

Comentarios sobre las actividades en PWG-UD

Mario Rodríguez Cahuantzi Facultad de Ciencias Físico Matemáticas, BUAP V Congreso de la Red Mexicana Científica y Tecnológica para ALICE-LHC (Red ALICE)

28/09/2018

PLAN OF THE TALK

- Introduction
- Cosmics
- Diffraction
- UPC
- Upgrade (FIT and ACORDE)
- Final comments

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

Introduction **ALICE Physics Working Groups**

Physics Working Group	Public link (ALICE internal)	Conveners	
Flow and Correlations	PWG-CF (internal)	Anthony Timmins, Ilya Selyuzhenkov, You Zhou	
Dileptons and Quarkonia	PWG-DQ (internal)	Roberta Arnaldi, Torsten Dahms	
Photons, Neutral Mesons	PWG-GA (internal)	Ana Marin, Dmitry Peresunko	
Heavy Flavour	PWG-HF (internal)	Andrea Rossi, Alessandro Grelli	
Jets	PWG-JE (internal)	Leticia Cunqueiro Mendez, Tatsuya Chujo	
Light Flavour Spectra	PWG-LF (internal)	Alexander Kalweit, Stefania Bufalino	
Ultraperipheral and Diffraction	PWG-UD (internal)	Evgeny Kryshen, Guillermo Contreras Nuno	
Monte Carlo generators and Minimum Bias Physics	PWG-MM (internal)	Jochen Klein, Paolo Bartalini	

ALICE Physics Working Groups	uucuo	
Physics Working Group	Public link (ALICE internal)	Conveners
Flow and Correlations	PWG-CF (internal)	Anthony Timmins, Ilya Selyuzhenkov, You Zhou
Dileptons and Quarkonia	PWG-DQ (internal)	Roberta Arnaldi, Torsten Dahms
Photons, Neutral Mesons	PWG-GA (internal)	Ana Marin, Dmitry Peresunko
Heavy Flavour	PWG-HF (internal)	Andrea Rossi, Alessandro Grelli
Jets	PWG-JE (internal)	Leticia Cunqueiro Mendez, Tatsuya Chujo
Light Flavour Spectra	PWG-LF (internal)	Alexander Kalweit, Stefania Bufalino
Ultraperipheral and Diffraction	PWG-UD (internal)	Evgeny Kryshen, Guillermo Contreras Nun
Monte Carlo generators and Minimum Bias Physics	PWG-MM (internal)	Jochen Klein, Paolo Bartalini

- PWG-MM Monte Carlo generators and Minimum Bias physics
 - Rivet and Generators (Redmer Bertens, Jochen Klein)
 - Luminosity (Jesus Guillermo Contreras Nuno, Martino Gagliardi)
 - Multiplicity (Anton Alkin, Valentina Zaccolo)
 - Underlying Event (Paolo Bartalini, Peter Christiansen)

Lucina Gabriela Espinoza (PhD student, UAS) https://indico.nucleares.unam.mx/event/1426/contribution/7

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

ALICE-PUBLIC-2016-To be specified

ALICE luminosity determination for pp collisions at $\sqrt{s} = 5$ TeV

ALICE Collaboration*

Abstract

Luminosity determination in ALICE is based on visible cross sections measured in van der Meer scans. In November 2015, the Large Hadron Collider provided proton-proton collisions at a centreof-mass energy of $\sqrt{s} = 5$ TeV. A van der Meer scan was performed, where the cross section was measured for two classes of visible interactions, based on particle detection in the ALICE luminometers: the T0 detector with pseudorapidity coverage $4.6 < \eta < 4.9, -3.3 < \eta < -3.0$ and the V0 detector with pseudorapidity coverage $2.8 < \eta < 5.1, -3.7 < \eta < -1.7$. This document describes the experimental setup for such a measurement and reports its results. The analysis procedure used was described in a previous publication dedicated to the 13 TeV luminosity determination.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Analyses of van der Meer scans taken with pp collisions in 2015

A. Borissov¹, D. Caffarri², J. G. Contreras³, L. G. Espinoza⁴ M. Gagliardi⁵, A. Konevskikh⁶, I. Králik7, Ch. Mayer8 A. Morreale9, H. Pereira da Costa10, and J. Song1

1. Pusan National University, Pusan, South Korea 2. CERN 3. Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague, Czech Republic 4. Universidad Autonoma de Sinaloa, Culiacan, Mexico 5. Dipartimento di Fisica dell'Università and Sezione INFN, Turin, Italy 6. Institute for Nuclear Research, Academy of Sciences, Moscow, Russia Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia 8. The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland SUBATECH, Ecole des Mines de Nantes, Universit de Nantes, CNRS-IN2P3, Nantes, France 10. Commissariat à l'Energie Atomique, IRFU, Saclay, France.

