

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

AoP long term evolution The sweep algorithm

E. dos Santos¹

¹Institute of Physics (FZU) Czech Academy of Sciences, Na Slovance 2, Prague, Czech Republic

28 February 2019

Area over peak - Data selection and cuts

Data taken from the monitoring files mc_yyyy_mm_dd_HHhMM.root

Follow the long term studies for $\langle AoP \rangle$ described in GAP 2012-154 as close as possible 7 more years of data!!!

Data selection and cuts

- Period from 1 January 2004 to 31 December 2018
- Data binned in one week intervals
- Select only PMTS where T1 > 0
- \bigcirc Area > 0
- \bigcirc Peak > 0
- Station has 3 working PMTs (unmasked) TubeMask == 7||TubeMask == 15
 - Periods with masked PMTs are not used in the analysis
- Remove periods where the PMT is raining
 - ♥ Var (Dynode/Anode) < 4.5</p>
 - Sweep algorithm
 - Discard PMTs where there are more than 4 cases where $1 \langle AoP \rangle_{i+1} / \langle AoP \rangle_i > 1\%$
- Consider only PMTs which have more than 3 years of data
- PMTs pass a set of fitting cuts

Area over peak - An overall view

No cuts, all the PMTs

Evidence of 2 populations of the initial value of $\langle AoP
angle$

Area over peak - An overall view

No cuts, all the PMTs

Area over peak - Sweep algorithm

As suggested in GAP 2012-154:

• Remove PMTs where the variation in adjacent $\langle AoP \rangle$ bins exceeds 1% more than 4 times Excluded by the sweep algorithm

$\langle AoP \rangle$ jumps

All $\langle AoP
angle$ variation in consecutive time bins - No cuts, all the PMTs

The cut in the $1-\langle AoP\rangle_{i+1}\,/\,\langle AoP\rangle_i>1\%$ is a cut at 10σ deviation of the overall distribution

All $\langle AoP \rangle$ variation in consecutive time bins - No cuts, all the PMTs

Stations with IDs between 700 to 1600 present a high number of jumps The freezing events are also evident

Selecting the cases where the $\langle AoP
angle$ jumps are > 1% - All the PMTs

Stations with IDs between 700 to 1600 present a high number of jumps The freezing events are also evident

In 2012 a campaign to fix the raining/bad PMTs started in the field

Array seems to stabilize after 2012 (fixing the raining PMTs?)

 $\langle AoP
angle$ variation in consecutive time bins - PMTs which pass the sweep algorithm

1.0% FE1 500 ۸ 400 <AoP> / <AoP> week FE2 300 200 FE3? 100 I 년 2012 2016 2018 # 2006 2008 2010 2014 2004Time [years]

Good PMTs - passed sweep algorithm

Area over peak - 2007 and 2010 "freezing events" Freezing events of 2007 and 2010 are a very known effect

GAP 2012-154

Figure 4: Evolution of A/P for station 437, with three different fits, before, between and after mid July of winters 2007 and 2010.

-) Unusual temperatures below of $-15^\circ C$ in Malargüe
- 10 cm thick layer of ice observed in the stations • Drop of $\langle AoP \rangle \sim 1 - 3\%$
- Proposed approach:
 - Fit the data into 3 periods:
 - Before FE1
 - Between FE1 and FE2
 - After FE2
 - Recommendable to have a minimum of 3 years of data for the fit

Area over peak - Fitting

Fit function:

$$\langle AoP \rangle \left(t \right) = \mathbf{p_0} \left[1 - \mathbf{p_1} \left(1 - e^{-\frac{t - t_0}{\mathbf{p_2}}} \right) \right] \left[1 + \mathbf{p_3} \sin \left(2\pi \left(\frac{t - t_0}{T} - \phi \right) \right) \right]$$

Fit parameter values, as proposed in R. Sato, for the Pierre Auger Collaboration, ICRC 2011:

- $1.0 \le p_0 \le 5.5$ $\langle AoP \rangle$ normalization
- $0.0 \le p_1 \le 1.0$ Fractional loss
- $0.0 \le p_2 \le 500$ Characteristic time in years
- $0.0 \le p_3 \le 1.0$ Seasonal amplitude
- ϕ Phase

