Propagation of ultra-high energy cosmic rays

Silvia Mollerach CONICET, Centro Atomico Bariloche

During propagation from their sources to the Earth UHECRs are subject to:

- energy redshift due to the expansion of the universe
- interactions with radiation backgrounds (CMB and IR/visible/UV extragalactic background light)
 - \rightarrow energy losses, composition changes
- deflections in the intergalactic/Galactic magnetic fields

These processes change the spectrum, mass composition and arrival direction of the particles observed at Earth with respect to those of the particles emitted by the sources

Interactions with radiation backgrounds: studied in detail since Greisen, Zatsepin & Kuz'min (1966)

- e^--e^+ pair production (A+ $\gamma \rightarrow$ A+ e^-+e^+)
- disintegration of nuclei ((A+i)+ $\gamma \rightarrow$ A+ i N)
- photopion production (p+ $\gamma \rightarrow$ p+ π^0 , n+ π^+ or n+ $\gamma \rightarrow$ n+ π^0 , p+ π^-)

These processes also lead to the production of secondary particles: nucleons, e⁻-e⁺ pairs, neutrinos, gamma rays

Few public Monte Carlo codes available: SimProp (Aloisio et al. 2018), CRPropa (Alves Batista et al. 2016)

3

Modification of the spectrum for nuclei: heaviest fragment and secondary protons

expansion & pair creation \rightarrow change Γ

photo-disintegration \rightarrow changes A

SM Roulet 2019

notice that composition at Earth is changed

modification factor independent of γ more secondary protons for harder spectrum

SFR evolution → enhancement of flux at low energies 5

Effect of the intergalactic magnetic field

turbulent field with rms amplitude B and coherence length I_c

Larmor radius $r_{\rm L} = \frac{E}{ZeB}$

Critical energy $r_L(E_c) = I_c \rightarrow \text{ for } E < E_c \text{ large deflections for distances } < I_c$

$$E_{\rm c} = ZeBl_{\rm c} \simeq 0.9Z \, \frac{B}{\rm nG} \frac{l_{\rm c}}{\rm Mpc} \, {\rm EeV}$$

Diffusion length: deflection ~1 rad

$$l_D(E) \simeq l_c \left[4 \left(\frac{E}{E_c} \right)^2 + 0.9 \left(\frac{E}{E_c} \right) + 0.23 \left(\frac{E}{E_c} \right)^{1/3} \right]$$

(Kolmogorov spectrum)

For a source at distance
$$r_s$$

 $l_D(E) \simeq r_s$
Diffusion Quasi rectilinear
Angular distribution wrt the source direction
 $\left[1 - r_s/3 l_D - r_s \ll l_D\right]$

$$\langle \cos \theta \rangle = \frac{1}{3R} \left[1 - \exp\left(-3R - \frac{7}{2}R^2\right) \right] \equiv C(R) \simeq \begin{cases} 1 - r_s/3 t_D & r_s \ll t_D \\ & \vdots & \\ l_D/3r_s & r_s \gg l_D \end{cases}$$
 (A matrix SM Roulet 2014) (B matrix and the second second

Magnetic horizon effect: suppression of the flux at low energies for a discrete source distribution in the presence of a turbulent magnetic field

Lemoine (2005), Berezinsky and Gazizov (2006)

Solution of diffusion eq. for protons in an expanding universe

$$J_{\text{tot}}(E) = \sum_{s} J_{s}(E) = \frac{c}{4\pi} \int_{0}^{z_{\text{max}}} dz \left| \frac{dt}{dz} \right| \frac{Q[E_{g}(E,z),z)]}{(4\pi\lambda^{2})^{3/2}} \frac{dE_{g}}{dE} \sum_{s} \exp[-r_{s}^{2}/(4\lambda^{2})]$$
$$\lambda^{2}(E,z) \simeq \frac{c}{3H_{0}} \int_{0}^{z} dz' \frac{1+z'}{\sqrt{\Omega_{m}(1+z')^{3}+\Omega_{\Lambda}}} l_{D}((1+z')E)$$

 $E_q(E,z)$ accounts for energy losses

For small source separation (large density) $\sum_s \rightarrow n_s \int \mathrm{d}r \, 4\pi r^2$

$$\int_0^\infty \mathrm{d}r \, 4\pi r^2 \frac{\exp(-r^2/4\lambda^2)}{(4\pi\lambda^2)^{3/2}} = 1$$

