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Motivation: Classical (quantum) mechanics: point particles with exact
(uncertain) position. How about quantum field theory?
We deal with its covariant formalism, but how does it describe particles?

Classical Hamilton mechanics: point particles with x(t), p(t)

Canonical QM: Hermitian operators x̂, p̂, [x̂, p̂] = i~, ∆x∆p ≥ ~/2

Position smeared out to wave function Ψ(t, x) = 〈x|ψ(t)〉, point particle
with uncertain position → interference effects

Field theory: degrees of freedom: immobile fields, no particle
coordinates, e.g. classical electrodynamics ~E(t, ~x), ~B(t, ~x), or continuum
mechanics with density ρ(t, ~x). A wave covers some region, not point-like.



Canonical quantum field theory:

Operator-valued fields, excitations ∼ “particles”, e.g. photons in QED, or
phonons in field theory of a vibrating crystal, fields fluctuate in quanta.

Terminology (in this talk)

• “Particle”: QM, position usually uncertain, but point-like

• “Wavicle”: Quantized field excitation, relativistic and more
fundamental. Features and localization are subtle, to be discussed
in a toy model.

Term suggested by Wilczek, distinction unusual, but useful for this talk.
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Toy model: 1d chain of coupled ions

Ions described by particles in (non-relativistic) QM

“Crystal”: coupled harmonic oscillators, equilibrium distance ǫ

ε

ions

Ĥ =
N∑

n=1

[ 1

2M
p̂2n +

1

2
Mω2

0 (x̂n+1 − x̂n − ǫ)2
]

=
N∑

n=1

[ 1

2M
p̂2n +

1

2
Mω2

0 (ŷn+1 − ŷn)
2
]

, ŷn = x̂n − nǫ, ŷN+1 = ŷ1

M : ion mass; ŷn: displacement; periodic b.c.: x̂N+1 = x̂1 +

L
︷︸︸︷
Nǫ

Actually a ring, simplifies Fourier analysis, at the end N, L→ ∞.
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Strictly speaking: model should be in space-time dimension > 2 and
L → ∞, otherwise no crystalline order: requires spontaneous breaking of
translation sym. [Mermin-Wagner Theorem], but 1d notation is instructive.

• Z(N) shift symmetry: ŷn → ŷn+1 (n < N), and ŷN → ŷ1

Fourier series:

ŷ(k) =

N∑

n=1

ŷne
−inǫ = ŷ(−k)† = ŷ

(

k +
2π

ǫ

)

, ŷn =
1

N

∑

k

ŷ(k)einǫ

Bloch wave number k = 2πm
L ∈ B = (−π

ǫ ,
π
ǫ ]

(actually km, but this messes up the notation).

Periodicity over Brillouin zone B due to ǫ > 0, and discrete if L >∞.
For N even: m = −N

2 + 1, −N
2 + 1, . . . N2 − 1, N

2
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• Sym. under continuous translation of all ions.
Noether: conservation of total momentum P̂ =

∑

n p̂n

Hamilton operator in Fourier space

T̂ =
1

2M

∑

n

p̂2n =
1

2MN

∑

k

p̂(k)†p̂(k) (Parseval)

V̂ =
Mω2

0

2

∑

n

(ŷn+1 − ŷn)
2

=
Mω2

0

2N2

∑

k, k′

ŷ(k)ŷ(k′)
[∑

n

(

e−ik(n+1)ǫ − e−iknǫ
)(

e−ik′(n+1)ǫ − e−ik′nǫ
)]

=
M

2N

∑

k

ŷ(k)†ŷ(k)ω(k)2 , ω(k) = 2ω0

∣
∣
∣ sin

kǫ

2

∣
∣
∣

where we used Poisson’s formula: 1
N

∑

n e
i(k−k′)nǫ = δkk′
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Ĥ = T̂ + V̂ =
P̂ 2

2MN
+

1

N

∑

k 6=0

[p̂(k)†p̂(k)

2M
+
Mω(k)2

2
ŷ(k)†ŷ(k)

]

The k = 0-mode represents an overall motion, with P̂ and mass MN .

k 6= 0 (discrete, in B) oscillations with ω(k)

ω(k) = 2ω0

∣
∣
∣ sin kǫ

2

∣
∣
∣ for N = 40 :

|k| small: ω ≃ ω0|k|ǫ,

|k|<∼π/ǫ : ω<∼ 2ω0

 0
 0

--

--

ω0

2 ω0

π/ε-π/ε

ω
(k

)

k
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Phonons: quantized vibrations

