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Resumen

El diagrama de fase QCD es de interés desde varios puntos de vista. En cosmología, las transiciones
de fase tuvieron lugar en el universo temprano. Las fases de alta temperatura de QCD también
pueden realizarse en colisiones de iones pesados de energía su�cientemente alta, es decir, en una
pequeña región la fase a alta temperatura se obtiene y luego se enfría por medio de una transición
de fase. Desde estas perspectivas, es importante comprender los fenómenos de las transiciones de
fase apoyándose en las simetrías fundamentales y argumentos de universalidad y lo menos posible
en suposiciones y modelos especí�cos.

En el límite quiral de 2 sabores de QCD, el parámetro de orden para la transición de fase quiral
tiene la misma simetría que la magnetización de un imán de Heisenberg de cuatro componentes, una
simetría O(4), la cual lleva a cabo una transición de fase de segundo orden. Por lo tanto, esperamos
que la simulación numérica del modelo σ no lineal en 3d con simetría global O(4) proporcione una
visión cualitativa del diagrama de fase QCD.
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Abstract

The QCD phase diagram is of interest from several points of view. In cosmology, phase transitions
took place in the early universe. High-temperature phases of QCD may also be realized in heavy ion
collisions of su�ciently high energy, i.e., a small region of the high temperature phase is attained
which then cools through a phase transition. From these perspectives, it is important to understand
the phenomena of phase transitions, relying on fundamental symmetries and universality arguments
and as little as possible on speci�c assumptions and models.

In the chiral limit of 2-�avor QCD the order parameter for the chiral phase transition has the
same symmetry as the magnetization of a four component Heisenberg magnet, an O(4) symmetry,
which performs a second order phase transition. So we hope that the numerical simulation of the
3d non-linear σ-model with a global O(4) symmetry will provide qualitative insight into the QCD
phase diagram.
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Chapter 1

Introduction

1.1 Motivation

We know that water evaporates, then it can condense and rain over us in a cloudy day, but we
know too that a solid piece of gold can be transformed in a beautiful necklace using heat and a
good goldsmith. Phase transitions are an important part of our lives and even for the economy of
countries, many materials have been studied to know their properties and their changes due several
external factors as pressure or heat, and one of these materials that continue eluding a complete
study of its properties and phase transitions is the elementary matter made by quarks.

Figure 1.1: Hypothetical phase diagram.

The QCD phase diagram is one of the most prominent outstanding mysteries within the Stan-
dard Model of particle physics. A complete study of the QCD phase diagram using all the ma-
chinery is beyond the scope of this work. However, in our daily world we usually don't see heavy
quarks as top and bottom, we can see that the ordinary matter is made by two light �avours, and
that is the direction this work has taken.

This work will focus on the obtention of the phase diagram (as the one show in �gure (1.1)
using the non-linear σ 3d O(4) model, which can be employed as a low-energy e�ective theory for
the study of two massless QCD �avours. This e�ective model can be simulated on a lattice with a
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powerful cluster algorithm which will allow us to identify the features of the critical temperatures
from low to high baryon density. In this sense, this work will provide us with a conjecture about
the phase diagram of QCD with two massless quark �avours.

This thesis begins with review of two main concepts to understand the phase transitions: the
path integral formalism, the critical phenomena theory and their interconnection. With these tools
a study of the non-linear σ 3d O(4) model and its lattice regularisation is at hand for an e�ective
low-energy nuclear physics model. After that the numerical results obtained from this model will
be presented and a phase diagram will be given as a conclusion of this work.

1.2 Integral functional formalism

In the study of the elementary particles, quantum �eld theory is used, in special the formalism
known as path integral formalism or integral functional. This formalism will be very useful in the
study of the 3d O(4) model, so a review of its basic properties will be useful.

In quantum mechanics the state of a system is described by |ψ〉 in a Hilbert space. If |ψ(t)〉
represents a state of the system in a time t and |ψ(t′)〉 is a state of the system in a time t′ (t′ ≥ t)
then exist an operator Û(t′, t) that connects both states of the system by

|ψ(t′)〉 = Û |ψ(t)〉, (1.1)

where Û(t′, t) is the temporal evolution operator and satisfy the Schrödinger equation

i~
∂

∂t‘
Û = ĤÛ(t′, t), (1.2)

where Ĥ is the Hamiltonian of the system. If Ĥ does not depend on time then

Û(t′, t) = exp
(
− i

~
Ĥ(t′ − t)

)
. (1.3)

In the coordinate space the wave function is given by the scalar product ψ(x, t) = 〈x|ψ(t)〉, and
at time t′ it can be written as

ψ(x′, t′) =

∫
dx〈x′|Û(t′, t)|x〉ψ(x, t), (1.4)

where the matrix element

〈x′|Û(t′, t)|x〉 = 〈x′| exp(− i
~
Ĥ(t′ − t))|x〉 (1.5)

is the propagator of the wave function.
If it is considered a time t1 such as t′ ≥ t1 ≥ t it can be obtained �rst the evolution of the

system from t to t1 and the from t1 to t′

〈x′|Û(t′, t)|x〉 = 〈x′| exp(− i
~
Ĥ(t′ − t1)) exp(− i

~
Ĥ(t1 − t))|x〉, (1.6)

or

〈x′|Û(t′, t)|x〉 =

∫
dx1〈x′|Û(t′, t1)|x1〉〈x1|Û(t1, t)|x〉. (1.7)