Introduction **ALICE Physics Working Groups**

Physics Working Group	Public link (ALICE internal)	Conveners	
Flow and Correlations	PWG-CF (internal)	Anthony Timmins, Ilya Selyuzhenkov, You Zhou	
Dileptons and Quarkonia	PWG-DQ (internal)	Roberta Arnaldi, Torsten Dahms	
Photons, Neutral Mesons	PWG-GA (internal)	Ana Marin, Dmitry Peresunko	
Heavy Flavour	PWG-HF (internal)	Andrea Rossi, Alessandro Grelli Leticia Cunqueiro Mendez, Tatsuya Chujo	
Jets	PWG-JE (internal)		
Light Flavour Spectra	PWG-LF (internal)	Alexander Kalweit, Stefania Bufalino	
Ultraperipheral and Diffraction	PWG-UD (internal)	Evgeny Kryshen, Guillermo Contreras Nuno	
Monte Carlo generators and Minimum Bias Physics	PWG-MM (internal)	Jochen Klein, Paolo Bartalini	

PAG	Coordinators	Meetings
Ultra Peripheral Collisions	Michal Broz (Prague) and Christoph Mayer (Polish Academy of Sciences (PL))	Link (Tue 14h00)
Diffraction	R. Orava (Helsinki) and R. Schicker (Heidelberg)	Link (Thu 16h00)
Cosmics	B. Alessandro (INFN - Torino) and A. Fernandez (UAP-Puebla)	Link (Fri 17h00)

- •Emma González Hernández (PhD student, cosmic charge ratio) events)
- pi+pi- in diffractive events and rho0 photo-production)

•Abraham Villatoro Tello (PhD student, selection of diffractive

Sergio Paisano Guzmán (B.S. student, Central production of

Cosmic rays (CR)

- constitute one of the most energetic forms of extraterrestrial radiation that the Earth receives from outer space. They arrive at Earth with an energy from few MeV (10^8 eV) to 100 EV (10^{20}eV)
- mainly composed by atomic nuclei
- at high energies, the origin of this radiation is unknown. Recently, the Pierre Auger Observatory found some clues on the extragalactic origin of the ultra-high energetic CR (Science **357**, 1266-1270 (2017))
- details of CR acceleration mechanisms, composition, propagation, through the space, and features in their spectrum are not completely understood

V Congreso Red ALICE, Depto. de Física, Cinvestav (28,29/09/2018)

Tevatron (p-p)

Tevatron (p-p)

LHC (p-p) 7 TeV 14 TeV

Tevatron (p-p)

from the interactions of the EAS with the atmosphere (Cherenkov radiation, radio, fluorescence light)

 10^{13} 10^{10} 10^{17} 10^{10} 10^{17} 10^{20} 10^{21} E [eV]

the EAS is a cascade of particles produced by the interaction of a single high energy primary cosmic ray which interacts with the atmosphere at about 10 km high from the surface of the Earth

the EAS is a cascade of particles produced by the interaction of a single high energy primary cosmic ray which interacts with the atmosphere at about 10 km high from the surface of the Earth

the EAS is a cascade of particles produced by the interaction of a single high energy primary cosmic ray which interacts with the atmosphere at about 10 km high from the surface of the Earth

three components of the EAS: hadronic, muonic and electromagnetic

the EAS is a cascade of particles produced by the interaction of a single high energy primary cosmic ray which interacts with the atmosphere at about 10 km high from the surface of the Earth

three components of the EAS: hadronic, muonic and electromagnetic

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

the EAS is a cascade of particles produced by the interaction of a single high energy primary cosmic ray which interacts with the atmosphere at about 10 km high from the surface of the Earth

three components of the EAS: hadronic, muonic and electromagnetic

the muonic component (~10% of the charged particles in EAS) is generated by the decay of charged pions and kaons

