Effective field theory approach to exotic Z-states with heavy quarks

Alexey Nefediev

Lebedev Physical Institute of RAS, Moscow

1 V. Baru, E. Epelbaum, A.A. Filin, C. Hanhart, R.V. Mizuk, AN, S. Ropertz, Insights into $Z_b(10610)$ and $Z_b(10650)$ from dipion transitions from $\Upsilon(10860)$, Phys. Rev. **D103**, 034016 (2021)

V. Baru, E. Epelbaum, A. A. Filin, C. Hanhart, AN, Q. Wang, Spin partners W_{bJ} from the line shapes of the Z_b(10610) and Z_b(10650), Phys. Rev. D99, 094013 (2019)

 Q. Wang, V. Baru, A. A. Filin, C. Hanhart, AN, J.-L. Wynen, The line shapes of the Z_b(10610) and Z_b(10650) in the elastic and inelastic channels revisited, Phys. Rev. D98, 074023 (2018)

Exotic *XYZ* states

• X's are new exotic states

 $X(3872) \ X(3915) \ X(4140) \ \dots$

• Y's are exotic vector states (to tell from neat $\bar{c}c$ quarkonia ψ 's)

 $Y(4230) Y(4260) Y(4360) Y(4660) \dots$

• Z's are charged exotic states

 $Z_c(3900) \ Z_c(4020) \ Z_c(4430) \ Z_{cs}(3985) \ Z_b(10610) \ Z_b(10650) \ \dots$

Exotic *XYZ* **states**

• X's are new exotic states

 $X(3872) \ X(3915) \ X(4140) \ \dots$

• Y's are exotic vector states (to tell from neat $\bar{c}c$ quarkonia ψ 's)

 $Y(4230) Y(4260) Y(4360) Y(4660) \dots$

• Z's are charged exotic states

 $Z_c(3900) \ Z_c(4020) \ Z_c(4430) \ Z_{cs}(3985) \ Z_b(10610) \ Z_b(10650) \ \dots$

Many XYZ states reside near hadronic thresholds that hints their molecular interpretation

Introduction

T (

ed channels

 Z_b 's

 W_{bJ} 's

Conclusions

What is hadronic molecule?

Molecule = large probability to observe resonance in a given hadron-hadron channel

- Proximity of strong thresholds
 ⇒ large admixture of meson-meson component in the w.f.
- Different nature of the resonance
 ⇒ pole location is a dynamical problem
- Different binding mechanisms
 different models for interaction

Introduction

T (

led channels

 Z_b 's

 W_{bJ} 's

Conclusions

What is hadronic molecule?

Molecule = large probability to observe resonance in a given hadron-hadron channel

- Proximity of strong thresholds
 ⇒ large admixture of meson-meson component in the w.f.
- Different nature of the resonance
 ⇒ pole location is a dynamical problem
- Different binding mechanisms
 different models for interaction

Deuteron is a prominent example of hadronic molecule

 Z_b 's

 W_{bJ} 's

Conclusio

Approach needed

• All parameters possess clear physical interpretation (no blind parameters replication!)

• All data available analysed simultaneously

EFT for hadronic molecules

 \implies Goal: systematically improvable approach to $(\bar{Q}q)\text{-}(\bar{q}Q)$ molecules

 \implies Application: combined analysis of line shapes in

- open-flavour (elastic) channels $(\bar{Q}q)(\bar{q}Q)$
- hidden-flavour (inelastic) channels $(\bar{Q}Q)(\bar{q}q)$

 \implies Underlying idea: adapt (well-developed) EFT from nuclear physics

- Similarity:
 - * Same well established formalism [Weinberg]
 - * Same forces due to various exchanges [Voloshin,Okun'1976]
- Differences:
 - * Coupled-channel effects
 - * Additional symmetries: HQSS, flavour SU(3)

 \implies Difficulties: such EFT for $(ar{Q}q)$ - $(ar{q}Q)$ molecules cannot relate

- different isospins
- * sectors with different heavy quarks Q [Baru et al'2019]

