
Extension of the Lindhard model, to 
calculate the "quenching factor" at 

low energies
M. en C. Youssef Sarkis Mobarak

ICN-UNAM
 

XXXIII Reunión anual de la División de Partículas 
y Campos.

 
26-28 Mayo 2019, (BUAP) Puebla 



05/26/19 Quenching factor 2

Contents 

● Importance of Quenching Factor for Dark 
Matter and Neutrino experiments.

● Summary of Lindhard model and limitations.
● Improvements to the Lindhard model.
● Results for Si, Ge and Xe. 
● Conclusions. 



05/26/19 Quenching factor 3

Quenchig Factor
● The amount of electronic excitation produced by 
a recoiling atom is smaller than that produced by 
a recoiling electron of the same energy.

● The Q.F is the fraction of energy that is 
transformed into ionization energy in a crystal.

The Q.F shift the spectrum
to lower energies.

f n=
η
ε
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● In the direct dark matter searches experiments or in the 
measurements of the coherent elastic neutrino-nucleus 
scattering, the signal usually consists in the detection of 
the low energy (~ 1k eV) of the recoiling target atoms. 

● As the experiments have reduced their detection 
thresholds well below 1 ~ keV, the understanding of the 
quenching at low energies has become increasingly 
important.
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Lindhard Model

● The physical effect (phi) of the incident particle 
equals the sum of the physical effect of the 
scattered particle and that of the struck atom

● When writing the above equation Lindhard took 
into account the energy conservation in the 
scattering of two ions. To deal with the equation 
he made four basic approximations: i) electrons 
do not contribute to the  atomic movement 
process, ii) the atomic-binding energy U can be 
neglected, iii) the electronic stripping process is 
expanded up to first order, iv)  nuclear and 
electronic effects are separable.

●

Energy due to  electronic 
stripping process 

Energy due to 
recoil process

Energy is divided in nuclear and 
electronic average losses (ν, atomic 
movement, η ionization losse). 

Tarjet  atom after collision projectile atom before collisionprojectile atom after collision

φ can be η or ν
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● Lindhard after these approximations can deduce this equation .

● Where t=ε2sin2(θ/2), f(t) is related to the nuclear cross section scattering.

● Lindhard equation has a problem: the boundary condition at E→0, is 
ν(E)→E, so ν’→1 in this limit. But the Integral equation predict ν’→0.
 

● So the Integral equation can only be solve for energies far from zero. 

  ε : dimensionless
   reduced energy. 
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The parametrization doesn’t solve 
the Equation at low energies.

● Threfore, the equation can be solved making to the Integral equation  
more raw approximations. 

● He found a “reasonable” parametrization from this equation for energies 
below ε < 1.

● This allowed Lindhard to solve numerically his equation for energies ε >1.

● So this approach doesn’t allow us to give a good prediction in low energy 
regions.

DASK 
computer
45 kW
3.5 Tons

Standar high 
energy 
parametrization
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Extension of Lindhard model
● We introduce the atomic-binding energy, considering the  

changing the term

● Expand the 1st term  in the integral equation  φ(ε-t/ε-ΣTei
)  

to 2nd order in ΣTei, (Probability of  electronic stripping 
process term).  

● The lower limit of integration (over dt) can no longer be 
zero. The min t is now εu. (predicted also by  model of 
scattering of two semi-hard spheres).

● In this model we area going to considere u constant.
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● So with this modification we can deduce a new Integral 
modified equation with atomic-binding energy.

● This equation can be solve numericaly from ε≥u.  So the 
equation predict a threshold energy of u.

● The equation requires the following behavior of the solution.

 
● The equation admits a solution featuring a "kink" at ε=u

(discontinuous 1st derivative).
● We solve the equation by the shooting method pursuing the 

boundary condition at high energies that ν’’→0 and for ε=u  



05/26/19 Extenion of Lindhard model 10

Alternative good parametrization
● We can implement a good 

analitical aproximation to 
solve the Integral equation. 

● The idea is to lessen  the 
ionization contribution, 
substracting a fraccion of 
the electronic stopping 
power.

● η→η - C’ - Cε1/2
 .

Where C, C’ and u are 
estimated from a fit to the 
available data.



05/26/19 Results 11

Results for Si, Ge and Xe. 

● We assumed as a first simple model a constant 
atomic-binding energy (average). 

● And also we assume that the k factor, of the 
electronic stopping power is constant too. 
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Si

U=230eV

U=350eV

Error of the parametrization 
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Ge

U=20eV (Frenkel  Energy)

Error of the parametrization 

U=20eV (Frenkel  Energy)
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Xe

U= 500 eV

Error of the parametrization 
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Conclusions

● We have implemented an extension to Lindhard model which 
predicts a cut off at the binding energy.

● We study this new equation and deduce a numeric algorithm that 
solve the problem with no need of simplifications.

● Also the model now only required the specifications of k and u to 
have a QF.  

● We think that this QF model can have an important impact in the 
new upcoming results from dark matter and neutrino experiments.

● Other approach (Sorensen) tried to solve this, but in an incomplete 
way, that doesn’t describe the data available. 

● We are going to publish this work very soon. 
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