This last proceed can be generalized dividing the time interval [t, t′] in N equal parts

t′ − t = Nε (1.8)
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then inserting position eigenkets |xi〉 in each intermediate time ti

〈x′|Û(t′, t)|x〉 =

∫
dx1

∫
dx2 · · ·

∫
dxN−1〈x′|Û(t′, tN−1)|xN−1〉 · · · × 〈x1|Û(t1, t)|x〉. (1.9)

If the Hamiltonian is

Ĥ =
p̂2

2m
+ V̂ (x̂), (1.10)

then

〈xi+1|Û(ti+1, ti)|xi〉 =
( m

2π~ε
)1/2

exp
[ iε
~
(m

2

(xi+1 − xi
ε

)2 − V (xi)
)]
, (1.11)

so the propagator is

〈x′|Û(t′, t)|x〉 =

∫
Dx exp(

i

~
S[x]), (1.12)

where

S[x] = lim
ε→0

ε
∑
i

[m
2

((xi+1 − xi
ε

)2 − V (xi)
)]

=

∫
dt
[m

2
ẋ− V (x)

]
, (1.13)

and ∫
Dx = lim

ε→0

( m

2πi~ε
)N/2 ∫

dx1 · · ·
∫
dxN−1 (1.14)

So equation (1.12) is about an integral over all the possible trajectories. Each integral
∫
dx

happens in a physical space, but the result is a sum over all the con�gurations.
This formalism is of a useful utility for the Quantum Field Theory (QFT) due it gives a bridge

with statistical mechanics. Consider the partition function

Z = Tr exp(−βĤ), (1.15)

where β = 1/T and T is the temperature (with kB = 1). If

β =
i(t′ − t)

~
, (1.16)

(Wick rotation) then operator exp(−βĤ) in equation (1.15) corresponds with the evolution tempo-
ral operator (1.11). So a �nite temperature can be identi�ed with an imaginary time, the eiclidian
time. Rotation of t in the complex plane by π/2 is called Wick rotation.

If an analog development of the eq. (1.12) is done but with the substitution ε by a in the
Euclidean space, dividing the Euclidean time in N equal parts with

β =
Na

~
(1.17)

then it can be obtained the Euclidean path integral

Z =

∫
Dx exp(

−1

~
SE [x]), (1.18)

where

SE [x] = lim
a→0

a
∑[m

2

(xi+1 − xi
a

)2
+ V (x)

]
=

∫ t′

r

dτ
(m

2
ẋ2 + V (x)

)
, (1.19)

where ∫
Dx = lim

a→0

( m

2π~a
)N/2 ∫

dx1· · ·
∫
dxN . (1.20)

Eq. (1.18) will be useful in the regularisation of the 3d O(4) model.
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1.3 Basics of the critical phenomena theory

Now that the connection between QFT and statistical mechanics has been revealed through the
partition function in Euclidean time as given by eq. (1.18), a basic review of the critical phenomena
theory will be welcomed.

A phase is a state of matter in which the macroscopic physical properties of the substance are
uniform on a macroscopic length scale, e.g. 1 mm. Familiar examples are ice, liquid water, and
water vapor. A phase is characterized by a thermodynamic function, typically the free energy which
depends of few macroscopical parameters such as the temperature, pressure or density. A phase
diagram is a graph with those parameters as the axes, on which the phase is speci�ed for each point.
A typical phase diagram has several speci�c features including phase boundaries and a critical
points. A phase boundary separates di�erent phases. A phase boundary sometimes disappears at
a critical point, where the two phases become indistinguishable and the substance shows anomalous
behavior. A phase can be characterized by various physical quantities. Especially important is the
order parameter, which measures how microscopic elements constituting the macroscopic phase are
ordered or in a similar state. the order parameter is associated with the breaking of a symmetry
of the system under consideration. The order parameter measures the degree of asymmetry in the
broken symmetry phase (which is the ordered phase), i.e. it is non-zero in the ordered phase and
vanishes in the disordered phase.

A phase transition is a phenomenon in which a drastic change between thermodynamic phases
occurs as the system parameters such as the temperature or density are varied. The characteriza-
tion of a phase transition as a drastic change of macroscopic properties is described theoretically
as the emergence of singularities (non-analyticities) in functions representing physical quantities,
such as the speci�c heat c or magnetic susceptibility χm.

Phase transitions are roughly divided into two types by the degree of singularity in physical
quantities. When the �rst-order derivative of the free energy F shows a discontinuity, the transition
is of �rst order. The transition is called continuous if the second or higher-order derivatives of the
free energy show a discontinuity or a divergence. It is common to name phase transitions by the
order of the derivative that �rst shows a discontinuity or divergence, e.g. it is called second order if
it is the second-order derivative of the free energy that �rst displays the discontinuity or divergence.

