

THE OHIO STATE UNIVERSITY

Triangle singularities in production of X(3872)

.....

Liping He [he.1011@buckeyemail.osu.edu]

The Ohio State University

in collaboration with Eric Braaten, Kevin Ingles (Ohio State U.), and Jun Jiang (Shandong U.)

10th International Workshop on Charm Physics (CHARM 2020) 31 May 2021 to 4 June 2021 PTOLOMEO

- Brief review of X(3872)
- Charm-meson triangle singularity
- Production of X(3872):

 - ✦ B meson decays [PRD100, 074028(2019)]
 - hadron colliders [PRD100, 094006(2019)]

Summary

- Triangle singularity produces peaks in reaction rates

Outline

← e⁺e⁻ annihilation [PRD100, 031501(2019), PRD101, 014021(2020), PRD 101, 096020(2020)]

The observation of the peaks would definitely resolve the nature of X(3872)

discovery at e⁺e⁻ collider [Belle (2003)]: Ø

$$B^+ \to K^+ + X \qquad X \to J/\psi \pi^+$$

confirmation at pp collider [CDF (2003)]: Ø

 $p\bar{p} \to X + anything$

quantum numbers [LHCb (2013)]:

 $JPC = 1^{++}$

mass [LHCb (2020)]:

 $E_X = M_X - (M_{D^{*0}} + M_{D^0}) = (-0.07 \pm 0.12) \text{ MeV}$ $|E_X| < 0.22 \text{ MeV}$ at 90% CL

- first measurement of width (Breit-Wigner) [LHCb (2020) average]: $\Gamma_{\rm X} = (1.19 \pm 0.19) \, {\rm MeV}$
- 7 observed decay modes: $J/\psi \pi^+\pi^-$, $J/\psi \pi^+\pi^-\pi^0$, $J/\psi \gamma$, $\psi(2S)\gamma$, $D^0D^0\pi^0$, $D^0D^0\gamma$, $\chi_{c1}\pi^0$

see also F.-K. Guo's talk on Monday

Brief review of X(3872) (= $\chi_{c1}(3872)$)

Triangle singularities in production of X(3872)

Liping He (OSU)

S-wave loosely bound charm-meson molecule!!

$$X = \frac{1}{\sqrt{2}} \left(D^{*0} \bar{D}^0 + D^0 \bar{D}^{*0} \right)$$

other components of wave functions have small probabilities: • at long distances: $D^0D^0\pi^0$

- at short distances:
 - + $\chi_{c1}(2P)$?
 - charged charm mesons
 - + compact tetraquark [cq][cq]?

Galilean-invariant XEFT

Braaten [PRD 91, 114007(2015)] Braaten, He & Jiang [PRD 103, 036014(2021)]

three charm mesons can be on shell simultaneously

loop amplitude near singularity:

$$\mathbf{F}(\mathbf{W}) \propto \log \frac{\sqrt{M_*W} + (M_*)}{\sqrt{M_*W} - (M_*)}$$

 $(M_* = M_{D^*})$

divergence at energy W above D*D* threshold:

* Xy:
$$(M_{D^{*0}}/M_X^2)(M_{D^{*0}} - M_{D^0})^2 = 2.7 \text{ MeV}$$

* $X\pi^{0}: (m_{\pi^{0}}/2M_{D^{0}})(M_{D^{*0}}-M_{D^{0}}-m_{\pi^{0}})=0.3$ MeV

* $X\pi^{\pm}: (m_{\pi^0}/2M_{D^0})(M_{D^{*+}} - M_{D^0} - m_{\pi^+}) = 0.2 \text{ MeV}$

* nonzero decay width for D* BUT * nonzero binding energy (-Ex) for X

narrow peak in reaction rate

Triangle singularities in production of X(3872)

e+e-: production of X(3872) and a photon

Experimental observation:

BESIII: $e^+e^- \rightarrow X\gamma$, $X \rightarrow J/\psi \pi^+\pi^-$, $J/\psi \omega$ [PRL122,232002 (2019)]

First theoretical calculation:

Dubynskiy & Voloshin [PRD 74, 094017 (2006)]

absorptive contribution only:

 $e^+e^- \rightarrow D^{*0}\overline{D}^{*0}$ (P-wave) $\rightarrow X\gamma$

e⁺e⁻ annihilation creates D^{*0}D^{*0}(P-wave)
rescattering of real D^{*0} D^{*0} into Xγ

 Line shape of Xγ has narrow peak a few MeV above D^{*0}D̄^{*0} threshold

 $\sigma[X\gamma]$: of order 1pb near the peak

e⁺e⁻: production of X(3872) and a photon

Braaten, He & Ingles [PRD 100, 031501(2019), PRD 101, 014021(2020)]

 $e^+e^- \rightarrow D^{*0}\overline{D}^{*0}$ (P-wave) $\rightarrow X\gamma$

- e⁺e⁻ annihilation creates **D**^{*0}**D**^{*0}(**P**-wave)
- rescattering of virtual **D**^{*0} **D**^{*0} into **Xy**
- *** improvements** over Dubynskiy & Voloshin:
 - * include **Re**[**M**] as well as **Im**[**M**]
 - * include decay width of D*0
 - * normalize cross section using $\sigma [D^{*+}D^{*-}]$ Uglov et al. (JETP Lett. 105,1 (2017)
- ***** cross section:
 - * triangle singularity gives narrow peak at 2.2 MeV above **D**^{*0}**D**^{*0} threshold at 4013.7 MeV
 - * position of peak insensitive to binding energy
 - may be observable by **BESIII detector**! *

absorptive contribution only is not a good approximation!

Triangle singularities in production of X(3872)

e⁺e⁻: production of X(3872) and a photon

• Guo [PRL 112, 202002 (2019)]

- creation of D*0D*0(S-wave) at short distance
- rescattering of virtual **D**^{*0}**D**^{*0} into Xy

Line shape in X γ :

- * peak a few MeV above D*0D*0 threshold
- * can be used to measure Ex

Triangle singularities in production of X(3872)

Liping He (OSU)

Sakai, Jing & Guo [PRD 102, 114041(2020)]

 $e^+e^- \rightarrow Zc(4020) \pi^0$, $Zc(4020) \rightarrow D^{*0}D^{*0}(S-wave) \rightarrow X\gamma$

• **BESIII** [arXiv:2101.00644]: no significant signal $e^+e^- \rightarrow Zc(4020) \pi^0$, $Zc(4020) \rightarrow D^{*0}\overline{D}^{*0}(S-wave) \rightarrow X\gamma$

B meson decay: production of X(3872) and a pion **Belle** [PRD 91, 051101 (2015)] first observation of $B^0 \rightarrow K^+ \pi^- X$, $B^+ \rightarrow K^0 \pi^+ X$ Braaten, He, Ingles [PRD 100, 074028(2019)] $\mathbf{B} \to \mathbf{K} \mathbf{D}^* \mathbf{\overline{D}}^* \to \mathbf{K} \mathbf{X} \pi$ decay of B meson into K+D* \overline{D} *, rescattering of virtual D* \overline{D} * into X π $X\pi^{+/}$ dBr/dE_X, X(3872)X(3872)triangle singularity produces narrow peaks in dBr[B \rightarrow K X π] * $X\pi^{\pm}$: near 6.1 MeV above $X\pi^{\pm}$ threshold * $X\pi^0$: near 7.3 MeV above $X\pi^0$ threshold

Triangle singularities in production of X(3872)

Liping He (OSU)

B meson decay: production of X(3872) and a pion

Sakai, Oset & Guo [PRD 101, 054030(2020)]

$B^- \rightarrow K^- D^{*0} \overline{D}^{*0} \rightarrow K^- X \pi^0$

Ex (= $-\delta x$) may be extracted from the asymmetry of the $X\pi$ line shape

• Nakamura [PRD 102, 074004(2020)]

 $B^0 \rightarrow K^+ D^{*0}D^{*-} \rightarrow K^+ (J/\psi \rho \pi^-)$

triangle singularity could produce narrow peak in J/ $\psi\rho$ invariant mass near 3872 MeV even without X(3872) resonance

Triangle singularities in production of X(3872)

Hadron colliders: prompt production of X(3872) and a pion

Braaten, He & Ingles [PRD 100, 094006(2019)]

