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Quenchig Factor
* The amount of electronic excitation produced by
a recoiling atom is smaller than that produced by
a recolling electron of the same energy.

*The Q.F Is the fraction of energy that Is
transformed into Ionization energy in a crystal.
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dR/dE, [ v, /(day kg keV) ]

* |In the direct dark matter searches experiments or in the
measurements of the coherent elastic neutrino-nucleus
scattering, the signal usually consists in the detection of
the low energy (~ 1k eV) of the recoiling target atoms.

« As the experiments have reduced their detection
thresholds well below 1 ~ keV, the understanding of the
guenching at low energies has become increasingly
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@ canbenorv Lindhard MOdel

projectile atom after collision projectile atom before collision
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Energy due to
recoil process

Energy is divided in nuclear and
electronic average losses (v, atomic
movement, ) ionization losse).

E = iu(E) + ij(E).

* The physical effect (phi) of the incident particle
equals the sum of the physical effect of the
scattered particle and that of the struck atom

* When writing the above equation Lindhard took
into account the energy conservation in the
scattering of two ions. To deal with the equation
he made four basic approximations: i) electrons
do not contribute to the atomic movement
process, ii) the atomic-binding energy U can be
neglected, iii) the electronic stripping process is
expanded up to first order, iv) nuclear and
electronic effects are separable.

05/26/19 Quenching ¥actor 5



reduced energy

& dt
k(;‘l/zl-/({:‘) = -L 2t3/2f(t1/2) nuclear energy loss

g {5(8 B z‘) G E(é) } ¢ : dimensionless

electronic
SHEFSY reduced energy.
loss
target projectile projectile
atom after ' atom before |  atom after
collision collision collision

Lindhard after these approximations can deduce this equation .
Where t=¢?sin?(6/2), f(t) is related to the nuclear cross section scattering.

Lindhard equation has a problem: the boundary condition at E- O, is
V(E) - E, so v’ > 1 in this limit. But the Integral equation predict v’ - 0.

So the Integral equation can only be solve for energies far from zero.
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Threfore, the equation can be solved making to the Integral equation
more raw approximations.

He found a “reasonable” parametrization from this equation for energies
below € < 1.

This allowed Lindhard to solve numerically his equation for energies € >1.

So this approach doesn’t allow us to give a good prediction in low energy
regions.
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Extension of Lindhard model

 We introduce the atomic-binding energy, considering the
changing the term

v(t/e) — v(t/e —u)

« Expand the 1st term In the integral equation @(e-t/e-2T,)
to 2nd order in 2T, (Probability of electronic stripping
process term).

* The lower limit of integration (over dt) can no longer be
zero. The min t is now eu. (predicted also by model of
scattering of two semi-hard spheres).

* |n this model we area going to considere u constant.
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* So with this modification we can deduce a new Integral
modified equation with atomic-binding energy.

1 3/2-1 1/2~1 . 2 dtf(t1/2)
— ke (e) + ke u(g)_/w o

(e —t/e) +v(t/e —u) —v(e))]

* This equation can be solve numericaly from g2u. So the
equation predict a threshold energy of u.
* The equation requires the following behavior of the solution.

B E+u E << U ?7} 14
Vu(g): fﬂ: — :1_ .
e+u —ge) e>u E+u E+u

* The equation admits a solution featuring a "kink" at e=u
(discontinuous 1st derivative).

* We solve the equation by the shooting method pursuing the
boundary condition at high energies that v’ - 0 and for e=u
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Alternative good parametrization

- 1 —
107" =
10_2 E_ /
- —— v Corrected
10°—
- —— v Lindhard only
L — V=E+U
10*4 | \\\\II| | I\\\II| | I\\\I\| | [
1072 10~ 1 10 E 10°
keV
05/26/19 Extenion of Lindhard model

* We can implement a good
analitical aproximation to

solve the Integral equation.

* The idea is to lessen the
lonization contribution,
substracting a fraccion of
the electronic stopping
power.

e N-n-C'-Ce?
Where C, C’and u are

estimated from a fit to the
available data.
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Results for Si, Ge and Xe.

* We assumed as a first simple model a constant
atomic-binding energy (average).

 And also we assume that the k factor, of the
electronic stopping power Is constant too.
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Error

Error of the parametrization
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Conclusions

* We have implemented an extension to Lindhard model which
predicts a cut off at the binding energy.

* We study this new equation and deduce a numeric algorithm that
solve the problem with no need of simplifications.

* Also the model now only required the specifications of k and u to
have a QF.

* We think that this QF model can have an important impact in the
new upcoming results from dark matter and neutrino experiments.

* Other approach (Sorensen) tried to solve this, but in an incomplete
way, that doesn’t describe the data available.

* We are going to publish this work very soon.
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