The connection between QFT and critical phenomena theory is now clearly visible through
the integral path formalism that gives the partition function Z in Euclidean time 1 . A series of
de�nitions follow to give an analytical method to the ideas of critical phenomena. For a quantity
Q the expectation is de�ned as

〈Q〉 =
1

Z

∑
i

Qi exp(−βHi). (1.21)

For example, the expectation value of the energy 〈H〉 is given by

〈H〉 =
1

Z

∑
i

Hi exp(−βHi) = −∂ logZ

∂β
. (1.22)

The speci�c heat is given by

c =
∂U

∂T
= kBβ

2 ∂
2 logZ

∂β2
(1.23)

Several quantities called susceptibilities will be used. In a general way, for two quantities X
and Y , the susceptibility of X to Y measures the strength of the response of X to changes in Y
and is usually de�ned as

χ =
∂〈X〉
∂Y

(1.24)

1In d dimensional Euclidean space the action is given by SE =
∫
ddxL where L is the Lagrangian.
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A deeper explanation can be found in ref. [1].

Figure 1.2: Typical plot from a �rst order transition. Observe the almost immediate fall around
Tcritical in the order parameter.

Figure 1.3: Typical plot from a second order transition. Observe the smooth fall in the order
parameter as the temperature raises.
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Chapter 2

3d O(4) model

2.1 Introduction

Particle physics is at heart of our understanding of the laws of nature. It is concerned with the
fundamental constituents of the universe, the elementary particles and their interaction between
them. In the atomic nucleus, the protons and neutrons are bound together by the strong nuclear
force, which is a manifestation of the fundamental theory of strong interactions, called Quantum
Chromodynamics (QCD).

Figure 2.1: Particles conforming the Standard Model.

QCD provides a successful description of the strong interaction. It is formulated in terms
of quarks and gluon �elds that bound themselves in complex structures called hadrons. One
distinguishes baryons (with valence three quarks inside) and mesons (pair quark-antiquark).

QCD has been tested since its development under several conditions, however, a question that
is still open is the phase diagram and what happens at high baryon density. A non-trivial question
if objects like neutron stars or the early universe are going to be studied in a comprehensive way.

One of the reasons why the phase diagram of QCD hasn't been settled yet by lattice simulations
is the sign problem: Eq. (1.18) will be used to de�ne a probability p[U ] that will be useful to
generate con�gurations through Markov chains. However, the inclusion of the baryonic density µB
will attach an imaginary part to the Euclidean action SQCD that will turn the probability p[U ]
in a complex number, so it will no longer de�ne a probability and a straightforward approach to
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simulate QCD as a statistical system fails.
Many attempts are being made to overcome this problem. One approach (and the one this

work will focus on) to obtain a rough idea of what phases might occur is to use models that has
some of the same properties as QCD, but are easier to manipulate. Now we proceed to �nd such
a suitable model.

In particle physics is usual to work with natural units, which means that the values of ~ and
c are �xed to 1 letting just one scale left ([mass] for example) to describe the dimension of all
quantities. With this in mind, if only massless quarks are used then the QCD Lagrangian does
not involve any dimensional parameter which implies scale invariance at the classical level. At the
quantum level, however, an intrinsic scale ΛQCD = 341(12) MeV emerges [2], which breaks this
invariance.

In the real world, two �avours are very light compared to the intrinsic scale (see �g. 2.1).
These two �avours dominate the low-energy nuclear physics which matters for our daily life. Then
a sensible approximation is to consider only two massless �avours.

For Nf �avors of massless quarks there exist a (global) symmetry under chiral transformations
in the group [6]

U(Nf )L ⊗ U(Nf )R = SU(2)L ⊗ SU(2)R ⊗ U(1)B × U(1)A. (2.1)

of independent special unitary rotations of the left- and right- handed �elds. Pat of this sym-
metry breaks explicitly due to quantum e�ects: in particular, the invariance under the group
U(1)A = U(1)L 6=R is broken by the axial anomaly [3]. Rotations with equal phases are captured
by the symmetry group U(1)B = U(1)L=R which corresponds to baryon number conservation. The
remaining chiral �avour symmetry breaks spontaneously,

SU(Nf )L ⊗ SU(Nf )R → SU(Nf )L=R, (2.2)

which gives rise toN2
f−1 Nambu-Goldstone bosons(NGB). The Goldstone bosons corresponding

to the three broken generators are the three pions for Nf = 2. As a consequence, the e�ective
theory of QCD bound states like the baryons, must now include mass terms for them, ostensibly
disallowed by unbroken chiral symmetry. Thus, this chiral symmetry breaking induces the bulk
of hadron masses, such as those for the nucleons � in e�ect, the bulk of the mass of all visible
matter.

Chiral perturbation theory formulates a low-energy e�ective theory in terms of NGB �elds1 [4]:
in this case its leading order Lagrangian reads (In Euclidean space)

L(∂µU) =
F 2
π

4
Tr
(
∂µU∂µU

†) . (2.3)

where F 2
π ' 92 MeV is the pion decay constant.

