

QCD Sum Rules

Our approach

For a global duality:
$\hat{\Pi}_{q}(s)$ in $\overline{M S}$

$$
12 \pi^{2} \frac{\hat{\Pi}_{q}(0)-\hat{\Pi}_{q}(-t)}{t}=\int_{4 m_{q}^{2}}^{\infty} \frac{\mathrm{d} s}{s} \frac{R_{q}(s)}{s+t}
$$

$t \rightarrow \infty \quad$ define the \mathcal{M}_{0}
[Erler, Luo '03]

QCD Sum Rules

Our approach

For a global duality:
$\hat{\Pi}_{q}(s)$ in $\overline{M S}$

$$
12 \pi^{2} \frac{\hat{\Pi}_{q}(0)-\hat{\Pi}_{q}(-t)}{t}=\int_{4 m_{q}^{2}}^{\infty} \frac{\mathrm{d} s}{s} \frac{R_{q}(s)}{s+t}
$$

$t \rightarrow \infty \quad$ define the $\mathcal{M}_{0} \quad$ (but has a divergent part)

$$
\lim _{t \rightarrow \infty} \hat{\Pi}_{q}(-t) \sim \log (t) \longleftrightarrow \int_{4 m_{q}^{2}}^{\infty} \frac{\mathrm{d} s}{s} R_{q}(s) \sim \log (\infty)
$$

Fortunately, divergence given by the zero-mass limit of $R(s)$, can be easily subtracted [Chetyrkin, Harlander, Kühn, '00]

QCD Sum Rules

zero-mass limit of $\mathrm{R}(\mathrm{s})$
Our approach

$$
\begin{aligned}
\lambda_{1}^{q}(s)=1 & +\frac{\alpha_{s}(s)}{\pi} \\
& +\left[\frac{\alpha_{s}(s)}{\pi}\right]^{2}\left[\frac{365}{24}-11 \zeta(3)+n_{q}\left(\frac{2}{3} \zeta(3)-\frac{11}{12}\right)\right] \\
& +\left[\frac{\alpha_{s}(s)}{\pi}\right]^{3}\left[\frac{87029}{288}-\frac{121}{8} \zeta(2)-\frac{1103}{4} \zeta(3)+\frac{275}{6} \zeta(5)\right. \\
+ & n_{q}\left(-\frac{7847}{216}+\frac{11}{6} \zeta(2)+\frac{262}{9} \zeta(3)-\frac{25}{9} \zeta(5)\right) \\
& \left.+n_{q}^{2}\left(\frac{151}{162}-\frac{1}{18} \zeta(2)-\frac{19}{27} \zeta(3)\right)\right]
\end{aligned}
$$

ODSUR Rules

Our approach

Zeroth Sum Rule:

$$
\begin{aligned}
& \sum_{\text {resonances }} \frac{9 \pi \Gamma_{R}^{e}}{3 Q_{q}^{2} M_{R} \hat{\alpha}_{e m}^{2}\left(M_{R}\right)}+\int_{4 M^{2}}^{\infty} \frac{\mathrm{d} s}{s} \frac{R_{q}^{\mathrm{cont}}}{3 Q_{q}^{2}}-\int_{\hat{m}_{q}^{2}}^{\infty} \frac{\mathrm{d} s}{s} \lambda_{1}^{q}(s) \\
& =-\frac{5}{3}+\frac{\hat{\alpha}_{s}}{\pi}\left[4 \zeta(3)-\frac{7}{2}\right] \\
& \quad+\left(\frac{\hat{\alpha}_{s}}{\pi}\right)^{2}\left[\frac{2429}{48} \zeta(3)-\frac{25}{3} \zeta(5)-\frac{2543}{48}+n_{q}\left(\frac{677}{216}-\frac{19}{9} \zeta(3)\right)\right] \\
& \quad+\left(\frac{\hat{\alpha}_{s}}{\pi}\right)^{3}\left[-9.86+0.40 n_{s}\left(\hat{m}_{q}^{2}\right)\right. \\
& =-1.667+1.308 \frac{\hat{\alpha}_{s}}{\pi}+1.595\left(\frac{\hat{\alpha}_{s}}{\pi}\right)^{2}-8.427\left(\frac{\hat{\alpha}_{s}}{\pi}\right)^{3}
\end{aligned}
$$