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}),$$

$$K^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}).$$

the EAS is a cascade of particles produced by the interaction of a single high energy primary cosmic ray which interacts with the atmosphere at about 10 km high from the surface of the Earth

three components of the EAS: hadronic, muonic and electromagnetic

the muonic component (~10% of the charged particles in EAS) is generated by the decay of charged pions and kaons

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}),$$

$$K^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}).$$

muonic component, neutrinos

25

 $\mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu,$ $\mu^- \to e^- + \bar{\nu}_e + \nu_\mu.$

Mario rounguez canuanzi <modriguez@fcfm.buap.mx>, FCFM-BUAP

three components of the EAS: hadronic, muonic and electromagnetic

muonic component,

26

neutrinos

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

V Congreso Red ALICE, Depto. de Física, Cinvestav (28,29/09/2018)

three components of the EAS: hadronic, muonic and electromagnetic

muonic component,

neutrinos of the energy (hadronic) is transferred into the other components of the EAS

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

physical observables that can be reconstructed

- dependent)
- size (density) of electromagnetic and muonic component
- angular variables of the EAS
- number of muons

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

energy and composition of the primary cosmic ray (model)

- DETECTION AND STUDY OF COSMIC RAY
- INFORMATION FOR COSMIC RAY PHYSICS (hadronic interactions)

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

• STUDY OF HIGH ENERGY INTERACTIONS IN p-p, Pb-Pb COLLISIONS TO EXTRAPOLATE

Year	Dis
1897	The
1919	Rut
1932	Cha
1933	And
1937	Nec
1947	Pov
1947	Roo
1949	Bjo
1951	Arr
1950	Hop
$1955 \rightarrow today$	vari
	Year 1897 1919 1932 1933 1937 1947 1947 1947 1949 1951 1950 1955 → today

scovered

omson

- therford
- adwik
- derson
- ddermeyer, Anderson
- well, Occhialini, Lattes
- chester, Butler
- rklund
- menteros
- pper
- ious groups

Technique

Discharge in gases Radioactivity Radioactivity Cosmic-rays Cosmic-rays Cosmic-rays Cosmic-rays Accelerator Cosmic-rays Cosmic-rays Accelerators

Particle detection ACCELERATOR PHYSICS:

BEAM KNOWN \rightarrow DETECTION OF THE SECONDARIES \rightarrow STUDY OF THE INTERACTIONS

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

Particle detection ACCELERATOR PHYSICS:

BEAM KNOWN \rightarrow DETECTION OF THE SECONDARIES \rightarrow STUDY OF THE INTERACTIONS

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

V Congreso Red ALICE, Depto. de Física, Cinvestav (28,29/09/2018)

COSMIC RAY PHYSICS WITH EAS:

BEAM UNKNOWN \rightarrow DETECTION OF THE SECONDARIES ARRIVING AT GROUND \rightarrow STUDY OF THE BEAM

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

Level of observation

AMS, PAMELA, Fermi

Balloons

High altitude detectors: HAWC, Tibet

Ground experiments: Pierre Auger, Kaskade-Grande

Under-ground experiments: Ice cube, Macro, LEP&LHC experiments

Direct measurements up to $E \sim 10^{14} \text{ eV}$

- Primary particles (balloons, satellites)
- Indirect measurements with (under)ground experiments to E > 10¹⁴ eV
 - Cosmic ray interactions with atmosphere and Extensive Air Showers (EAS) Ŵ
 - Measurements around the knee (Eas-Top, Kaskade, Casa ...) and beyond (Kaskade- $\hat{\mathbf{x}}$ Grande)
 - ☆ Ultra high energy cosmic rays (Auger, HiRes)
 - Underground experiments (Macro, Emma)
 - Ŵ ALICE)

COSMIC RAY PHYSICS AT CERN (LEP: L3+C, ALEPH, DELPHI; LHC: CMS,

 \diamond Small apparatus \diamond Low underground \diamond Detection of muons crossing the rock

- Advantage: detectors with very high performances, presence of \checkmark magnetic field \bigcirc
- \checkmark Why to study cosmic ray events with dedicated accelerator
 - experiments? \rightarrow remember that the only result out of LEP that did not agree "perfectly" with the Standard Model was the observation of too many multiplicity muon bundles.