At �xed Euclidean time x4, the �eld U maps the 33d coordinate space to the group SU(Nf ).
The identity Π[SU(Nf )] = Z implies that these maps are divided into topological sectors, labeled
by a topological charge Q ∈ Z. In this case, it is given by the term

Q =
1

24π2

∫
d3xεijkTr ((U∂iU)(U∂jU)(U∂kU)) , i, j, k ∈ 1, 2, 3, (2.4)

which is conserved in time. Topological charge Q can be interpreted as the baryon number [11].
For a comprehensive review see Ref. [12].

Actually the leading order Lagrangian (2.3) does not allow for stable semi-classical solution
with Q = 1. In order to stabilize such a skyrmion, Skyrme added a four derivative term

LSkyrme(U, ∂µU) =
F 2
π

4
Tr
(
∂µU∂µU

†)+
1

32e2
Tr
[
(∂µU

†), (∂νU)U†
]2

(2.5)

where e is a dimensionless parameter and the skyrmion represents a fermionic (bosonic) baryon
[12].

1NGB �elds U(x) ∈ SU(Nf )
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2.2 The 3d O(4) as a low-energy e�ective theory

For a simpler e�ective theory, the symmetry breaking pattern (2.2) can be describe by (locally)
isomorphic orthogonal groups O(N) → O(n), N > n. This option is possible solely for Nf = 2
[13], where the transition (2.2) isomorphically corresponds to O(4)→ O(3).

Therefore the O(4) non-linear σ-model represents an e�ective theory for a low-energy QCD
with Nf = 2 massless quark �avours. Its Euclidean action

S[~S] =
F 2
π

2

∫
ddx∂µ~s(x) · ∂µ~s(x), ~s(x) ∈ S3 (2.6)

corresponds to the QCD low-energy Lagrangian for Nf = 2 massless quark �avours. The global
O(4) symmetry may break spontaneously down to O(3), which yields three NGBs, with �elds in
the coset space O(3), which is isomorphic to SU(2).

As it can be seen, two �avour QCD is believed to belong to the the 3d O(4) universality class
at its chiral transition in the continuum limit (ref. [5]-[10]), so this work will focus in this model
as a static Skyrme model. In this model, the con�gurations are divided into topological sectors,
thus the skyrmions are present in this low-energy formulation as carriers of the baryon number
[12]. Since these are topological properties, such a study must be non-perturbative.

2.3 Non-linear σ-models

The non-linear σ-models has some multi-component scalar �eld ~s(x), ~s = (s1, s2, . . . , sN ) ∈ R2,
but now it is imposed � in each point x � the constraint |~s(x)| = 1. This kind of �eld is also
denoted as a �classical spin�.

Since the number 1 is dimensionless, the �eld ~s cannot have any dimension either, i.e. its
dimension is [mass]0 . Therefore, the derivative term now requires a dimensioned factor. Indeed,
Quantum Chromodynamics (QCD) at low energy can be expressed as an e�ective �eld theory
(�Chiral Perturbation Theory�) in this form, namely

L(∂µ~s) =
1

2
F 2
π∂µ~s(x) · ∂µ~s(x) (2.7)

This term is a scalar product, and in Chiral Perturbation Theory for two massless quark �avours
u and d, the �eld ~s N = 4 real-valued components. To get the dimension right, the factor Fπ must
have the dimension [mass](d−2)/2 . In 4d QCD, it has a phenomenological meaning: it is known
as the pion decay constant, which amounts to Fπ ≈ 92 MeV.

This is actually just the �rst term of the chiral expansion, but it already describes pion physics
quite well. Even with this simple Lagrangian, its dynamics is complicated, exactly due to the
constraint |~s| = 1 (otherwise it would be a trivial free theory).

If ~s has N components, then it lives on the unit sphere SN in the N -dimensional spin space.
The action is invariant when all spins are simultaneously rotated, i.e. when it is applied a global
transformation ~s(x)→ Ω~s(x), with an element of the orthogonal group, Ω ∈ O(N) (and therefore
ΩT = Ω−1). Hence this type of model is also known as an O(N) model.

Geometry tells that the �eld con�gurations fall into distinct topological sectors � which can
be labeled by a topological charge (or winding number) Q ∈ Z � if the spin dimension exceeds the
space-time dimension by 1, i.e. if N = d + 1. For this property to hold, it is assumed either ~s(x)
to be constant at |x| → ∞, or the system has a �nite volume with periodic boundary conditions
in all d directions.

The simplest example is the 1d O(2) model: here ~s(tE) is a point on the unit circle S1, which
moves as a function of the Euclidean time tE . If this motion is continuous and periodic, then after
a complete period, the point is back at its original position, and it has moved an integer number of
times anti-clockwise around the circle (clockwise windings are counted negative). This net winding
number is the topological charge Q ∈ Z.

13



CHAPTER 2. 3D O(4) MODEL

2.4. DIMENSIONAL REDUCTION

2.4 Dimensional reduction

Consider the system in a �nite volume. It is convenient to assume periodic boundary conditions,
since this provides translation invariance.

