# MULTIMESSENGERVIEW AUGER 20th ANNIVERSARY CELEBRATION FOTEINI OIKONOMOU, 15 November 2019

































#### UHECR/Neutrino arrival direction correlations





#### Source redshift evolution



#### Source redshift evolution



# UHECR/Neutrino joint horizon





![](_page_22_Figure_2.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_25_Figure_2.jpeg)

#### Starbursts vs. AGN: Multimessenger diagnostics

![](_page_26_Picture_1.jpeg)

Observed Excess Map - E > 39 EeV

![](_page_26_Figure_3.jpeg)

Auger Coll, ApJL, 853, L29, 2018

Caccianiga, L. on behalf of Auger, PoS, ICRC2019, 206

![](_page_26_Picture_6.jpeg)

Observed Excess Map - E > 60 EeV

![](_page_26_Figure_8.jpeg)

#### Starbursts vs. AGN: Composition

Zhang et al, PRD 97, 083010 (2018)

![](_page_27_Figure_2.jpeg)

#### as well as Boncioli et al ApJ 872, 110 (2019) Zhang & Murase, PRD 100, 103004 (2019)

![](_page_27_Figure_4.jpeg)

![](_page_27_Figure_5.jpeg)

8

#### Starbursts vs. AGN: Composition

![](_page_28_Figure_1.jpeg)

Tavecchio, FO, Righi, MNRAS, 2019, 488, 3

![](_page_28_Figure_3.jpeg)

Kimura, Murase, Zhang , PRD 97, 023026, 2018

![](_page_28_Figure_5.jpeg)

19

#### Starbursts vs. AGN: Composition

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_0.jpeg)

- Blazars can be the brightest point sources despite diffuse constraints
- Flares are ideal times for neutrino detection

![](_page_30_Figure_3.jpeg)

#### TXS 0506+056 in 2017

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool telescope, Subaru, Swift/ NuSTAR, VERITAS, and VLA/ 17B-403 teams. Science 361, 2018, MAGIC Coll. Astrophys.J. 863 (2018) L10

![](_page_31_Figure_2.jpeg)

see also Auger upper limit at UHE, PoS(ICRC2019)415

![](_page_32_Figure_0.jpeg)

see also Auger upper limit at UHE, PoS(ICRC2019)415

![](_page_33_Figure_1.jpeg)

# Blazar photon fields

![](_page_34_Figure_1.jpeg)

\*Despite its optical classification TXS 0506+056 is an FSRQ with an efficient accretion disk!

see Padovani, FO Petropoulou et al, MNRASL 484 (2019)

\*Even BL Lac objects can produce copious neutrinos if they have a slow moving outer layer which there is evidence for

Ghisellini, Tavecchio, Chiaberge 2005 Tavecchio & Ghisellini 2014

Murase, FO, Petropoulou ApJ 865 (2018) 124 FO, Murase, Petropoulou EpJ Conf 210 (2019) 03006

![](_page_35_Figure_2.jpeg)

Padovani, FO Petropoulou et al, MNRASL 484 (2019) Gao et al, 2019, Nat. Astron., 3, 88 MAGIC Coll 2018, ApJ, 863, L10 Cerruti et al, 2019 MNRAS, 483, L12 Reimer et al 2019 ApJ 881, 46 Rodrigues et al, 2019 ApJ, 874, L29

Murase, FO, Petropoulou ApJ 865 (2018) 124 FO, Murase, Petropoulou EpJ Conf 210 (2019) 03006

![](_page_36_Figure_2.jpeg)

Padovani, FO Petropoulou et al, MNRASL 484 (2019) Gao et al, 2019, Nat. Astron., 3, 88 MAGIC Coll 2018, ApJ, 863, L10 Cerruti et al, 2019 MNRAS, 483, L12 Reimer et al 2019 ApJ 881, 46 Rodrigues et al, 2019 ApJ, 874, L29

Murase, FO, Petropoulou ApJ 865 (2018) 124 FO, Murase, Petropoulou EpJ Conf 210 (2019) 03006