ODDSum Rules

Our approach

Zeroth Sum Rule:

QCD Sum Rules

Our approach

Zeroth Sum Rule:

$\hat{\alpha}_{e m}(0) \sim 0.98 \hat{\alpha}_{e m}\left(M_{J / \Psi}\right)$
$\Delta \hat{\alpha}_{e m} \rightarrow \Delta m_{c} \sim 12 \mathrm{MeV}$

QCD Sum Rules

Our approach: ansatz

Zeroth Sum Rule: invoke global quark-hadron duality

$$
R_{q}^{\mathrm{cont}}(s)=3 Q_{q}^{2} \lambda_{1}^{q}(s) \sqrt{1-\frac{4 \hat{m}_{q}^{2}(2 M)}{s^{\prime}}}\left[1+\lambda_{3}^{q} \frac{2 \hat{m}_{q}^{2}(2 M)}{s^{\prime}}\right]
$$

Simpler version of analytic reconstruction [Greynat, PM, Peris'l2]

$$
s^{\prime}=s+4\left(\hat{m}_{q}^{2}(2 M)-M^{2}\right)
$$

Two parameters to determine: m_{q}, λ_{3}^{q}

QCD Sum Rules

Our approach: ansatz

Zeroth Sum Rule: invoke global quark-hadron duality

$$
R_{q}^{\mathrm{cont}}(s)=3 Q_{q}^{2} \lambda_{1}^{q}(s) \sqrt{1-\frac{4 \hat{m}_{q}^{2}(2 M)}{s^{\prime}}}\left[1+\lambda_{3}^{q} \frac{2 \hat{m}_{q}^{2}(2 M)}{s^{\prime}}\right]
$$

Simpler version of analytic reconstruction [Greynat, PM, Peris'l2]

$$
s^{\prime}=s+4\left(\hat{m}_{q}^{2}(2 M)-M^{2}\right)
$$

Two parameters to determine: m_{q}, λ_{3}^{q}
We need two equations: zeroth moment +nth moment

$$
\frac{9}{4} Q_{q}^{2}\left(\frac{1}{2 \hat{m}_{q}\left(\hat{m}_{q}\right)}\right)^{2 n} \bar{C}_{n}=\sum_{\text {resonances }} \frac{9 \pi \Gamma_{R}^{e}}{M_{R}^{2 n+1} \hat{\alpha}_{e m}^{2}\left(M_{R}\right)}+\int_{4 M^{2}}^{\infty} \frac{\mathrm{d} s}{s^{n+1}} R_{q}(s)
$$

$$
n \geq 1
$$

QCD Sum Rules

Our approach: ansatz

Zeroth Sum Rule: invoke global quark-hadron duality
[Erler, Luo '03]

$$
R_{q}^{\mathrm{cont}}(s)=3 Q_{q}^{2} \lambda_{1}^{q}(s) \sqrt{1-\frac{4 \hat{m}_{q}^{2}(2 M)}{s^{\prime}}}\left[1+\lambda_{3}^{q} \frac{2 \hat{m}_{q}^{2}(2 M)}{s^{\prime}}\right]
$$

Simpler version of analytic reconstruction [Greynat, PM, Peris' 12]

$$
s^{\prime}=s+4\left(\hat{m}_{q}^{2}(2 M)-M^{2}\right)
$$

Two parameters to determine: m_{q}, λ_{3}^{q}

We use Zeroth + 2nd moments (no experimental data on $R(s)$ so far)

n	Resonances	Continuum	Total	Theory
0	$1.231(24)$	$-3.229(+28)(43)(1)$	$-1.999(56)$	Input (11)
1	$1.184(24)$	$0.966(+11)(17)(4)$	$2.150(33)$	$2.169(16)$
2	$1.161(25)$	$0.336(+5)(8)(9)$	$1.497(28)$	Input (25)
3	$1.157(26)$	$0.165(+3)(4)(16)$	$1.322(31)$	$1.301(39)$
4	$1.167(27)$	$0.103(+2)(2)(26)$	$1.270(38)$	$1.220(60)$
5	$1.188(28)$	$0.080(+1)(1)(38)$	$1.268(47)$	$1.175(95)$