Assume the 4d volume to be of the form β × L3, where β is the extent in Euclidean time
direction, and L is the side length of a spatial cube. Therefore the action reads

SE [~S] =
1

2
F 2
π

∫ β

0

dte

∫
L3

d3x∂µ~s · ∂µ~s, (2.8)

where tE is again the Euclidean time (here the square bracket indicates a functional of the �eld
con�guration).

In �eld theory, the inverse extent of the (periodic) Euclidean time corresponds to the temper-
ature T of the system, β = 1/T . Consider the case of high T , where β is short. Assume it to be
so short that in β-direction � for the statistically relevant �eld con�gurations � only the leading
mode contributes signi�cantly. All higher modes have a very high energy, so in this e�ective picture
those modes decouple. Therefore the Lagrangian is (almost) constant in tE , and the action can be
approximated as

SE [~S] =
1

2
F 2
πβ

∫
L3

d3x∂i~s · ∂i~s, (2.9)

where i = 1, 2, 3 (in contrast to µ = 1, . . . , 4). Here β looks like an inverse coupling constant, but
it also represents the inverse temperature (from the 4-dimensional perspective).

This simpli�cation is called dimensional reduction. Note that this simpli�cation takes this work
to a 3-dimensional O(4) model, which is endowed with topological charges. At this point, There
might be some con�ict with the assumption that the model is dealing with low energy, such that for
instance the heavier quark �avours are negligible, and no higher terms (with 4 or more derivatives)
are considered in the e�ective Lagrangian (2.7). Still, it is a reasonable assumptions to make sense.

2.5 Statistical mechanics and chemical potential

Now it is turn of Statistical Mechanics, which deals with an exponential of the form exp(−H/T ).
H is the Hamilton function, which is given by a spatial integral over the Hamilton density H. In
this case it can be identi�ed by

H[~S] =

∫
d3xH, H =

1

2
F 2
π∂i~s · ∂i~s. (2.10)

Clearly, H has dimension [mass], and it can also be added a chemical potential µB . It multiplies
the topological charge Q of a �eld con�guration, which � in this e�ective low energy theory �
represents the baryon number, as wise people like Skyrme and Witten pointed out,

H[~S] =
1

2
F 2
π∂i~s · ∂i~s− µBQ[~S] (2.11)

The topological charge is an integer, Q ∈ Z, and therefore dimensionless, while µB has dimen-
sion [mass]. It can be interpreted as the energy decrease if one baryon is added, or the energy
that it takes to add an anti-baryon to the system.

2.6 Lattice regularisation

Calculations in QFT require an UV regularisation which preserves the symmetries. The lattice
regularisation is a simple but powerful scheme: it reduces the Euclidean space to discrete sites x.
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2.7. ALGORITHM FOR THE MONTE CARLO SIMULATION

The most popular structure is a simple hyper-cubic lattice with spacing denoted as a. One often
uses lattice units by setting a = 1 [14].

For the lattice regularisation (where it is instructive not to use lattice units) the lattice spacing
a has dimension [mass]−1. Now the �eld ~sx is only de�ned on the lattice sites x, with x/a ∈ Z3.
The derivative term is discretized in standard manner,

∂i~s(x)→
~sx+aî − ~sx

a
, (2.12)

where î is the unit 3-vector in the spatial direction of the component xi. It is obtained

∂i~s(x) · ∂i~s(x)→ 2

a2

∑
i

(1− ~sx+aî · ~sx) (2.13)

The additive constant is meaningless so it can be dropped (unless one is interested in gravity,
where this would be a �cosmological constant�). Here only energy di�erences are taking in account,
so the lattice Hamiltonian can be written in the familiar form (with

∫
d3x→ a3

∑
x )

Hlat[~S] = −Fπa
∑
x

~sx+aî · ~sx − µBQ[~S] (2.14)

Denoting the inverse coupling that is used in the simulations as βlat, the lattice action amounts
to

Slat[~S] = βlatHlat[~S] = βlat
(
−
∑
x

~sx+aî · ~sx − µB,latQ[~S]
)
. (2.15)

Here the physical meaning of the dimensionless parameters are

βlat = βF 2
πa, µB,lat =

µB
F 2
πa
. (2.16)

2.7 Algorithm for the Monte Carlo simulation

Once a lattice �eld theory has been formulated, the original �eld theory problem becomes one
of statistical mechanics: localize its critical points, the order of their transitions and the phase
diagram. The goal of Monte Carlo method is to generate a sequence of con�gurations

[~S]→ [~S′]→ [~S′′]→ · · · . (2.17)

Each new con�guration is generated based on the previous one, without considering the earlier
history2.

To achieve this goal for the non-linear σ 3d O(4) model and for µB = 0 we consider the Hamilton
function:

H = −
∑
〈i,j〉

~Si · ~Sj , (2.18)

where 〈ij〉 means the nearest-neighbor sites on a three dimensional cubic lattice and ~Si ∈ S3.
The Wol� single cluster algorithm is used due that for O(N) models and this algorithm has

proofed to be extremely e�cient [17]:

1. Hot start: generate on each lattice site x independently a random spin ~Sx ∈ S3.

2This is called a Markov chain.
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2. Choose randomly a spin ~S1 in the lattice. Call it �seed� and attach it to the cluster.