EFT

Heavy-quark spin symmetry

- Exotic XYZ states contain heavy guarks (HQ)
- In the limit $m_Q \to \infty \ (m_Q \gg \Lambda_{\rm QCD})$ spin of HQ decouples \implies Heavy Quark Spin Symmetry (HQSS)
- For realistic m_Q 's HQSS is approximate but rather accurate symmetry of QCD
- Predictions of HQSS depend crucially on the nature of states under study

(Cleven et al.'2015)

• HQSS is a tool to relate properties of states with different HQ spin orientation

 \implies Spin partners

(Guo et al.'2009,Bondar et al.'2011,Voloshin et al.'2010,Mehen et al.'2011,Nieves et al.'2012, Guo et al.'2013, Albaladejo et al.'2015, Baru et al.'2016, 2019)

EFT

Heavy-quark spin symmetry

- Exotic XYZ states contain heavy quarks (HQ)
- In the limit $m_Q \to \infty$ ($m_Q \gg \Lambda_{QCD}$) spin of HQ decouples \implies Heavy Quark Spin Symmetry (HQSS)
- For realistic m_Q 's HQSS is approximate but rather accurate symmetry of QCD
- Predictions of HQSS depend crucially on the nature of states under study

(Cleven et al.'2015)

• HQSS is a tool to relate properties of states with different HQ spin orientation

 \implies Spin partners

(Guo et al.'2009,Bondar et al.'2011,Voloshin et al.'2010,Mehen et al.'2011,Nieves et al.'2012,Guo et al.'2013,Albaladejo et al.'2015, Baru et al.'2016,2019)

HQSS is a powerful tool to reduce the number of parameters and use data on one state to predict properties of another

EFT

EFT in charm and bottom sectors

- HQSS in potential \implies parameter $\Lambda_{\rm QCD}/m_Q \ll 1$ (caution in *c*-sector!)
- Potential expanded in Q/Λ with hard scale $\Lambda \simeq 1$ GeV Soft scale Q for coupled-channel dynamics:

 $p_{\rm typ} = \sqrt{m_D \delta_D} \simeq \sqrt{m_B \delta_B} \simeq 500 \; {\rm MeV}$

 $\delta_D = m_{D^*} - m_D \approx 140 \text{ MeV}$ $\delta_B = m_{B^*} - m_B \approx 45 \text{ MeV}$

ntroduction **EFT** Coupled channels Z_b 's $W_{b,J}$'s FSI Conclusions

EFT in charm and bottom sectors

- HQSS in potential \implies parameter $\Lambda_{\text{QCD}}/m_Q \ll 1$ (caution in *c*-sector!)
- Potential expanded in Q/Λ with hard scale $\Lambda \simeq 1$ GeV Soft scale Q for coupled-channel dynamics:

 $p_{\rm typ} = \sqrt{m_D \delta_D} \simeq \sqrt{m_B \delta_B} \simeq 500 ~{\rm MeV}$

$$\begin{split} \delta_D &= m_{D^*} - m_D \approx 140 \text{ MeV} \\ \delta_B &= m_{B^*} - m_B \approx 45 \text{ MeV} \end{split}$$

- Pionic dynamics (no additional parameters!) is to be treated explicitly
- *D* waves from OPE are important
- Convergence of EFT has to be a special concern \implies proceed to NLO

Elastic potential:

 $V_{\text{el-el}} = V_{\text{CT}}(\text{to order } O(p^0))$

Coupled channels (P – pseudoscalar meson, P^* – vector meson):

 $1^{+-}: P\bar{P}^{*}(^{3}S_{1}, -), P^{*}\bar{P}^{*}(^{3}S_{1})$ $0^{++}: P\bar{P}(^{1}S_{0}), P^{*}\bar{P}^{*}(^{1}S_{0})$ $1^{++}: P\bar{P}^{*}(^{3}S_{1}, +)$ $2^{++}: P^{*}\bar{P}^{*}(^{5}S_{2})$

Elastic potential:

 $V_{\text{el-el}} = V_{\text{CT}}(\text{to order } O(p^0)) + V_{\pi,\eta}(S\text{-wave})$

Coupled channels (P – pseudoscalar meson, P^* – vector meson):

$$1^{+-}: P\bar{P}^{*}(^{3}S_{1}, -), P^{*}\bar{P}^{*}(^{3}S_{1})$$

$$0^{++}: P\bar{P}(^{1}S_{0}), P^{*}\bar{P}^{*}(^{1}S_{0})$$

$$1^{++}: P\bar{P}^{*}(^{3}S_{1}, +)$$

$$2^{++}: P^{*}\bar{P}^{*}(^{5}S_{2})$$

Elastic potential:

 $V_{\text{el-el}} = V_{\text{CT}}(\text{to order } O(p^2)) + V_{\pi,\eta}(D\text{-wave})$

Coupled channels (P – pseudoscalar meson, P^* – vector meson):

$$1^{+-}: P\bar{P}^{*}({}^{3}S_{1}, -), P^{*}\bar{P}^{*}({}^{3}S_{1}), P\bar{P}^{*}({}^{3}D_{1}, -), P^{*}\bar{P}^{*}({}^{3}D_{1})$$

$$0^{++}: P\bar{P}({}^{1}S_{0}), P^{*}\bar{P}^{*}({}^{1}S_{0}), P^{*}\bar{P}^{*}({}^{5}D_{0})$$

$$1^{++}: P\bar{P}^{*}({}^{3}S_{1}, +), P\bar{P}^{*}({}^{3}D_{1}, +), P^{*}\bar{P}^{*}({}^{5}D_{1})$$

$$2^{++}: P^{*}\bar{P}^{*}({}^{5}S_{2}), P\bar{P}({}^{1}D_{2}), P\bar{P}^{*}({}^{3}D_{2}),$$

$$P^{*}\bar{P}^{*}({}^{1}D_{2}), P^{*}\bar{P}^{*}({}^{5}D_{2}), P^{*}\bar{P}^{*}({}^{5}G_{2})$$

Elastic potential:

 $V_{\text{el-el}} = V_{\text{CT}}(\text{to order } O(p^2)) + V_{\pi,\eta}(D\text{-wave})$

Coupled channels (P – pseudoscalar meson, P^* – vector meson):

$$1^{+-}: P\bar{P}^{*}({}^{3}S_{1}, -), P^{*}\bar{P}^{*}({}^{3}S_{1}), P\bar{P}^{*}({}^{3}D_{1}, -), P^{*}\bar{P}^{*}({}^{3}D_{1})$$

$$0^{++}: P\bar{P}({}^{1}S_{0}), P^{*}\bar{P}^{*}({}^{1}S_{0}), P^{*}\bar{P}^{*}({}^{5}D_{0})$$

$$1^{++}: P\bar{P}^{*}({}^{3}S_{1}, +), P\bar{P}^{*}({}^{3}D_{1}, +), P^{*}\bar{P}^{*}({}^{5}D_{1})$$

$$2^{++}: P^{*}\bar{P}^{*}({}^{5}S_{2}), P\bar{P}({}^{1}D_{2}), P\bar{P}^{*}({}^{3}D_{2}),$$

$$P^{*}\bar{P}^{*}({}^{1}D_{2}), P^{*}\bar{P}^{*}({}^{5}D_{2}), P^{*}\bar{P}^{*}({}^{5}G_{2})$$

Lippmann-Schwinger equation ($V^{\text{eff}} = V_{\text{el-el}} + \sum_{\text{inel}} V_{\text{el-inel-el}}$):

$$T_{\alpha\beta}(M,\boldsymbol{p},\boldsymbol{p}') = V_{\alpha\beta}^{\text{eff}}(\boldsymbol{p},\boldsymbol{p}') - \sum_{\gamma} \int \frac{d^3q}{(2\pi)^3} V_{\alpha\gamma}^{\text{eff}}(\boldsymbol{p},\boldsymbol{q}) G_{\gamma}(M,\boldsymbol{q}) T_{\gamma\beta}(M,\boldsymbol{q},\boldsymbol{p}')$$

9/24

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = のへで 10/24

<ロ> < (回) < (回) < (目) < 目) < 目) < 目) < (日) < (日) < (日) < (日) < (10) / 24

 $\Upsilon(nS), h_b(mP)$

n = 1, 2, 3m = 1, 2 Huge HQSS violation?!