QCD Sum Rules

Our approach

QCD Sum Rules

Our approach

Repeat for each pair Zeroth+nth moment

Total
Resonances
Truncation error
Comparison with RExp threshold data Condensates $\Delta \alpha_{s}\left(M_{z}\right)$

Good consistency between different pairs of sum rules

ODDSun Rules

Our approach: error budget

Resonances:

$$
\frac{9}{4} Q_{q}^{2}\left(\frac{1}{2 \hat{m}_{q}\left(\hat{m}_{q}\right)}\right)^{2 n} \bar{C}_{n}=\sum_{\text {resonances }} \frac{9 \pi \Gamma_{R}^{e}}{M_{R}^{2 n+1} \hat{\alpha}_{e m}^{2}\left(M_{R}\right)}+\int_{4 M^{2}}^{\infty} \frac{\mathrm{d} s}{s^{n+1}} R_{q}(s)
$$

from 6 MeV to 3 MeV (0th $+1 \mathrm{st}) \quad$ (0th $+5 \mathrm{th})$
(completely dominated by J/ Ψ)

R	$M_{R}[\mathrm{GeV}]$	$\Gamma_{R}^{e}[\mathrm{keV}]$
J / Ψ	3.096916	$5.55(14)$
$\Psi(2 S)$	3.686109	$2.36(4)$

QCD Sum Rules

Our approach: error budget

Truncation Error (theory error):

$$
\begin{aligned}
& \mathcal{M}_{n}^{\mathrm{pQCD}}=\frac{9}{4} Q_{q}^{2}\left(\frac{1}{2 \hat{m}_{q}\left(\hat{m}_{q}\right)}\right)^{2 n} \bar{C}_{n} \\
& \bar{C}_{n}=\bar{C}_{n}^{(0)}+\left(\frac{\hat{\alpha}}{\pi}\right) \bar{C}_{n}^{(1)}+\left(\frac{\hat{\alpha}}{\pi}\right)^{2} \bar{C}_{n}^{(2)}+\left(\frac{\hat{\alpha}}{\pi}\right)^{3} \bar{C}_{n}^{(3)}+\mathcal{O}\left(\frac{\hat{\alpha}}{\pi}\right)^{4}
\end{aligned}
$$

(use the largest group th. factor in the next uncalculated pert. order)

$$
\Delta \mathcal{M}_{n}^{(4)}= \pm N_{C} C_{F} C_{A}^{3} Q_{q}^{2}\left[\frac{\hat{\alpha}_{s}\left(\hat{m}_{q}\right)}{\pi}\right]^{4}\left(\frac{1}{2 \hat{m}_{q}\left(\hat{m}_{q}\right)}\right)^{2 n}
$$

Example known orders

n	$\frac{\Delta \mathcal{M}_{n}^{(2)}}{\left\|\mathcal{M}_{n}^{(2)}\right\|}$	$\frac{\Delta \mathcal{M}_{n}^{(3)}}{\left\|\mathcal{M}_{n}^{(3)}\right\|}$
0	1.88	3.03
1	2.14	2.84
2	1.92	4.58
3	3.25	5.63
4	6.70	4.30
5	19.18	3.62

from 5 MeV to 10 MeV (0 th +1 st) (0 th +5 th $)$

More conservative than varying the renorm. scale within a factor of 4

QCD Sum Rules

Our approach: error budget

Comparison with RExp threshold data:

$$
\left(2 M_{D} \leq \sqrt{s} \leq 4.8 \mathrm{GeV}\right)
$$

QCD Sum Rules

Our approach: error budget

Comparison with RExp threshold data:

Collab.	n	$\left[2 M_{D^{0}}, 3.872\right]$	[3.872, 3.97]	[3.97, 4.26]	[4.26, 4.496]	[4.496, 4.8]
CB86	0	-	0.0339(22)(24)	0.2456(25)(172)	0.1543(27)(108)	-
	1	-	0.0220(14)(15)	$0.1459(16)(102)$	0.0801(14)(56)	-
	2	-	$0.0143(9)(10)$	0.0868 (9)(61)	0.0416(7)(29)	-
BES02	0	0.0334(24)(17)	0.0362(29)(18)	0.2362(41)(118)	0.1399(38)(70)	0.1705(63)(85)
	1	0.0232(17)(12)	0.0235(19)(12)	0.1401(24)(70)	$0.0726(20)(36)$	0.0788(30)(39)
	2	$0.0161(12)(8)$	0.0152(13)(8)	0.0832(15)(42)	0.0378(10)(19)	0.0365(14)(18)
BES06	0	0.0311(16)(15)	-	-	-	-
	1	0.0217(11)(11)	-	-	-	-
	2	$0.0151(8)(7)$	-	-	-	-
CLEO09	0	-	-	0.2591(22)(52)	-	-
	1	-	-	0.1539(13)(31)	-	-
	2	-	-	$0.0915(8)(18)$	-	-
Total	0	0.0319(14)(11)	0.0350(18)(15)	0.2545(18)(46)	0.1448(27)(59)	$0.1705(63)(85)$
	1	0.0222(9)(8)	0.0227(12)(10)	0.1511(11)(27)	0.0752(14)(31)	0.0788(30)(39)
	2	0.0155(6)(6)	0.0147(8)(6)	0.0899(6)(16)	0.0391(7)(16)	0.0365(14)(18)

QCD Sum Rules

Our approach: error budget

Comparison with RExp threshold data:

$$
\left.\int_{\left(2 M_{D^{0}}\right)^{2}}^{(4.8 \mathrm{GeV})^{2}} \frac{\mathrm{~d} s}{s} R_{c}^{\mathrm{cont}}(s)\right|_{\hat{m}_{c}=1.272 \mathrm{GeV}}=\mathcal{M}_{0}^{\text {Data }}=0.6367(195) \longrightarrow \lambda_{3}^{\mathrm{c}, \exp }=1.34(17)
$$

$$
\left(2 M_{D} \leq \sqrt{s} \leq 4.8 \mathrm{GeV}\right)
$$

Error induced to Quark mass:

1) $\lambda_{3}^{c}=1.23 \rightarrow \lambda_{3}^{\mathrm{c}, \exp }=1.34$
from +6.4 MeV to +0.2 MeV
II) $\Delta \lambda_{3}^{\mathrm{c}, \exp }=0.17$
from 4.7 MeV to 0.1 MeV

n	Data	$\lambda_{3}^{c}=1.34(17)$	$\lambda_{3}^{c}=1.23$
0	$0.6367(195)$	$0.6367(195)$	0.6239
1	$0.3500(102)$	$0.3509(111)$	0.3436
2	$0.1957(54)$	$0.1970(65)$	0.1928
3	$0.1111(29)$	$0.1127(38)$	0.1102
4	$0.0641(16)$	$0.0657(23)$	0.0642
5	$0.0375(9)$	$0.0389(14)$	0.0380

QCD Sum Rules

Our approach: error budget

Comparison with RExp threshold data:

QCD Sum Rules

Our approach: error budget

Condensates:

Non-perturbative effects due to gluon condensates to the moments are: [Chetyrkin et al 'I2]

$$
\begin{gathered}
\mathcal{M}_{n}^{\text {nonp }}\left(\mu^{2}\right)=\frac{12 \pi^{2} Q_{q}^{2}}{\left(4 \hat{m}_{q}^{2}\right)^{n+2}} \text { Cond } a_{n}\left(1+\frac{\alpha_{s}\left(\hat{m}_{q}^{2}\right)}{\pi} b_{n}\right) \\
a_{n}, b_{n} \text { are numbers, and Cond }=\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle=(5 \pm 5) \cdot 10^{-3} \mathrm{GeV}^{4} \quad \text { [Dominguez et al'।4] } \\
\Delta\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle=5 \cdot 10^{-3} \mathrm{GeV}^{4} \longrightarrow \begin{array}{c}
\text { from } 1 \mathrm{MeV} \text { to } 4 \mathrm{MeV} \\
(0 \text { th+ Ist }) \\
(0 \text { th+5th })
\end{array}
\end{gathered}
$$

Parametric error:

$$
\Delta \overline{m_{c}}\left(\overline{m_{c}}\right)[\mathrm{MeV}]=-0.5 \cdot 10^{3} \frac{\mathrm{MeV}}{\mathrm{GeV}^{4}} \Delta\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle
$$

(but this is only the first condensate)

QCD Sum Rules

Our approach: error budget

$$
\Delta \alpha_{s}\left(M_{z}\right) \quad \alpha_{s}\left(M_{z}\right)=0.1182(16)
$$