Further constraints:

- Fit converges
- $\chi^2/NDF < 2000.0$
- ${\small \bigcirc } \ NDF > 40$
- Only PMTs passing all the fit periods are accounted

All the 5 fit parameters are free

Area over peak - Fitting periods

PMTs operating before 2007 (the ones used in the previous analysis)

- Period1 $\langle AoP \rangle_0 \leq t[\text{years}] \leq FE1$
- Period2 $FE1 \le t$ [years] $\le FE2$
- Period3 $FE2 \le t$ [years] ≤ 2012 (only for comparison with GAP 2012-154)
- Period4 $FE2 \le t \text{ [years]} \le \langle AoP \rangle_f$

PMTs operating after 2007 (the new ones)

• $\langle AoP \rangle_0 < FE1$ • Period2 extended - $\langle AoP \rangle_0 \leq t \ [years] \leq FE2$ • Period4 - $FE2 \leq t \ [years] \leq \langle AoP \rangle_f$ • $FE1 < \langle AoP \rangle_0 < FE2$ • Period2 - $\langle AoP \rangle_0 \leq t \ [years] \leq FE2$ • Period4 - $FE2 \leq t \ [years] \leq \langle AoP \rangle_f$ • $\langle AoP \rangle_0 > FE2$ • Period4 - $\langle AoP \rangle_0 \leq t \ [years] \leq \langle AoP \rangle_f$

Area over peak - Fitting the AoP time evolution

As suggested in GAP 2012-154:

• Remove PMTs which do not pass all the fitting criteria in all periods

Did not pass the fitting criteria

Area over peak - Selection cuts

	Number of PMTs	Fraction
All PMTs	5690	
Have > 3 years of data	5097	89.6%
Passed the sweep algorithm	3505	61.6%
Passed the fit	2724	47.9%

PMTs working before 2007	Number of PMTs	Fraction
Passed the sweep algorithm Passed the fit - Period1 && Period2 && Period3 Passed the fit - Period1 && Period2 && Period4		60.1% 50.8% 55.1%

PMTs working after 2007	Number of PMTs	Fraction
Passed the sweep algorithm	1399 / 3505	39.9%
Passed the fit - Period2 extended && Period4	456 / 2724	16.7%
Passed the fit - Period2 && Period4	621 / 2724	22.8%
Passed the fit - Period4	147 / 2724	5.4%

$$\left\langle AoP \right\rangle(t) = \mathbf{p}_0 \left[1 - p_1 \left(1 - e^{-\frac{t-t_0}{p_2}} \right) \right] \left[1 + p_3 \sin \left(2\pi \left(\frac{t-t_0}{T} - \phi \right) \right) \right]$$

 ${\small \bigcirc }~~1.0 \leq p_0 \leq 5.5$ - $\langle AoP \rangle$ normalization

Time < 2007.5 - LS working before 2007

Gradual decrease of the $\langle AoP
angle$ at each period

$$\left\langle AoP \right\rangle(t) = \mathbf{p}_{\mathbf{0}} \left[1 - p_1 \left(1 - e^{-\frac{t-t_0}{p_2}} \right) \right] \left[1 + p_3 \sin\left(2\pi \left(\frac{t-t_0}{T} - \phi \right) \right) \right]$$

• $1.0 \le p_0 \le 5.5$ - $\langle AoP \rangle$ normalization

Gradual decrease of the $\langle AoP
angle$ at each period

$$\left\langle AoP \right\rangle(t) = p_0 \left[1 - \mathbf{p_1} \left(1 - e^{-\frac{t-t_0}{p_2}} \right) \right] \left[1 + p_3 \sin \left(2\pi \left(\frac{t-t_0}{T} - \phi \right) \right) \right]$$

• $0.0 \le p_1 \le 1.0$ - Fractional loss

PMTs from stations working before and after 2007

Large fraction of fits converged at the limit !!

$$\left\langle AoP \right\rangle(t) = p_0 \left[1 - p_1 \left(1 - e^{-\frac{t-t_0}{\mathbf{P}_2}} \right) \right] \left[1 + p_3 \sin \left(2\pi \left(\frac{t-t_0}{T} - \phi \right) \right) \right]$$