 \rightarrow no effect on the spectrum: Propagation theorem

Aloisio & Berezinsky 2004

Discrete distribution of sources: the spectrum gets suppressed at low energies Low energy particles take longer than the age of the universe to arrive from the closest sources

Suppression factor depends on the source density through

 $X_{s} \equiv \frac{d_{s}}{\sqrt{R_{H}l_{c}}} \simeq \frac{d_{s}}{65 \text{ Mpc}} \sqrt{\frac{\text{Mpc}}{l_{c}}}, \qquad d_{s} = 1/n_{s}^{1/3} \qquad \text{larger X}_{s} \rightarrow \text{more suppression: sources farther away}$ and on B through E_c

It has a (weaker) dependence on z_{max} , spectral index and evolution of the sources, $(1+z)^m$ 8 SM Roulet 2013

Combined fit of spectrum & composition measurements above the ankle

Sources with low rigidity cutoff and hard spectrum:

 $R_{cut} \sim 5 \text{ EV}, \ \gamma \sim [0 - 1]$

Auger 2017

Effect of the magnetic horizon suppression on a combined fit to spectrum and composition

Spectrum and composition may be fitted with Fermi type spectrum (γ ~2) and the effectively harder spectrum at low energies be due to magnetic horizon effects

Spectrum from one source:

diffusion leads to enhancement of the density around it

Steady source

$$n(E, r_{\rm s})4\pi r_{\rm s}^2 c \langle \cos\theta(E, r_{\rm s}) \rangle = Q(E)$$

density enhanced wrt rectilinear propagation by

$$\xi \equiv \frac{n(E, r_{\rm s})}{Q(E)/(4\pi r_{\rm s}^2 c)} = \frac{1}{\langle \cos \theta \rangle}$$

related to dipolar amplitude by $\Delta = 3 \langle \cos \theta \rangle = 3/\xi$

Source emitting since initial redshift z_i: enhancement of local density

density $n(E,r_s)$ obtained from the solution of diffusion eq.

(Berezinsky & Gazizov 2006)

$$n(E, r_{s}) = \frac{Q(E)}{4\pi c r_{s}^{2}} \xi_{i}$$

$$f_{i}$$

$$n(E, r_{s}) = \frac{Q(E)}{4\pi c r_{s}^{2}} \xi_{i}$$

$$f_{i}$$

particles need longer than the source emitting time to reach r_s

rectilinear propagation

$$d_{\rm s} \simeq \frac{1}{C(r_{\rm s}/l_D)} \exp\left[-\left(\frac{r_{\rm s}^2}{0.7l_D(E)d(z_i)}\right)^{0.82}\right]$$

 $d(z_i) = \int_0^{z_i} \mathrm{d}z \frac{c}{H_0\sqrt{(1+z)^3\Omega_m + \Omega_\Lambda}}$

maximum at

$$\xi_D(E_{
m max}) \simeq 1.1 \ r_{
m s}^2/d(z_i)$$

 $\xi_i^{
m max} \simeq 0.8 \ d(z_i)/r_{
m s}$

independent parameters:

 $E_c, r_s/l_c, d(z_i)/l_c$

Source emitting since initial redshift z_i: dipolar anisotropy

anisotropy at low energies larger than for the steady source (particles with long trajectories arriving from behind are missing)

nuclei: change $E \rightarrow E/Z$

(good approximation: attenuation is small at these energies for a nearby source)

13

Scenario with a strong nearby extragalactic source

- A nearby source within the Local Supercluster:

with large magnetic field in the region enclosing observer & source (Vallee 2002) emitting since a recent z_i (or with a burst at a recent z_b), and a mixed composition with common rigidity-dependent spectrum (power law index γ_s and cutoff at ZE_{cut}^s)

 \rightarrow each component contributes in a limited energy range as result of the diffusion and magnetic horizon effects

- Diffuse extragalactic contribution from farther away sources:

assumed isotropic, with mixed composition (power law spectrum $E^{-\gamma}$ and cutoff ZE_{cut}) with SFR source evolution

magnetic field

$$B = 100 \text{ nG}$$

 $l_{c} = 0.03 \text{ Mpc}$
 $(E_c \approx 2.7 \text{ EeV})$

nearby source

$$\begin{array}{l} r_{\rm s} = 4 \ {\rm Mpc} \\ z_i = 0.07 \\ (\xi_{\rm max} \approx 60) \\ \gamma_s = 2.3 \\ f_{\rm H}^s = 0.45, \ f_{\rm He}^s = 0.09 \\ f_{\rm N}^s = 0.31, \ f_{\rm Si}^s = 0.15 \\ f_{\rm Fe}^s = 0 \end{array}$$

diffuse flux $\gamma = 2.7$ $f_{\rm H} = 0.45, f_{\rm He} = 0.33$ $f_{\rm N} = 0.15, f_{\rm Si} = 0.05$ $f_{\rm Fe} = 0.02$

