The Nature and Extent of Particles
W.B. (ICN/UNAM) and U.-J. Wiese (Univ. of Bern)

Motivation: Classical (quantum) mechanics: point particles with exact
(uncertain) position. How about quantum field theory?
We deal with its covariant formalism, but how does it describe particles?

Classical Hamilton mechanics: point particles with x(t), p(t)
Canonical QM: Hermitian operators Z, p, |[Z,p] =ih, AxAp > h/2

Position smeared out to wave function V(¢,x) = (x|1(t)), point particle
with uncertain position — interference effects

Field theory: degrees of freedom: immobile fields, no particle
coordinates, e.g. classical electrodynamics E(t, ), B(t,Z), or continuum
mechanics with density p(t,Z). A wave covers some region, not point-like.



Canonical quantum field theory:

Operator-valued fields, excitations ~ “particles”, e.g. photons in QED, or
phonons in field theory of a vibrating crystal, fields fluctuate in quanta.

Terminology (in this talk)

e “Particle”: QM, position usually uncertain, but point-like

e “Wauvicle”: Quantized field excitation, relativistic and more
fundamental. Features and localization are subtle, to be discussed
in a toy model.

Term suggested by Wilczek, distinction unusual, but useful for this talk.



Toy model: 1d chain of coupled ions

lons described by particles in (non-relativistic) QM

“Crystal”: coupled harmonic oscillators, equilibrium distance ¢
@ ions
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Strictly speaking: model should be in space-time dimension > 2 and
L — o0, otherwise no crystalline order: requires spontaneous breaking of
translation sym. [Mermin-Wagner Theorem], but 1d notation is instructive.

e 7(N) shift symmetry: 4, = yp11 (n < N), and gy — 41
Fourier series:
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(actually k,,, but this messes up the notation).

Periodicity over Brillouin zone B due to e > 0, and discrete if L > .
ForNeven:m:—%Jrl, +1 — 1, N



e Sym. under continuous translation of all ions.
Noether: conservation of total momentum P =) p,

Hamilton operator in Fourier space
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The k = 0-mode represents an overall motion, with P and mass M N.

k # 0 (discrete, in B) oscillations with w(k)
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Phonons: quantized vibrations

Phonon annihilation and creation operator, analogous to harm. oscillator

a(k) = \/T( k)g(k (k>]§(k>)
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a(k) =/ Mw(k) (for k # 0)

Familiar commutation relations
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imply in Fourier space
[9(k), p(k")T] = ihNSw . [9(K), §(K")] = 0 = [p(k), p(k")]
and therefore
a(k),a(k")'] = ihNogy . [a(k),a(k')] = 0 = [a(k)", a(K"))"]

Computation of a(k)'a(k) leads to another familiar expression:
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U(k): phonon number operator of the Bloch wave number k



Quantum states of a vibrating crystal

Energy eigenstates are given by: e total momentum P
e phonon occupation number v(k) to each Bloch wave number

Ground state |0) : P =0, v(k) =0, Vk

Pl0) =0, a(k)|0)=0, — (0|H|0) = Zw

Thermodyn. limit N = oo : >°, — [5dk, energy denS|ty

E, h [™/¢ ke
N1 dk 2 | in =<
e wo| Sin

2hwg

\
N~~~
e e—0

®.0

Cosmological Constant (truncate Z = Mpianck, requires TINY wq ...).



Consider only energy differences, but maintain N — oo

2 . "
2]\]le = (0 at any finite P, degenerate ground states

SSB of translation invariance, phonon as Nambu-Goldstone boson (in d > 2)

e 1-phonon state: |k) = a(k)T|0)

k
E(k) — Ey = hw(k) = 2th| sing

> small |k| : E(k) ~ h|k| wge
linear in hk, i.e. “relativistic” with respect to ¢ = wpe : speed of sound

> |k| — T : group velocity c(k) = |8_E

a(hk)

:woecos% — 0

e 2-phonon state : |k1,]{'2> = d(kl)T&(kg)”(» = ‘]{'2, k1>
Bosons, v(k) unlimited



Wavicle localization

How extended are wavicle, in this case 1-phonon states?

QM position eigenstate

n) = 2; dk |k)e™ " = al|0)  with dL:Zw dk a(k)tetkne
= |an, AL] = O+ |ams @] = 0 = [al, 4] )

QM picture: a! creates a phonon, solely at position n.
Works for decoupled oscillators (no geometry!), but fails in field theory:
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Convolution in coordinate space:
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Power-law decays —— non-local! Creation of one phonon at position n
requires exciting the entire crystal, in a coordinated manner.
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decay of a massless wavicle
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Wavicle decay, in units of ag = /Mwg/h. The convolution terms f, and
g, describe excitations of ions, at distance ne, regarding displacement and
momentum. Both are non-local; ¢g,, decays very slowly.
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Massive wavicles

So far: phonon mass =0 (# ion mass M), NGBs in d > 2

Add mass by explicit translation sym. breaking:
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At small |k|: “relativistic”

mc2

A 11/2
Ephonon(k) = hw(k) = |(hke)? + (heoh)?
hew| hew| .
Phonon mass m = —3> = 5% (with ¢ = woe)
(.AJO(—:

Now f,,, g, decay exponentially:
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Compton wave length, localization scale of a massive phonon, local
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decay of f,/ag decay of g, a,
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Decay of f,, and g, (in units of «g), related to ion displacement and
momentum, for wavicle mass m = hw/,/c?, with w) = 0, 0.5wg, wo, 2wp.
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Transition to field theory, continuum limit

Debye: field theory of vibrating solid ~ lattice regularized quantum field
theory

Scalar field and its conjugate:

O(z =ne) = 1/ Mw2e jn

(z =ne) = Pn =

Constants arrange for right dimensions, and

ih e—0

(@ (z), TI(2))] = :(5nn/ ~= ihd(z — ')
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Continuum limit: renormalize wg such that ¢ = wge is kept finite,
can be turned into the speed of light — covariant field theory

/
_ w . .. .
Then )\q,l — % — 70 is finite as well, no need to renormalize wy

17



Reduction of a wavicle to a QM particle

In many setting, QM works to a good approximation;
then wavicle reduction should be possible.

Recipe:
Construct Hqy with spectrum of wavicle energies E(k) = fuw (k).

Valid at low |k|, such that

2 h
T s dhe=— = h|k| < mc
k| mc

Matches exactly non-relativistic limit for de Broglie momentum Ak
if transition to quantum field theory converts c into speed of light.

Then QM is not that wrong: = non-relativistic point particles
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.. 2
Example: H-atom, characteristic scale rgonr = "~ (0.53A

e2me
QM for electron works quite well, because
h e? 1
)\ = — = r th = —=
© T nec | Behr W G T 137.036. .

Ae does not know about the electric charge. « relates it to the H-atom,
at a larger scale, since the coupling is rather weak.
Still, high energy reveals corrections, in particular the Lamb shift.

Conclusion: Quantized field excitations (“wavicles”, i.e. particles in a
fundamental and covariant sense) are not point-like.

They decay exponentially over the range of the Compton wave length //myc;
in the massless case (photons), they are non-local.
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