Phonon annihilation and creation operator, analogous to harm. oscillator

â(k) =
1√
2N

(

α(k)ŷ(k) +
i

~α(k)
p̂(k)

)

â(k)† =
1√
2N

(

α(k)ŷ(k)† − i

~α(k)
p̂(k)†

)

α(k)
.
=

√

Mω(k)/~ (for k 6= 0)

Familiar commutation relations

[ŷn, p̂n′] = i~δnn′ , [ŷn, ŷn′] = 0 = [p̂n, p̂n′]
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imply in Fourier space

[ŷ(k), p̂(k′)†] = i~Nδkk′ , [ŷ(k), ŷ(k′)] = 0 = [p̂(k), p̂(k′)]

and therefore

[â(k), â(k′)†] = i~Nδkk′ , [â(k), â(k′)] = 0 = [â(k)†, â(k′))†]

Computation of â(k)†â(k) leads to another familiar expression:

Ĥ =
P̂ 2

2NM
+

∑

k 6=0

~ω(k)
(

â(k)†â(k)
︸ ︷︷ ︸

ν̂(k)

+
1

2

)

ν̂(k): phonon number operator of the Bloch wave number k
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Quantum states of a vibrating crystal

Energy eigenstates are given by: • total momentum P
• phonon occupation number ν(k) to each Bloch wave number

Ground state |0〉 : P = 0, ν(k) = 0, ∀k

P̂ |0〉 = 0 , â(k)|0〉 = 0 , E0 = 〈0|Ĥ|0〉 = ~

2

∑

k

ω(k)

Thermodyn. limit N → ∞ :
∑

k →
∫

B
dk, energy density

E0

L
=

~

4π

∫ π/ǫ

−π/ǫ

dk 2ω0

∣
∣
∣ sin

kǫ

2

∣
∣
∣ =

2~ω0

πǫ
−→︸︷︷︸
ǫ→0

∞

Cosmological Constant (truncate π
ǫ =MPlanck, requires TINY ω0 . . . ).
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Consider only energy differences, but maintain N → ∞
P 2

2MN = 0 at any finite P , degenerate ground states

SSB of translation invariance, phonon as Nambu-Goldstone boson (in d > 2)

• 1-phonon state: |k〉 = â(k)†|0〉

E(k)− E0 = ~ω(k) = 2~ω0

∣
∣
∣ sin

kǫ

2

∣
∣
∣

⊲ small |k| : E(k) ≃ ~|k|ω0ǫ
linear in ~k, i.e. “relativistic” with respect to c

.
= ω0ǫ : speed of sound

⊲ |k| → π
ǫ : group velocity c(k) =

∣
∣
∣

∂E
∂(~k)

∣
∣
∣ = ω0ǫ cos

kǫ
2 → 0

• 2-phonon state : |k1, k2〉 = â(k1)
†â(k2)

†|0〉 = |k2, k1〉
Bosons, ν(k) unlimited

9



Wavicle localization

How extended are wavicle, in this case 1-phonon states?

QM position eigenstate

|n〉 =
ǫ

2π

∫

B

dk |k〉eiknǫ = â†n|0〉 with â†n =
ǫ

2π

∫

B

dk â(k)†eiknǫ

⇒ [ân, â
†
n′] = δnn′ , [ân, ân′] = 0 = [â†n, â

†
n′]

QM picture: â†n creates a phonon, solely at position n.
Works for decoupled oscillators (no geometry!), but fails in field theory:

â†n =
ǫ

2π

∫

B

dk
1√
2N

(

α(k)ŷ(k)† − i

~α(k)
p̂(k)†eiknǫ

︸ ︷︷ ︸

â(k)†

)

, α(k)
.
=

√

Mω(k)

~

Convolution in coordinate space:
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â†n =
1√
N

∑

n′

(

fn−n′ ŷn − gn−n′
i

~
p̂n

)

fn = f−n =
ǫ

2π
√
~

∫

B

dk
(

Mω0

∣
∣
∣ sin

kǫ

2

∣
∣
∣

)1/2

cos(knǫ)

gn = g−n =
ǫ
√
~

2π

∫

B

dk
(

Mω0

∣
∣
∣ sin

kǫ

2

∣
∣
∣

)−1/2

cos(knǫ)