3. Generate a random 4-component unit vector ~r and de�ne the re�ection with respect to the
3d hyperplane orthogonal to ~r as:

R(~r) ~Sx = ~Sx − 2( ~Sx · ~r)~r. (2.19)

4. Consider the nearest neighbors of the seed, ~s2 for example:

• If ∆H = H[~S1, R( ~S2)]−H[~S1, ~S2] < 0 then do not attach ~s2 to the cluster.

• If ∆H = H[~S1, R( ~S2)] − H[~S1, ~S2] > 0 then attach ~s2 to the cluster with probability
P = 1− exp(−β∆H).

5. Repeat the same steps with all the neighbors of the seed and with the neighbors of the spins
added to the cluster, until the cluster does not grow anymore.

6. Apply the re�ection de�ned in step 3 to all spins in the cluster.

To a comprehensive study of the Wol� cluster algorithm see references [1] and [17].
If it is considered the model with µB > 0 then eq. (2.18) is replaced by

H = −
∑
〈ij〉

~Si · ~Sj − µBQ[~S], (2.20)

where µB is the baryonic chemical density and Q[~S] is the topological charge of the con�guration
~S. To include the e�ect of µB > 0 to the Monte Carlo it is suggested to proceed as follow:

1. Build the single cluster using the Wol� algorithm without considering the new term.

2. Compute the charge Q for the present con�guration, Q[~S], and for the con�guration which

would emerge when this �ip is performed, Q[~S′].

3. Perform a Metropolis accept/reject step to decide if �ip the cluster or not assuming µB > 0.

Where the Metropolis step is:

• If the �ip decreases Q, �ip the cluster.

• If the �ip increases Q, �ip the cluster with probability p = exp(−βµB(Q[~S′]−Q[~S]))

In practice, one �rst performs the thermalization, and one �xes empirically a number Nsteps
of sweeps between the measurements. This number must be su�cient to make the measurements
statistically independent, which can be checked by the auto-correlation or (simpler) by numerical
experiments with di�erent Nsteps : if increasing it doesn't change the results (within errors), then
it is large enough (the same applies to the number of thermalization sweeps).

After thermalization, thermodynamic quantities like eqs. (1.21)-(1.24) can be measured and
important conclusions can be retrieved [15].
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Chapter 3

Numerical results for the 3d O(4)
model

3.1 Topological charge

The geometric de�nition of the topological charge has been successfully applied in the 2d O(3)
model [18]. In order to extend the geometric de�nition of Q for the 3d O(4) model, all the lattice
unit cubes are decomposed in six tetrahedra (see �gure 3.1). For a given tetrahedron, the spin

variables ~S1, ~S2, ~S3 and ~S4 span a spherical tetrahedron on the 3-dimensional sphere S3.
For a given lattice con�guration in some volume V with periodic boundaries conditions, lat-

tice unit cubes are split into tetrahedra, and all volumes of the corresponding oriented spherical
tetrahedra are summed up to obtain the topological charge Q ∈ Z. It counts how many times the
sum of the spherical tetrahedra covers the sphere S3 and represent the baryon number in this low
energy e�ective model [12].

Steps for the calculation of the topological charge:

1. Lattice is divided in cubic units. Each cubic unit has a six tetrahedron ordered structure:
[F,H,A,E],[G,B,F,H],[H,A,B,F],[H,G,B,D],[A,B,D,H],[G,B,D,C].

2. From the four spins in the edge of each tetrahedron, the signed volume of the spherical
tetrahedron in R4 formed for these four spins is calculated.

3. All the signed volumes of all the spherical tetrahedron from all the lattice units are summed
and divided by 2× π2, the volume of S3. The result is the topological charge Q.

The calculation of the volume of the spherical tetrahedra can be computed according to the
formulae elaborated only recently in Ref. [19]. For the calculation of the volume of a spherical
tetrahedron spanned by the four spins it was used theorem 1.2 from ref. [19].

Theorem 1. Let T be a spherical tetrahedron with edge lengths l1, l2, ..., l6 at the edges e1, e2, ..., e6
respectively given in �gure 3.1 . Let bj = eilj for j = 1, 2, ..., 6 and

L̃(b1, b2, b3, b4, b5, b6, z) = L(−b−14 ,−b−15 ,−b−16 ,−b−11 ,−b−12 ,−b−13 , z). Then the following for-
mula holds.

For a spherical tetrahedron T as above,

V ol(T ) = Re(L̃(b1, b2, ..., z̃0))− arg(−q̃2)π−
6∑
j=1

lj
∂Re(L̃(b1, b2, ..., b6, z))

∂lj

∣∣∣
z=z̃0

− 1

2
π2 mod 2π2,

(3.1)
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where z̃0 and q̃2 are obtained from z0 and q2 given in ref. [19] by substituting −b−1j±3 to aj for
j = 1, 2, ..., 6.