- \star These apparatus are not designed for cosmic ray physics \mathfrak{S} :
- Small detectors compared with the standard cosmic ray apparatus:
 - \diamond Only muons are detected
 - \diamond Short live time of data taking

Cosmo-ALEPH Multi-muon bundles

Sensitive to primary energies 10¹⁴ $-10^{16}\,{
m eV}$

For $E > 10^{14} eV$ at given energy more muons for heavier nuclei

High energy muons (E > 70 GeV) are sensitive to dynamics of the first interactions

Test of interaction models

Multiplicities up to 150 in 16 m² TPC (small detectors) => scattering of

Simulation: CORSIKA, QGSJET Difficulty: unknown core position shower centers over some area $(200 \times 200 \text{ m}^2)$ in MC

Mario Rodrígue

L3+CComposition, Multi-muon bundles

L3+C can study multi-muon events also in coincidence with surface array.

Muon multiplicity can be studied as a function of shower size.

Muon momentum can be measured for individual muons in the bundle.

Analysis of the abovementioned items is still in progress ...

From Colliders to Cosmic Rays, Prague 7-12 Sept., 2005

L3+CComposition, Multi-muon bundles

Some results: Muon multiplicity in events with: E>30TeV (surface array), 14>N(muons)>5, N(muons, E>100GeV)>5 MC assuption: p:He:CNO:Fe=2:2:1:1

Analysis indicates deviation from prediction of MC models (surplus of multi-muon data with large muon energies compared to MC simulation)

From Colliders to Cosmic Rays, Prague 7-12 Sept., 2005

(28,29/09/2018)

Primary cosmic ray interacts with the atmosphere and creates an Extensive Air Shower (EAS)

The muons of the EAS crossing the rock and arriving in ALICE can be detected and analyzed. Muon threshold energy ~ 16 GeV

Besides the heavy-ion physics program, ALICE has a dedicated physics group interested in Cosmicray physics.

4

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

ALICE collected 5 events with more than 100 atmospheric muons during 30.8 days of data taking

Mario Rodrí

ALICE collected 5 events with more than 100 atmospheric muons during 30.8 days of data taking

Mario Rodrí

To compare the data with MC, the simulated distributions obtained with proton and iron primary cosmic-rays were fitted with a power-law function.

The data approach the proton curve (low multiplicities). High multiplicity data lie closer to the iron curve. This suggests that the average mass of the primary cosmic-ray flux increases with increasing energy.

Mario Rodrí

- close agreement with the measured value.
- Θ ray composition is more difficult to reproduce.
- dominated by heavier elements: Phys. Rev. Lett. **107** (2011) 171104.

CORSIKA 6990		CORSIKA 7350		
QGSJET II-03		QGSJET II-04		Data
roton	iron	proton	iron	
15.5	8.6	11.6	6.0	6.2
0.8	1.3	1.0	1.9	1.9
13	16	8	20	49

• Pure iron sample simulated with QGSJET II-04 model reproduces HMM event rate in

Independent of the version model, the rate of HMM events with pure proton cosmic-

This result is compatible with recent measurements which suggest that the composition of the primary cosmic-ray spectrum with energies larger than 10¹⁶ eV is

46

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

Muon Multiplicity Distribution: DATA(2015+2016+2017) and MC

Steps

- 1. Simulation of Extensive Air Showers (EAS) with Corsika. We can setup the generation to use QGSJET or EPOS models. Hereafter all the simulations are done with CORSIKA+EPOS.
- 3. Random location of the core of the EAS at the surface inside of a square of 200 x 200 m^2
- 5. Propagation of muons through the rock molasses to ALICE. This is done with AliRoot.

48

- 7. Active detectors: TPC, TOF and ACORDE.
- 9. Reconstruction done with standard OCDB for cosmics

Details of the simulation with CORSIKA

- 2. Energy range: 10¹⁴ 10¹⁸ eV
- data than the used for ALICE cosmic paper with Run-1 data.
- 4. Model: EPOS

1. Two hypotheses for primary cosmic ray composition: proton (light) and fe (heavy)

3. Number of total days simulated: 50 days. This is equivalent to the data sample collected by ALICE during cosmic runs in 2015, 2016 and 2017. This is 62.3% more

Number of simulated events to be propagated to ALICE with AliRoot

Energy range (eV)	Number of events
10 ¹⁴ - 10 ¹⁵	24,188,879
10 ¹⁵ - 3 x 10 ¹⁵	463,517
3 x 10 ¹⁵ - 10 ¹⁶	67,872
10 ¹⁶ - 3 x 10 ¹⁶	5,966
3 x 10 ¹⁶ - 10 ¹⁷	679
10 ¹⁷ - 3 x 10 ¹⁷	59
3 x 10 ¹⁷ - 10 ¹⁸	7