At large |n| :
fn ∝ 1

|n|3/2 , gn ∝ 1

|n|1/2

Power-law decays −→ non-local! Creation of one phonon at position n
requires exciting the entire crystal, in a coordinated manner.
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decay of a massless wavicle

fn / α0
gn α0

Wavicle decay, in units of α0
.
=

√

Mω0/~. The convolution terms fn and
gn describe excitations of ions, at distance nǫ, regarding displacement and
momentum. Both are non-local; gn decays very slowly.
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Massive wavicles

So far: phonon mass = 0 ( 6= ion mass M), NGBs in d > 2

Add mass by explicit translation sym. breaking:

V̂ ′ =
Mω0

′ 2

2

∑

n

(

ŷn
︷ ︸︸ ︷

x̂n − nǫ)2 =
Mω0

′ 2

2N

∑

k

ŷ(k)†ŷ(k)

Ĥ = T̂ + V̂ + V̂ ′ = ~

∑

k

(

ν̂(k) +
1

2

)

ω(k)

ω(k) =
[(

2ω0 sin
kǫ

2

)2

+ ω0
′2
]1/2
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At small |k|: “relativistic”

Ephonon(k) = ~ω(k) ≃
[

(~kc)2 + (

mc2
︷︸︸︷

~ω′
0 )

2
]1/2

Phonon mass m =
~ω′

0
c2

=
~ω′

0

ω2
0ǫ

2 (with c = ω0ǫ)

Now fn, gn decay exponentially:

fn, gn ∝ exp
(

− mc

|x|
︷︸︸︷

|n|ǫ
~

)
.
= exp

(

− |x|
λphonon

)

, λphonon =
~

mc

Compton wave length, localization scale of a massive phonon, local
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Decay of fn and gn (in units of α0), related to ion displacement and
momentum, for wavicle mass m = ~ω′

0/c
2, with ω′

0 = 0, 0.5ω0, ω0, 2ω0.
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Transition to field theory, continuum limit

Debye: field theory of vibrating solid ∼ lattice regularized quantum field
theory

Scalar field and its conjugate:

Φ̂(x = nǫ) =
√

Mω2
0ǫ ŷn

Π̂(x = nǫ) =
1

√

Mω2
0ǫ
p̂n = − i~

√

Mω2
0ǫ

3

∂

∂yn
= −i~

ǫ

∂

∂Φ

Constants arrange for right dimensions, and

[Φ̂(x), Π̂(x′)] =
i~

ǫ
δnn′

ǫ→0
︷︸︸︷−→ i~δ(x− x′)
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Ĥ =
∑

n

[ p̂2n
2M

+
Mω2

0

2
(ŷn+1 − ŷn)

2 +
Mω0

′2

2
ŷ2n

]

=
ǫ

2

∑

x

[

c2Π̂(x)2 +
(Φ̂(x+ ǫ)

ǫ

)2

+
(mc

~

)2

Φ̂(x)2
]

ǫ→0
︷︸︸︷−→ 1

2

∫ L

0

dx
[

c2Π̂(x)2 + ∂xΦ̂(x)∂xΦ̂(x) +
(mc

~

)2

Φ̂(x)2
]

Continuum limit: renormalize ω0 such that c = ω0ǫ is kept finite,
can be turned into the speed of light → covariant field theory

Then λ−1
Φ = mc

~
=

ω′
0
c is finite as well, no need to renormalize ω′

0
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Reduction of a wavicle to a QM particle

In many setting, QM works to a good approximation;
then wavicle reduction should be possible.

Recipe:

Construct ĤQM with spectrum of wavicle energies E(k) = ~ω(k).

Valid at low |k|, such that

2π

|k| ≫ λΦ =
~

mc
⇒ ~|k| ≪ mc

Matches exactly non-relativistic limit for de Broglie momentum ~|k|,
if transition to quantum field theory converts c into speed of light.

Then QM is not that wrong: ≈ non-relativistic point particles
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Example: H-atom, characteristic scale rBohr =
~
2

e2me
≃ 0.53 Å

QM for electron works quite well, because

λe =
~

mec
= α rBohr with α =

e2

~c
=

1

137.036 . . .

λe does not know about the electric charge. α relates it to the H-atom,
at a larger scale, since the coupling is rather weak.
Still, high energy reveals corrections, in particular the Lamb shift.

Conclusion: Quantized field excitations (“wavicles”, i.e. particles in a
fundamental and covariant sense) are not point-like.
They decay exponentially over the range of the Compton wave length ~/mc;
in the massless case (photons), they are non-local.

19



Thanks a lot to the LOC for the successful organization !

We acknowledge support by:

Facultad de Ciencias F́ısico Matemáticas, BUAP
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