The notation in theorem (1) was changed to a better understanding of the one. Edge length

is the linear distance between two spins ~Si and ~Sj . Spherical edge length is the arc of a circle

of radius 1 with ~Si and ~Sj as vertices.
An strange point that was found in the calculation of the spherical tetrahedron volume is that

the order of the edge lengths ei's matters in Murakami's formula, so the next agreement was
reached: In the calculation of the volume of the spherical tetrahedron formed by four spins ~S1, ~S2,
~S3 and ~S4, the spin ~S1 is the top corner of the spherical tetrahedron, ~S2 will be the left corner, ~S3

is the one at the bottom and ~S4 will be the corner at the right, so then the edge length e1 connects
( ~S1, ~S2, e2 connects ( ~S1, ~S3), e3 connects ( ~S1, ~S4), e4 connects ( ~S3, ~S4), e5 connects ( ~S2, ~S4) and

e6 connects ( ~S2, ~S3). The vectors were �xed that way because it seemed to match the order given
in ref. [19] (see �gure 3.1).

For the determination of the volume the next quantities are used:

q0 = a1a4 + a2a5 + a3a6 + a1a2a6 + a1a3a5 + a2a3a4 + a4a5a6 + a1a2a3a4a5a6

(3.2)

q1 = − (a1 − a−11 )(a4 − a−14 )− (a2 − a−12 )(a5 − a−15 )− (a3 − a−13 )(a6 − a−16 )
(3.3)

q2 = a−11 a−14 + a−12 a−15 + a−13 a−16 + a−11 a−12 a−16 ) + a−11 a−13 a−15

+ a−12 a−13 a−14 + a−14 a−15 a−16 + a−11 a−12 a−13 a−14 a−15 a−16

(3.4)

z0 =
−q1 +

√
q21 − 4q0q2

2q2
(3.5)

L(a1, a2, ..., a6, z) =
1

2
(Li2(z) + Li2(a−11 a−12 a−14 a−15 z) + Li2(a−11 a−13 a−14 a−16 z)

+ Li2(a−12 a−13 a−15 a−16 z)− Li2(−a−11 a−12 a−13 z)− Li2(−a−11 a−15 a−16 z)

− Li2(−a−12 a−14 a−16 z)− Li2(−a−13 a−14 a−15 z)

+ log a1 log a4 + log a2 log a5 + log a3 log a6)

(3.6)

For the treatment of the dilogarithm functions it may be expand the logarithm in powers of z,
obtaining the Taylor series expansion for the dilogarithm, valid for |z| ≤ 1,

Li2(x) = −
∫ x

0

log (1− t)
t

dt ⇒ Li2 =

∞∑
k=1

zk

k2
. (3.7)

A complete study of dilogarithm function can be found at ref. [20].

The signed volume of the spherical tetrahedron formed by ~S1, ~S2, ~S3 and ~S4 is given by

V (~S1, ~S2, ~S3, ~S4) = sign(det(~S1, ~S2, ~S3, ~S4))× V ol(~S1, ~S2, ~S3, ~S4) (3.8)

3.2 Set-up

The next results for the 3d O(4) model were obtained with the single cluster Wol� algorithm (for
the formation of clusters) and Metropolis algorithm (for the acceptance of the clusters) with several
baryonic chemical potentials (µB ≥ 0).
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Figure 3.1: Sketch for the calculation of the topological charge for the 3d O(4) model.

In all the cases, the lattice structure and volume is cubic, V = L3, with periodic conditions in
all directions.

We denote the spin �eld as ~Sx, with |~Sx| = 1 and ~Sx = (s1, s2, s3, s4) and we use the lattice
action and Hamiltonian function

S[~S] = βH[~S], H[~S] = −
∑
〈xy〉

~Sx · ~Sy − µBQ[~S], (3.9)

where 〈xy〉 are nearest-neighbor lattice sites, β is interpreted as the inverse of the temperature,

µB is the baryonic chemical density and Q[~S] is the topological charge of the con�guration ~S.

For the thermodynamic quantities the following de�nitions are referred:

Topological susceptibility χt =
〈Q2〉 − 〈Q〉2

V
,

Speci�c heat c =
β2

V
(〈H2〉 − 〈H〉2)

Magnetization ~M =
∑
x

~Sx

Magnetic susceptibility χm =
β

V
(〈M2〉 − 〈|M |〉2).
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In addition to those quantities, the correlation function C(r) is also measured, given by

C(r) = 〈~Sx3 · ~Sx3+r〉 ∝ cosh
(r − L/2

ξ

)
,

where ξ is the correlation length and ~Sx3 = 1
L2

∑
x1,x2

~Sx.
The second moment correlation length is

ξ2 =
( (χm/F)− 1

4 sin2(π/L)

)1/2
,

where

F =
1

V

∑
x,y

〈~Sx · ~Sy〉 cos
(2π(x1 − y1)

L

)
.