Parametric error:

$$
\begin{array}{ll}
(0 \mathrm{th}+\mathrm{Ist}) & \Delta \overline{m_{c}}\left(\overline{m_{c}}\right)[\mathrm{MeV}]=3.6 \cdot 10^{3} \Delta \alpha_{s}\left(M_{z}\right) \\
(0 \mathrm{th}+5 \mathrm{th}) & \Delta \overline{m_{c}}\left(\overline{m_{c}}\right)[\mathrm{MeV}]=-0.4 \cdot 10^{3} \Delta \alpha_{s}\left(M_{z}\right)
\end{array}
$$

QCD Sum Rules

Our approach: final result

[J.Erler, P.M., H. Spiesberger'I7]

QCD Sum Rules

results for the charm quark mass

Bottom

QCD Sum Rules

Bottom case

Procedure: the same as in the charm case

Main differences:

- Data from Babar '09 and Belle 'I5 for $R_{b}(s)=\sigma_{b}(s) / \sigma_{\mu \mu}^{0}$
- Condensates negligible
- Add systematically the $\Upsilon(4 S), \Upsilon(5 S), \Upsilon(6 S)$

QCD Sum Rules

Bottom case

Procedure: the same as in the charm case

$$
\begin{aligned}
& R_{b}^{\mathrm{res}}(s)=\sum_{R=\Upsilon(1 S), \Upsilon(2 S), \Upsilon(3 S)} \frac{9 \pi}{\alpha_{\mathrm{em}}^{2}\left(M_{R}\right)} M_{R} \Gamma_{R}^{e} \delta\left(s-M_{R}^{2}\right) \\
& R_{q}(s)=R_{q}^{\text {res }}(s)+R_{q}^{\mathrm{cont}}(s) \\
& R_{q}^{\text {cont }}(s)=3 Q_{q}^{2} \lambda_{1}^{q}(s) \sqrt{1-\frac{4 \hat{m}_{q}^{2}(2 M)}{s^{\prime}}}\left[1+\lambda_{3}^{q}\left(\frac{2 \hat{m}_{q}^{2}(2 M)}{s^{\prime}}\right)\right]
\end{aligned}
$$

QCD Sum Rules

Vacuum polarization

$$
\left(\alpha(0) / \alpha\left(M_{R}\right)\right)^{2} \equiv 0.93
$$

Radiative tails

ISR corrections

$$
\begin{aligned}
\hat{R}(s) & =\int_{z_{0}}^{1} \frac{\mathrm{~d} z}{z} G(z, s) R(z s) \\
z_{0} & =10.6^{2} / s
\end{aligned}
$$

QCD Sum Rules

Experimental moments

[Babar 2009, PRL 102, OI 200I]

n	$\mathcal{M}_{n}^{\exp }$	$\lambda_{3}^{b, \exp }=0.82(20)$	$\lambda_{3}^{b}=1.53$	$\mathcal{M}_{n}^{\exp , \text { no corr. }}$
0	$0.446(2)(11)$	$0.446(11)$	0.487	$0.453(12)$
1	$0.380(2)(9)$	$0.381(9)$	0.416	$0.384(10)$
2	$0.324(1)(8)$	$0.327(8)$	0.355	$0.328(9)$
3	$0.277(1)(7)$	$0.280(7)$	0.304	$0.279(7)$
4	$0.237(1)(6)$	$0.240(6)$	0.261	$0.238(6)$
5	$0.203(1)(5)$	$0.207(5)$	0.224	$0.204(5)$
6	$0.174(1)(4)$	$0.178(4)$	0.192	$0.174(5)$
7	$0.149(1)(4)$	$0.153(3)$	0.165	$0.149(4)$
8	$0.128(1)(3)$	$0.132(3)$	0.142	$0.128(3)$
9	$0.111(0)(3)$	$0.114(2)$	0.123	$0.110(3)$
10	$0.095(0)(2)$	$0.099(2)$	0.106	$0.094(2)$

(Belle 'I5 data used as a crosscheck)

QCD Sum Rules

Our approach

QCD Sum Rules

Our approach

Explore systematically $R_{b}(s)=R_{b}^{\text {res }}(s)+R_{b}^{\text {cont }}(s)+R_{b}^{\text {res,Gamma }}(s)$