$D^{*+}\overline{D}^{*0} \rightarrow X(3872) \pi^+$

- * creation of $D^{*+}\overline{D}^{*0}$ at short distance
- * rescattering of virtual $D^{*+}\overline{D}^{*0}$ into $X\pi^+$

Triangle singularities in production of X(3872)

Experimental observation: production of X(3872) and a pion

contributions from the triangle peak: E_X= -0.17 MeV

- prompt production:
- **B-meson decay:**

 $\frac{\operatorname{Br}[B^0 \to K^+(X\pi^-)_{\triangle}]}{\operatorname{Br}[B^0 \to K^0 X]} \approx 14\%$

 $\frac{\sigma[(X\pi^{\pm 1})_{\Delta}]}{\sigma[X]} \approx 14\%$

• D0 Collaboration [PRD 102, 072005 (2020)]

prompt and non prompt production of X(3872) + soft π^{\pm}

$T(X\pi) < 11.8 \text{ MeV}$	observed events	exp
operation production:	12 ± 16	
• b-decay:	25 ± 12	

* prompt production : no evidence for the accompanying π^{\pm}

* b-decay: agreement with the expectation, significance: 2σ

Triangle singularities in production of X(3872)

Production of X+ γ or X+ π

charm meson triangle singularity produces narrow peaks just above D*D* threshold

■ e⁺e⁻ annihilation

 $\diamond \sigma[X\gamma]$: narrow peak at 4015.9 MeV ♦ peak is in region not yet measured by BESIII

- B meson decay
- Hadron colliders

The observation of the peaks would definitely resolve the nature of X(3872)

Triangle singularities in production of X(3872)

Liping He (OSU)

Summary

 \diamond dBr[X π^0]/dE_{X π}: peak near 7.3 MeV above X π^0 threshold \diamond dBr[X π^{\pm}]/dE_{X π^{\pm}}: peak near 6.1 MeV above X π^{+} threshold

 $\diamond d\sigma [X\pi^{\pm}]/dE_{X\pi}$: peak near 6.1 MeV above $X\pi^{\pm}$ threshold

B meson decay

$$\frac{d\Gamma}{d^{3}q}[B^{+} \to K^{+}X\pi^{0}] = \frac{|\mathcal{A}[K^{+}X\pi^{0}]|^{2}}{4|\mathcal{A}[K^{0}X\pi^{0}]|^{2}}\frac{d\Gamma}{d^{3}q}[B^{0} \to K^{0}X\pi^{0}],$$
(36a)
$$\frac{d\Gamma}{d^{3}q}[B^{+} \to K^{0}X\pi^{+}] = \frac{d\Gamma}{d^{3}q}[B^{0} \to K^{+}X\pi^{-}].$$
(36b)
$$Br[B^{0} \to K^{+}(X\pi^{-})_{\triangle}] \approx (2.4 \times 10^{-7}) \left(\frac{|E_{X}|}{0.17 \text{ MeV}}\right)^{1/2}$$

$$\times \left[2.64 - \log\frac{|E_{X}|}{0.17 \text{ MeV}}\right].$$

$$Br[B^{0} \to K^{0}(X\pi^{0})_{\triangle}] < (8 \times 10^{-8}) \left(\frac{|E_{X}|}{0.17 \text{ MeV}}\right)^{1/2}$$

$$\times \left[2.82 - \log\frac{|E_{X}|}{0.17 \text{ MeV}}\right].$$

Hadron collider

$$d\sigma[D^{*0}\bar{D}^{*0}] \approx d\sigma[X(3872)] \frac{12\pi\mu}{\gamma_X \Lambda^2} \frac{d^3k}{(2\pi)^3 M_{*0}}$$

$$\frac{\sigma[(X\pi^0)_{\Delta}]}{\sigma[X]} \approx 0.049 \left(\frac{m_{\pi}}{\Lambda}\right)^2 \left[2.82 - \log\frac{|E_X|}{0.17 \text{ MeV}}\right],$$
$$\frac{\sigma[(X\pi^+)_{\Delta}]}{\sigma[X]} \approx 0.028 \left(\frac{m_{\pi}}{\Lambda}\right)^2 \left[2.64 - \log\frac{|E_X|}{0.17 \text{ MeV}}\right].$$

Triangle singularities in production of X(3872)

Liping He (OSU)

Backup