For this talk:

- number of simulated days: 30
- primary cosmic ray composition: fe

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

From Maciej Rybczyński, ISMD 2017

Anisotropy of arrival directions

Aitoff projection of the UHECR map in equatorial coordinates taken from Telescope Array Collaboration data [The Astrophysical Journal Letters 790 (2014) L21]

From Maciej Rybczyński, ISMD 2017

Strange quark matter

Roughly equal numbers of u, d, s quarks in a single 'bag' of cold hadronic matter.

*small lump of Strange Quark Matter

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

A=12 (36 quarks)

From Maciej Rybczyński, ISMD 2017

High multiplicity muon bundles from strange quark matter

Integral multiplicity distribution of muons the ALEPH data (circles) published in Astr. Phys. 19 (2003) 513. Monte Carlo simulations for primary protons (dotted line); iron nuclei (dashed dot line) and primary strangelets with mass A taken from the A^{-7.5} distribution (full line) with abundance of the order of $2 \cdot 10^{-5}$ of the total primary flux.

From Maciej Rybczyński, **ISMD 2017**

High multiplicity muon bundles from strange quark matter

Integral multiplicity distribution of muons for the ALICE data (circles) published in JCAP 01 (2016) 032. Monte Carlo simulations for primary protons (dotted line); iron nuclei (dashed dot line) and primary strangelets with mass A taken from the A^{-7.5} distribution (full line) with abundance of the order of $2 \cdot 10^{-5}$ of the total primary flux.

Cosmic charge ratio

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

energies)

The ratio μ^*/μ^- is defined as the ratio of the number of positively charged muons to the number of negatively charged muons that reach the surface of the Earth.

Several contributions

- composition of the primary cosmic ray (ratio protons over heavy component)
- hadronic interaction features
- atmospheric conditions (low energy, below few GeV)
- contribution of muons from charmed particle decays (prompt muons, very high energy)

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

Muon Charge Ratio

What about this ratio for multi-muon events?

- primary cosmic ray
- the cosmic charge ratio for single muon events is around 1.28 -> this reflects larger abundance of protons (light cosmic ray component) over heavier elements (Fe)
- at high energies, the heavy flavor component of the EAS and the primary cosmic ray composition may be significant.
- for multi-muon events, do this effect must be diminished ? \bullet

we could observe muons coming from heavy-nucleus component of the

Cosmic charge ratio

60

Description of Monte Carlo sample

- momentum range: 5 500 GeV (flat distribution)
- theta: 0-20 degrees
- Magnetic field: B > 0
- simulated ratio = 1.27
- number of events: 701,195

Event and track selection

- number of tracks per event = 2 (this means 1 reconstructed muon)
- #TPC clusters per track > 50
- distance between matched tracks < 6 cms
- no cut in XZ plane (full TPC area)

Description of Data sample

- momentum range: 5 500 GeV (flat distribution)
- theta: 0-20 degrees
- Periods: LHC15adfk (B<0) & LHC15cdfm (B>0)
- number of events: 2,987,480

Event and track selection

- number of tracks per event = 2 (this means 1 reconstructed muon)
- #TPC clusters per track > 50
- TOF trigger: OB3
- distance between matched tracks < 6 cms
- no cut in XZ plane (full TPC area)

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

1

ALICE-ANA-2018-XXX April 12, 2018

Analysis of multimuons in cosmic ray events taken with ALICE central barrel detectors in 2015 and 2016

B. Alessandro¹, A. Fernández Téllez², E. González Hernández², M. Rodríguez Cahuantzi², K. Shtejer Diaz³ and M. Sitta⁴

1. Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino, Italy 2. Fac. Ciencias Físico Matemáticas, B. Universidad Autónoma de Puebla, México 3. Center of Technological Applications and Nuclear Development (CEADEN), Cuba and Joint Institute for Nuclear Research - JINR, Dubna, Russia

Email: alessandro@to.infn.it

Abstract

In this analysis note we describe the performances of the involved detectors in taking cosmic data in the central barrel of Alice and the study of cosmic muons, in particular the multimuon events. The data sample analyzed corresponds to 42.3 effective days of data taking collected during 2015 and 2016.