	$\hat{m}_{b}\left(\hat{m}_{b}\right)[\mathrm{MeV}]$	Pair of moments
Only resonances below threshold	$4186.7-39.5 \Delta \hat{\alpha}_{s} \pm 12.7$	$\left(\mathcal{M}_{0}, \mathcal{M}_{9}\right)$
$+\Upsilon(4 S)$	$4183.8-68.0 \Delta \hat{\alpha}_{s} \pm 9.7$	$\left(\mathcal{M}_{0}, \mathcal{M}_{8}\right)$
$+\Upsilon(4 S)+\Upsilon(5 S)$	$4180.2-108.5 \Delta \hat{\alpha}_{s} \pm 7.9$	$\left(\mathcal{M}_{0}, \mathcal{M}_{7}\right)$
$+\Upsilon(4 S)+\Upsilon(5 S)+\Upsilon(6 S)$	$4178.9-64.0 \Delta \hat{\alpha}_{s} \pm 9.7$	$\left(\mathcal{M}_{0}, \mathcal{M}_{8}\right)$

$$
\begin{gathered}
R_{b}^{\text {res,Gamma }}(s)=\sum_{R=\Upsilon(4 S), \Upsilon(5 S)} \frac{9 \pi}{\alpha_{\mathrm{em}}^{2}\left(M_{R}\right)} \frac{\Gamma_{R}^{e}}{M_{R}} \operatorname{Gamma}\left(s-4 M_{B}^{2} \mid \alpha, \beta\right) \\
\alpha=1+\frac{2}{\sqrt[3]{\pi}} \frac{\left(M_{R}^{2}-4 M_{B}^{2}\right)^{2}}{\Gamma_{R}^{2} M_{R}^{2}} \quad \beta=\frac{\alpha-1}{M_{R}^{2}-4 M_{B}^{2}}
\end{gathered}
$$

QCD Sum Rules

Our approach

Data beyond II.2 GeV will help reducing error: pQCD reaching at 13 GeV

$$
R_{b}(s)=R_{b}^{\mathrm{res}}(s)+R_{b}^{\mathrm{cont}}(s)+R_{b}^{\mathrm{res}, \mathrm{Gamma}}(s)
$$

QCD Sum Rules

Our approach

Repeat for each pair Zeroth + nth moment

Heavy-quark contribution to (g-2) μ

Hadronic Vacuum Polarization: largest source of uncertainty in (g-2) μ
Flavor decomposition may help, specially to compare with lattice QCD estimates

Heavy-quark contribution to (g-2) μ

Hadronic Vacuum Polarization: largest source of uncertainty in (g-2) μ
Flavor decomposition may help, specially to compare with lattice QCD estimates

$$
\begin{gathered}
a_{\mu}^{\text {charm-lattice }}=14.6(1) \times 10^{-10} \quad a_{\mu}^{\text {bottom-lattice }}=0.27(4) \times 10^{-10} \\
\text { from Borsanyi et al, Nature 593, 5I-55 (202I) }
\end{gathered}
$$

	central value	total error	resonances	$\Delta \lambda_{3}$	$\Delta \alpha_{s}$	Condensates	Truncation
$a_{\mu}^{\text {charm }}$	1.436	0.023	0.012	0.018	0.005	0.001	0.004
$a_{\mu}^{\text {bottom }}$	2.978	0.171	0.012	0.170	0.005	-	0.004

Conclusions and Outlook

- Using SR technique + zeroth moment (very sensitive to the continuum) + data on charm resonances below threshold + continuum exploiting selfconsistency among different moments:

$$
\hat{m}_{c}\left(\hat{m}_{c}\right)=1.272(9) \mathrm{GeV} \quad \hat{m}_{b}\left(\hat{m}_{b}\right)=4.180(8) \mathrm{GeV}
$$

-Error sources are understood: seems a clear roadmap for improvements

- Impact on $(\mathrm{g}-2) \mu$ from heavy quarks: $a_{\mu}^{\text {charm+botom }}=14.66(23) \times 10^{-10}$

Thanks!