 $E_{\rm cut}^s = E_{\rm cut} = 20 \, {\rm EeV}^{15}$

Summary

The interaction of UHECRs with the radiation backgrounds modifies the spectrum at the highest energies and constrains the distance of the possible sources

The effect of a turbulent extragalactic magnetic field is to suppress the spectrum at low energies of a distribution of sources

A good combined fit to the spectrum and composition data with a softer spectral index at source can be obtained considering the EGMF effect

If local EGMF is strong, most of CRs above the ankle could come from a single local source, with the diffuse flux from farther away sources explaining the extragalactic contribution at lower energies

Scenario with a strong nearby extragalactic source

Flux from the nearby source: mixed composition - 5 components with common rigidity-dependent spectrum (power law index γ_s and cutoff at ZE^s_{cut})

$$\Phi^{s}(E, r_{s}) = \Phi_{0}^{s} \sum_{i} f_{i}^{s} \left(\frac{E}{\text{EeV}}\right)^{-\gamma_{s}} \xi(E/Z_{i}, r_{s}) \frac{1}{\cosh(E/Z_{i}E_{\text{cut}}^{s})}$$

$$i = H, \text{He, N, Si, Fe}$$

$$\xi_{i} \rightarrow \text{for source emitting since } z_{i}$$

$$\xi_{b} \rightarrow \text{for burst at } z_{b}$$

$$(\text{function of } E_{c} \propto Bl_{c}, r_{s}/l_{c}, d(z_{i/b})/l_{c})$$

Diffuse extragalactic contribution: assumed isotropic - 5 components (power law γ and ZE_{cut}) with SFR source evolution

$$\Phi^{\rm dif}(E) = \Phi_0 \sum_j f_j \left(\frac{E}{\rm EeV}\right)^{-\gamma} \eta_j(E) \frac{1}{\cosh(E/Z_j E_{\rm cut})}$$

modification factor fit for each component

- secondary protons

$$\Phi^p(E) \simeq \Phi_0 \sum_j f_j \left(\frac{E}{\text{EeV}}\right)^{-\gamma} \frac{A^{2-\gamma}G(E)}{\cosh(2E/E_{\text{cut}})}$$

magnetic field

B = 50 nG $l_{\rm c} = 0.05 \text{ Mpc}$

(E_c≈2.2 EeV)

nearby source

$$r_{\rm s} = 4 \,\,{
m Mpc}$$

 $z_b = 0.015$

$$\gamma_s = 2$$

 $f_{\rm H}^s = 0.34, f_{\rm He}^s = 0.30$
 $f_{\rm N}^s = 0.27, f_{\rm Si}^s = 0.05$
 $f_{\rm Fe}^s = 0.04$

diffuse flux: same parameters as previous example

Auger ICRC 2017

Source properties	4D with EGMF	4D no EGMF	1D no EGMF ¹
γ	$1.61^{+0.08}_{-0.07}$	$0.61^{+0.05}_{-0.06}$	$0.87^{+0.08}_{-0.06}$
$\log_{10}(R_{\rm cut}/{\rm eV})$	$18.88^{+0.03}_{-0.07}$	$18.48^{+0.01}_{-0.02}$	$18.62^{+0.02}_{-0.02}$

Object type	Mean density $n (\text{cm}^{-3})$	Mean magnetic field B (μ G)	Mean size D (pc)	Mean temperature T (K)	References
Gas in supercluster of galaxies	10 ⁻⁶	0.5	5×10^7	107	Vallée (1990d)
Gas in clusters of galaxies	10^{-4}	1	5×10^{6}	107	Vallée (1990d)
Gas in galactic halos	10^{-3}	4	5×10^4	10 ⁶	Vallée (1990d)
Spiral arm interstellar gas	0.5	4	10 ⁴	104	Vallée (1991c)
Large supershells-initial	0.8	3	300	10 ³	Vallée (1993e)
Large supershells-actual	2	8	20	10 ³	Vallée (1993e)
Large HII regions	5	10	30	104	Heiles and Chu (1980)
HI gas in diffuse clouds	3	5	10	100	Troland and Heiles (1986)
HI gas in interclumps	90	15	10	100	Troland and Heiles (1986)

Physical properties of some large astronomical objects