For the calculation of the topological charge a change in the algorithm is used to speed-up the
code: In place of calculating the volume of the spherical tetrahedron, a random spin ~r is used
and if this spin is inside the spherical tetrahedron formed by ~S1, ~S2, ~S3 and ~S4, then dQ = ±1
(depending of the orientation of ~S1, ~S2, ~S3 and ~S4) or dQ = 0 if ~r is not inside the spherical
tetrahedron. dQi's are calculated through all the lattice cubic units and summed up, so

Q =
∑
i

dQi. (3.10)

If all the components of ~T are positive in eq. (3.11) then ~r is inside the spherical tetrahedron

formed by ~S1, ~S2, ~S3 and ~S4.

~r = [~S1
~S2
~S3
~S4]~T . (3.11)

This algorithm is in agreement with the usual way to get the topological charge, but it is much
faster.

3.3 Numerical results for lattices with V = 83

For the single-cluster algorithm, a sweep is de�ned as follows: After thermalisation, n1 measure-
ments of cluster sizes separated by 10 × V single-cluster steps are made. A sweep is de�ned
as

sweep =
V

〈cluster〉
,

where 〈cluster〉 is the mean of n1 cluster sizes after the thermalization of the system separated by
10× V .

The de�nition of sweep is used to speed-up the gathering of data. Table 3.1 shows the statistics
involved.

Figure 3.2 shows the behavior of the cluster size under two di�erent β = 0.7, 1.5 and µB = 0.0.
A L = 8 lattice is used.

Figure 3.3 shows the behavior of the topological susceptibility.
The four graphs from �gure 3.4 shows the behavior of the speci�c heat c as function of βc as

the baryonic chemical density is raised using lattices of volume V = 83. From critical phenomena
theory it is known that c diverges at βc.

Figure 3.5 shows the behavior of the magnetic susceptibility. Magnetic susceptibility diverges
at βc.

Figure 3.6 shows the behavior of 〈|M |〉, it is the so called order parameter and, from critical
phenomena theory, it gives the order of the transition phase.
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Thermalisation n1 Ndata

1000× V 2000 15000

Tabla 3.1: Statistics of the simulations: The systems begins in a "hot start" and takes 1000 × V
steps to thermalise it, then n1 cluster size are measured separated by 10 × V steps and sweep is
calculated. After that, Ndata measurements are made separated by 10× sweep steps.

Figure 3.2: Behavior of the cluster sizes after thermalisation for β = 0.7, β = 1.5, µB = 0 and
using L = 8. The distributions shows larger clusters for β = 1.5 as expected.

Figure 3.3: Behavior of the topological susceptibility χt under several µB . At µB = 0, 〈Q〉 must
be zero due to parity invariance, and at large β, there are only few top. windings, which are
exponentially suppressed, as one expects for a dilute instanton gas. It can be seen too that 〈Q〉
decreases with larger µB , but increases with larger β, until at high T the e�ect of µB is washed
out be strong �uctuations.
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Figure 3.4: Behavior of the speci�c heat c under several µB . The nearly �at behavior around βc
for µB = 1.4 may be a hint that this point is near the critical end point βcritical: the point where
the second order phase transition meets with the �rst order phase transition.
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Figure 3.5: Behavior of the magnetic susceptibility. They diverges at βc but it can be seen a
displacement for βc when it is compared with the βc obtained from data of the speci�c heat c.
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Figure 3.6: Behavior of the order parameter 〈|M |〉. Due to �nite size e�ects, the �rst order
transition seems like if the second derivative of 〈|M |〉 were zero. The second order transition seems
like a continuous curve with a concavity downward.
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Conclusion

Using the results obtained from L = 8, the critical phenomena in each curve for several µB was
identi�ed and the interval of β was reduced in each case for a test with higher L that took less time
and a better resolution. From �gure 4.1 it can be deduced that the best data to get the critical
curve due to its convergence towards βc is the speci�c heat c.

For the values of µB = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0 the be-
havior of its thermodynamical quantities near their respective critical behavior were gathered using
L = 8, 12. To get the extrapolated value of βc for each µB for L =∞ each curve near the critical
phenomena of the speci�c heat c were approximated to a Gaussian �t to get the value of βc in
each case. Using the values of βc obtained from this method for a speci�c µB and di�erent L, a
extrapolation using a linear �t of βc Vs 1/L was used. The value of the intersection of this linear
�t with the y-axis is the extrapolated value βc with L =∞.

Using the method described before, a preliminary critical curve is obtained, as shown in �gure
4.2. The preliminary goal of this thesis has been achieved.
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Figure 4.1: Behavior of the magnetic susceptibility χm and the speci�c heat c as L is raisen with
µB = 0. For both quantities it can be seen that their peaks become higher and narrower as the
quantities approaches to βc. It is remarkable its (interpolated) maximum for c is close to βc even
with a moderate V . The same behavior can be seen for χm but its convergence towards βc is
slower.

Figure 4.2: Preliminary phase diagram of the σ non-linear 3d O(4) model. It shows the order of
the phase transition for each point. The critical end point was not obtained, but it can be seen
it is between µB = 1.4 and µB = 1.6 with a βcritial around 1. Observe the likeness with the
hypothetical phase diagram from �gure 1.1.
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