QCD Sum Rules

α_{s} expansion

for the Zeroth $+2 n d$ moments

Total
Resonances
Truncation error
Comparison with
RExp threshold data
Condensates
$\Delta \alpha_{s}\left(M_{z}\right)$

QCD Sum Rules

Our approach

QCD Sum Rules

Our approach

QCD Sum Rules

Our approach: more than two moments?

Define a χ^{2} function:

$$
\begin{aligned}
\chi^{2}= & \frac{1}{2} \sum_{n, m}\left(\mathcal{M}_{n}-\mathcal{M}_{n}^{\mathrm{pQCD}}\right)\left(\mathcal{C}^{-1}\right)^{n m}\left(\mathcal{M}_{m}-\mathcal{M}_{m}^{\mathrm{pQCD}}\right)+\chi_{c}^{2} \\
\mathcal{C}= & \frac{1}{2} \sum_{n, m} \rho^{\mathrm{Abs}(n-m)} \Delta \mathcal{M}_{n}^{(4)} \Delta \mathcal{M}_{m}^{(4)} \quad \rho \text { a correlation paramet } \\
\chi_{c}^{2}= & \left(\frac{\Gamma_{J / \Psi(1 S)}^{e}-\Gamma_{J / \Psi(1 S)}^{e, e x p}}{\Delta \Gamma_{J / \Psi(1 S)}^{e}}\right)^{2}+\left(\frac{\Gamma_{\Psi(2 S)}^{e}-\Gamma_{\Psi(2 S)}^{e, \exp }}{\Delta \Gamma_{\Psi(2 S)}^{e}}\right)^{2}+ \\
& \left(\frac{\hat{\alpha}_{s}\left(M_{z}\right)-\hat{\alpha}_{s}\left(M_{z}\right)^{\exp }}{\Delta \hat{\alpha}_{s}\left(M_{z}\right)}\right)^{2}+\left(\frac{\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle-\left\langle\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle^{\exp }\right.}{\Delta\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle}\right)^{2}
\end{aligned}
$$

QCD Sum Rules

Our approach: more than two moments?

Define a χ^{2} function:

	Constraints	$\left(\mathcal{M}_{0}, \mathcal{M}_{1}, \mathcal{M}_{2}\right)_{\rho}$ -0.06	$\mathcal{M}_{0},\left(\mathcal{M}_{1}, \mathcal{M}_{2}\right)_{\rho}$ -0.05	$\mathcal{M}_{0},\left(\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}\right)_{\rho}$ ρ
$\hat{m}_{c}\left(\hat{m}_{c}\right)[\mathrm{GeV}]$		$1.275(8)$	$1.275(8)$	1.32
λ_{3}^{c}	$1.19(8)$	$1.19(8)$	$1.19(7)$	
$\Gamma_{J / \Psi}^{e}[\mathrm{keV}]$	$5.55(14)$	$5.57(14)$	$5.57(14)$	$5.59(14)$
$\Gamma_{\Psi(2 S)}^{e}[\mathrm{keV}]$	$2.36(4)$	$2.36(4)$	$2.36(4)$	$2.36(4)$
$C_{G}\left[\mathrm{GeV}^{4}\right]$	$0.005(5)$	$0.005(5)$	$0.005(5)$	$0.004(5)$
$\hat{\alpha}_{s}\left(M_{z}\right)$	$0.1182(16)$	$0.1178(15)$	$0.1178(15)$	$0.1173(15)$

QCD Sum Rules

Our approach: more than two moments?

Preferred scenario:

	0 th $+(1 \mathrm{st}+2 \mathrm{nd})_{\rho}$ $\Delta \hat{m}_{c}\left(\hat{m}_{c}\right)[\mathrm{MeV}]$	$(0 \mathrm{th}+2 \mathrm{nd})$ $\Delta \hat{m}_{c}\left(\hat{m}_{c}\right)[\mathrm{MeV}]$
Central value	1274.5	1272.4
$\Delta \Gamma_{J / \Psi}^{e}$	5.9	4.5
$\Delta \Gamma_{\Psi(2 S)}^{e}$	1.4	0.4
Truncation	-	5.9
$\Delta \lambda_{3}^{c}$	3.0	2.3
Condensates	1.1	1.9
$\Delta \hat{\alpha}_{S}\left(M_{Z}\right)$	5.4	4.2
Total	8.7	9.0

QCD Sum Rules