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

MORE DETAILS IN EMMA'S SLIDES

V Congreso Red ALICE, Depto. de Física, Cinvestav (28,29/09/2018)

64

Diffraction

- \triangleright In a diffractive reaction, no colour is exchanged between the particles colliding at high energies.
- > Diffraction is elastic (or quasi elastic) scattering caused by the absorption of components of the wave function of the incoming particles
- \triangleright p-p -> p-p, p-p -> pX (single proton dissociation, Single Diffractive), p-p -> XY (both protons dissociate, Double Diffractive), or Central Diffractive, p-p->p+X+p
- \triangleright A diffractive process is characterized by a rapidity gap. Experimentally, there is no defined way to distinguish rapidity gaps caused by Pomeron exchange from those caused by other colour-neutral exchanges, so the separation is model dependent.

Diffraction

Measuring SD and DD with ALICE Strategy: Measure gap distribution over **8 units in n** using the central barrel and forward detectors.

Elastic

Single Diffractive

Dates: 23/05/2018 - 31/05/2018 Place: T10-CERN Diffraction Strange behavior, but better resolution than ITEP strips

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

MORE DETAILS IN SERGIO'S SLIDES

67

Diffraction

Within large uncertainties ALICE measurements are in agreement with the measurements from UA5, UA4 and CDF.

68

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Analysis note on the ALICE measurement of the diffractive cross sections at 13 TeV

Ernesto Calvo Villar¹, Arturo Fernández Téllez³, Matti Mikael Mieskolainen², Risto Orava², Mario Rodríguez Cahuantzi³, Arseniy Shabanov⁴, Abraham Villatoro Tello³

> 1. Pontificia Universidad Católica del Perú (PUCP), Lima, Perú 2. Helsinki Inst. of Physics, Helsinki, Finland 3. Benemérita Universidad Autónoma de Puebla, México 4. Russian Academy of Sciences, Russia

MORE DETAILS IN ABRAHAM'S SLIDES

69

For Run 3 and HI, an upgrade of the ACORDE detector is proposed. The new ACORDE will be made of RPC gas detectors. It will be used to trigger muon bundles (large acceptance) Also it could be used as a trigger for heavy mesons in lead-lead collisions

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

ACORDE Upgrade

Plans for RUN3, RUN 4

yoke faces using:

Scintillator strips modules (ITEP) or/and **RPCs modules (BUAP)**

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

New detector system placed at the outer ALICE magnet

6 sector

The new ACORDE :

7 sensitive sectors on the outer magnet faces at 8.5 m from the beam the sector: a plane with 2 modules at z=0, $\Delta \phi = 34^{\circ}$, $\Delta \theta = 17^{\circ}$ the module: a sensitive plane 2.6 x 2.6 m² = 6.72 m², $\Delta \phi = \Delta \theta = 17^{\circ}$

•Muons with $p_T < 1.6$ GeV/c do not reach the ACORDE surface, mostly due to energy losses inside the magnet

•To reconstruct heavy quarkonia J/ψ and Υ by their di-muon decay mode requires at least 4 ACORDE sectors, preferably those located in azimuthally opposite positions behind the calorimeters, which, together with the magnet, reduce the hadron background

•The overall background is low, mostly due to the magnet material, which makes the matching of muon tracks and muon identification a feasible task.

•The deviation of muon tracks because of multiple scattering requires that the width of scintillation strips in ACORDE is 6 cm.

 J/ψ (3097) $\rightarrow \mu + \mu$ -. 4 variants of ACCORD with 1, 2, 4, and 7 sectors (bottom up). 1 and 2 columns: distribution of hits on the surface of ACCORD; 3 and 4 columns: acceptance.

Infrastructure preparation and strips constructing

73

Plastic: 2600x60x10 mm³ (produced at IHEP, Russia)

- Grooved for fibre placing in ITEP
- Metalized Mylar as a reflecting layer
- Black photo-paper is used for light isolation \bullet (2 layers)
- Outer layer of a polyethylene heat-shrink film

FEE placement check Fiber placement check

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

Beam tests

Assembled and tested 6 strips.

Strips were tested at T10. Beam conditions: 5 GeV π^{-} , 1,5 kHz/cm². Events triggered by two finger scintillators in front and back.

Triggers sizes: front: $2x2 \text{ cm}^2$, back: $1x1 \text{ cm}^2$.

Efficiency measurement along the strips.