![](_page_37_Figure_2.jpeg)

Rodrigues et al, 2019 ApJ, 874, L29

![](_page_37_Figure_3.jpeg)

Murase, FO, Petropoulou ApJ 865 (2018) 124 FO, Murase, Petropoulou EpJ Conf 210 (2019) 03006

![](_page_38_Figure_2.jpeg)

Rodrigues et al, 2019 ApJ, 874, L29

Murase, FO, Petropoulou ApJ 865 (2018) 124 FO, Murase, Petropoulou EpJ Conf 210 (2019) 03006

![](_page_39_Figure_2.jpeg)

Rodrigues et al, 2019 ApJ, 874, L29

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_1.jpeg)

# High-energy neutrinos from other blazar flares?

FO, Murase, Padovani, Resconi, Mészáros, MNRAS, 23, 2019

![](_page_42_Figure_2.jpeg)

#### Optimistic scenario based on 2017 flare of TXS 0506+056

FO, Murase, Padovani, Resconi, Mészáros, MNRAS, 23, 2019

![](_page_43_Figure_2.jpeg)

#### Expected neutrino signal in optimistic case

![](_page_44_Figure_1.jpeg)

#### Expected neutrino signal in optimistic case

![](_page_45_Figure_1.jpeg)

# Expected neutrino signal with next generation detectors

![](_page_46_Figure_1.jpeg)

# Waiting for the next multimessenger alerts!

![](_page_47_Figure_1.jpeg)

# Waiting for the next multi messenger alerts!

![](_page_48_Picture_1.jpeg)

## Waiting for the next multi messenger alerts!

![](_page_49_Figure_1.jpeg)

# Outlook

#### AugerPrime can

TXS 0506+056

- allow number density determination, correlations with neutrinos, source associations (light component)
- distinguish between AGN and SBGs/GRBs (iron fraction)
- identify UHE sources by temporal/spatial associations with signal from other instruments (neutral particles)

Looking forward to the next multimessenger events!

NGC106

![](_page_50_Figure_6.jpeg)

NGC4945

# Back-up

# Indication of UHECR negative source evolution?

Liu et al., PRD94, 043008 (2016)

![](_page_52_Figure_2.jpeg)

but see e.g. Supanitsky, PRD94, 063002 (2016) Van Vliet, EpJ Web Conf. 135 (2017)

see also J. Heinze et al., ApJ 825, 122 (2016) [neutrinos]

# GRB limits from IceCube

![](_page_53_Figure_1.jpeg)

I I 72 GRBs Search consistent with background only Prompt GRBs produce < 1% of IceCube flux

![](_page_53_Figure_3.jpeg)

LL-GRBs, afterglow, precursors not constrained (e.g. Senno et al, Phys.Rev. D93 (2016) no.8, 083003 Kimura et al, ApJ. 848 (2017) no.1, L4

# Blazar limits from IceCube

![](_page_54_Figure_1.jpeg)

# **UHE** Photons

![](_page_55_Figure_1.jpeg)

![](_page_55_Figure_2.jpeg)

## **UHE** Neutrons

Can they reach us?

$$[c.f. Milky Way radius \sim 8 \text{ kpc}]$$

![](_page_57_Figure_1.jpeg)

 $N_{\nu_{\mu}} \leq 4.9$ 

Rodrigues, Gao, Fedynitch, Palladino, Winter ApjL 2019, Reimer, Böttcher, Buson ApJ 2019

**Overshoots SED** 

![](_page_57_Figure_4.jpeg)

 $N_{\nu_{\mu}} = 13.2$ 

# Neutrino production in TXS 0506+056 in the neutral beam model

Zhang, Petropoulou, Murase, FO, arXiv:1910.11464

![](_page_58_Figure_2.jpeg)

#### Is TXS 0506+056 a normal blazar?

Britzen, Fendt, Böttcher et al, A&A, 2019

![](_page_59_Figure_2.jpeg)