π

 π

Combined fit to the data for Z_b 's

Introduction EFT Coupled channels Z_b 's $W_{b,J}$'s FSI Conclusions

Results and conclusions for Z_b 's

- Description of data is nearly perfect ($\chi^2/d.o.f = 0.83$)
- Parameters (LEC's and couplings) are extracted directly from data
- Data are consistent with HQSS
- Effect from (long range) pion exchange is visible
- $B\bar{B}^*-B^*\bar{B}^*$ transitions:
 - Enhanced by pions
 - Not supported by data (surprise!)
 - Tamed by S-to-D contact terms

Predicted line shapes for W_{b0}

Introduction

 Z_b 's

 W_{bJ} 's

Pole positions (mirror poles not shown)

J^{PC}	State	Threshold	E_B w.r.t. threshold, [MeV]	Residue at pole
1^{+-}	Z_b	$B\bar{B}^*$	$(-2.3 \pm 0.5) - i(1.1 \pm 0.1)$	$(-1.2 \pm 0.2) + i(0.3 \pm 0.2)$
1^{+-}	Z_b'	$B^*\bar{B}^*$	$(1.8 \pm 2.0) - i(13.6 \pm 3.1)$	$(1.5 \pm 0.2) - i(0.6 \pm 0.3)$
0^{++}	W_{b0}	$B\bar{B}$	$(2.3 \pm 4.2) - i(16.0 \pm 2.6)$	$(1.7 \pm 0.6) - i(1.7 \pm 0.5)$
0^{++}	W_{b0}'	$B^*\bar{B}^*$	$(-1.3 \pm 0.4) - i(1.7 \pm 0.5)$	$(-0.9 \pm 0.3) - i(0.3 \pm 0.2)$
1^{++}	W_{b1}	$B\bar{B}^*$	$(10.2 \pm 2.5) - i(15.3 \pm 3.2)$	$(1.3 \pm 0.2) - i(0.4 \pm 0.2)$
2^{++}	W_{b2}	$B^*\bar{B}^*$	$(7.4 \pm 2.8) - i(9.9 \pm 2.2)$	$(0.7 \pm 0.1) - i(0.3 \pm 0.1)$

- Relevant pole = pole with the shortest path to the physical region
- Riemann sheet is fixed by combination of signs of Im(p) for all channels
- Relevant pole can be bound state, virtual state, resonance
- Virtual state enhances threshold cusp
- Resonance distorts line shape above threshold (hump for nearby pole)

Conclusion: All Z_b 's and W_{bJ} 's are resonances (without pions — virtual states)

FSI

$\Upsilon(10860) \rightarrow \pi^+\pi^-\Upsilon(nS) \ (n=1,2,3)$ decays

Pions (kaons) FSI needs to be included

...and Dalitz plot analysed with U taken from our previous analysis

 Z_b 's

FSI

$\Upsilon(10860) \rightarrow \pi^+\pi^-\Upsilon(nS) \ (n=1,2,3)$ decays

Pions (kaons) FSI needs to be included

...and Dalitz plot analysed with U taken from our previous analysis

Disentangle physics of Z_b 's and $\pi\pi/K\bar{K}$ FSI

= ↔) Q (* 20 / 24 Introduction EFT Coupled channels Z_b 's W_{bJ} 's FSI Conclusions

$\Upsilon(10860) \to \pi^+\pi^-\Upsilon(nS) \ (n = 1, 2, 3)$ decays

• No-FSI amplitude: left-hand cuts only, U — the full coupled-channel amplitude

$$M_{\text{no-FSI}}(t,u) = U(t) + U(u) = M_0^L + M_{\text{higher}} = \frac{1}{2} \int_{-1}^{1} dz \, M_{\text{no-FSI}}(t,u) + M_{\text{higher}} = \frac{1}{2} \int_{-1}^{1} dz \, M_$$