• $0.0 \le p_2 \le 500$ - Characteristic time in years

PMTs from stations working before and after 2007

Characteristic time increases with the station age

$$\left\langle AoP \right\rangle(t) = p_0 \left[1 - p_1 \left(1 - e^{-\frac{t-t_0}{p_2}} \right) \right] \left[1 + \mathbf{p_3} \sin \left(2\pi \left(\frac{t-t_0}{T} - \phi \right) \right) \right]$$

• $0.0 \le p_3 \le 1.0$ - Seasonal amplitude

PMTs from stations working before and after 2007

In GAP 2012-154 it is estimated that the estimated $\langle AoP\rangle_{2020}$ will be larger than 85% in most cases

In this work:

- ${\hfill \bullet } 40\%$ of the stations lost more than 15% of its initial value
- Number of PMTs is compatible of what is reported in GAP 2012-154
- All the fit parameters are free
 - 80 PMTs have $p_1 \sim 1.0$ in Period1

Figure 8: Estimated relative values (Fraction) of A/P for year 2020 with respect to its initial value.

All PMTs which pass all the cuts and have data points above 1 January 2018

59% of the PMTs suffered a loss larger than 15% 72% (43%) of the PMTs working before (after) 2007 suffered a loss larger than 15%

All PMTs which pass all the cuts and have data points above 2018.95

62% of the PMTs suffer a loss larger than 15% 75% (47%) of the PMTs working before (after) 2007 suffer a loss larger than 15%

All PMTs which pass all the cuts and have data points above 15 December 2018

71% of the PMTs estimated to suffer a loss larger than 15% 83% (57%) of the PMTs working before (after) 2007 suffer a loss larger than 15%

Conclusions

- ${\small \bigcirc}~$ Study of the evolution of the $\langle AoP \rangle$ since 1 January 2004 to 31 December 2018
 - $\circ~$ Analysis based on the "official" procedure as described in GAP 2012-154 and previous works
 - All fit parameters are set free
- Number of PMTs which pass the sweep algorithm and the long term fits seems to agree with previous works
- Loss of the (AoP) over time is observed
 - Loss is more important in the first years after deployment
- Array as a whole shows a more stable behavior after 2012
 - Continuous campaign to fix the raining PMTs
 - Maybe other effects play a role
- Larger fraction of loss of the initial $\langle AoP \rangle$ observed with this analysis

 - ${\tt 0}~~62\%$ of the selected PMTs working after 2018.5 suffered a loss larger than 15%
 - 75% / (47%) of then were working before / (after) 2007
 - ${}_{\odot}\;$ Estimated average loss of the selected PMTs working after 2018.5 in January 2025 is 84%
 - ${\tt 0}~71\%$ of the selected PMTs working after 2018.5 estimated to suffer a loss larger than 15%
 - 83% / (57%) for PMTs working before / (after) 2007

All $\langle AoP \rangle$ variation in consecutive time bins - No cuts, all the PMTs

In GAP 2012-154 it is estimated that the estimated $\langle AoP\rangle_{2020}$ will be larger than 85% in most cases

40% of the PMTs suffer a loss larger than 15%

$$\left\langle AoP \right\rangle(t) = \mathbf{p}_{\mathbf{0}} \left[1 - p_1 \left(1 - e^{-\frac{t-t_0}{p_2}} \right) \right] \left[1 + p_3 \sin\left(2\pi \left(\frac{t-t_0}{T} - \phi \right) \right) \right]$$

• $1.0 \le p_0 \le 5.5$ - $\langle AoP \rangle$ normalization

Gradual decrease of the $\langle AoP
angle$ at each period, as expected

GAP 2012-154 AoP fit results

Figure 5: Parameters of the fit function for the three different periods, before and after freezing events of 2007 and 2010. Mean values of the distributions are displayed. Red: before 2007. Blue: Between 2007 and 2010. Black after 2010.

All PMTs which pass all the cuts and have data points above 2018.95

65% of the PMTs estimated to suffer a loss larger than 15%77% (50%) of the PMTs working before (after) 2007 suffer a loss larger than 15%