• Amplitude with FSI: right-hand cut included, M_0^R restored dispersively from M_0^L

$$M(s,t,u) = M_{\text{no-FSI}}(t,u) + \frac{\Omega_0(s)}{\pi} \int_{4m_\pi^2}^{\infty} ds' \frac{\Omega_0^{-1}(s')T(s')\sigma(s')M_0^L(s')}{s'-s-i0} ds' \frac{\Omega_0(s)}{s'-s-i0} ds'$$

$$\Omega_0(s) = \frac{1}{\pi} \int_{4m_\pi^2}^{\infty} ds' \frac{T^*(s')\sigma(s)\Omega_0(s')}{s'-s-i0} \qquad T(s) = \begin{pmatrix} T_{\pi\pi\to\pi\pi} & T_{\pi\pi\to K\bar{K}} \\ T_{K\bar{K}\to\pi\pi} & T_{K\bar{K}\to K\bar{K}} \end{pmatrix}$$

21/24

FSI

- $\Upsilon(10860) \to \pi^+\pi^-\Upsilon(nS) \ (n = 1, 2, 3)$ decays
- Diminish dependence on the large-s tail of Omnés
 - \implies Two subtractions in dispersive integral
 - \implies Second order polynomial $c_1 + c_2 s$ added to amplitude
- $Im M_0^L$ under control (including anomalous pieces) \implies Real subtraction constants c_1 and c_2 [as opposed to Molnar et al'2019]
- Low-energy $\pi \Upsilon$ scattering is described by chiral Lagrangian \implies Matching c_1 and c_2 to chiral expansion

Introduction

$\Upsilon(10860) \to \pi^+\pi^-\Upsilon(nS) \ (n = 1, 2, 3)$ decays

- Diminish dependence on the large-s tail of Omnés
 - \implies Two subtractions in dispersive integral
 - \implies Second order polynomial c_1+c_2s added to amplitude
- $\text{Im}M_0^L$ under control (including anomalous pieces) \implies Real subtraction constants c_1 and c_2 [as opposed to Molnar et al'2019]
- Low-energy πΥ scattering is described by chiral Lagrangian
 ⇒ Matching c₁ and c₂ to chiral expansion

3 real fitting parameters: c_1 , c_2 , ${\cal N}$

- Data dominated by Z_b 's
- No structures in $M_{\pi\pi}$

イロト イポト イヨト イヨト

23 / 24

 $M^2(\pi^+\pi^-)$ [GeV²/c⁴]

 $M^2(\pi^+\pi^-)$ [GeV²/c⁴]

(b) $M^2(\pi^+\pi^-) > 0.2 \text{ GeV}^2/c^4$

20 10

Events / (0.021 GeV2/c4)

30

20

10

80

114

Y(1S)

 $M^2(Y(2S)\pi)_{max}$ [GeV²/c⁴]

116

116

10 108

Events / (0.14 GeV²/c⁴) 40

30

20

10

(a)

104

106 M2(Y(1S)n)max [GeV2/c4]

0.8

• Left shoulder in $M^2(\pi\Upsilon)$ • Highly nontrivial $M^2(\pi\pi)$ • $\pi\pi \& K\bar{K}$ FSI important

A (1) > A (1) > A

23/24

Conclusions

- We propose a powerful and systematically improvable approach to a combined data analyses for exotic states
- Both 3D Dalitz plots and their 2D projections can be fitted
- Potential of the method is confirmed by its succesfull application to the Z_b bottomonium-like states
- Generalisation to the light-quark SU(3) is straightforward (in progress)
- Generalisation to different production mechanisms is important for application to BES-III data on charmonia (in progress)
- Additional experimental data are strongly needed to
 - Stronger constrain the parameters
 - Verify predictions for spin partners
 - Pinpoint particular production mechanism (Z_c production via Y's)