Efficiency is on the level 99.6%, lower closer to the diodes.

Beam tests results

Efficiency and counting rate as function of the threshold. Wide working range of the threshold setting for all strips.

76

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

beam direction

HPTDC time

Time distribution of Hexagon B HexB **HexB** Time distribution of GORDO A GA GA Time distribution of GORDO B GB GB Time distribution of BUAP Buap **and the second second** Time distribution of Russian RPC RPC RPC

F: RPC voltage 12000 V. First run with RPC in beam test. Possible gas leaking (53% efficiency)

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

ADC value (max)

time vs charge

ChargeVSTime distribution of Hexagon B

ChargeVSTime distribution of GORDO A

In this case, the total sigma is 1.23 ns. We need to extract only the RPC time resolution:

$$\sigma_T^2 = \sigma_{RPC}^2 + \sigma_{GA}^2$$

$$\Rightarrow \sigma_{RPC} = \sqrt{\sigma_T^2 - \sigma_{GA}^2} = \sqrt{1.23^2 - 0.43^2} = \sqrt{1.51 - 0.18} = \sqrt{1.33}$$

$$\Rightarrow \sigma_{RPC} = 1.15 \ ns$$

78

Time difference between RPC-Buap and the difference of GA & GB counters (HexA-(GA-GB))

	hTimeDi		
	Entries	529	
	Mean	-1.66	
	RMS	2.223	
	Constant	13.06 ± 0.97	
	Mean	-0.7462 ± 0.0633	
N	Sigma	1.123 ± 0.067	
I.N.			
	4		

MORE DETAILS IN GUILLERMO's SLIDES

1.9 .425 0 1.15 0.95 0.475 0 0.15 0.3 0

79

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

strange behavior, but better resolution than ITEP strips

MSc. thesis of Daniela Blanco. A publication is in preparation.

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

Event plane resolution for higher order harmonics flow with the V0+ detector

Mario Rodríguez Cahuantzi Autonomous University of Puebla (BUAP-MX)

> Lizardo Valencia Palomo University of Sonora (DIFUS-MX)

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

AliGenTunedOnPbPb

AliGenTunedOnPbPb \rightarrow Parametrization based on 5.5 TeV PbPb data // pi,K, p , KO, lambda, phi, Xi, Omega spectra, v2, v3, v4 (no jets!)

Two samples (AliFITv5 and AliFITv6)

Detectors: FIT, ITS (upgrade), MFT, PIPE (upgrade) and MAGNET (B=0.5 T) **Y** max: 10

Centrality range: 0-10%, 10-20%, 20-30%, 30-40%, 40-50% and 50-60%

Centrality (%)	Number of generated events
0-10	3,950
10-20	3,980
20-30	3,980
30-40	4,000
40-50	4,000
50-60	3,980
Total	23,890

Warning: This analysis is based on HITS information. No ESD is implemented for V0+

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

Geometry of the V0+ detector

First implementation of the V0+ detector geometry

- available in AliFITv5
- Five rings \rightarrow this is VOA (Run 1,2) + 1 ring
- Eight cells per ring \rightarrow slices of 45° in the azimuthal angle
- pseudorapidity coverage of 2.2< η <5.1.

Second implementation of the V0+ detector geometry

- available in AliFITv6: five rings with a pseudorapidity coverage of 2.2< η <5.1.
- Sixteen cells per ring \rightarrow slices of 22.5⁰ in the azimuthal angle

Geometry of the V0+ detector

60 X (cms)

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

-40 -20

0

20

AliFITv5

40

-80 -80

-60

60 80 X(cms)

30-40 °

-40

-20

0

20

40

First implementation of the V0+ detector geometry

- available in AliFITv5
- Five rings \rightarrow this is VOA (Run 1,2) + 1 ring
- Eight cells per ring \rightarrow slices of 45° in the azimuthal angle
- pseudorapidity coverage of 2.2< η <5.1.

Second implementation of the V0+ detector geometry

- available in AliFITv6: five rings with a pseudorapidity coverage of 2.2< η <5.1.
- Sixteen cells per ring \rightarrow slices of 22.5⁰ in the azimuthal angle

Azimuthal anisotropy

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p^{3}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}\eta} \left\{ 1 + 2\sum_{n=1}^{\infty} v_{\mathrm{n}(p_{\mathrm{T}},\eta)\mathrm{Cos}[n(\varphi - \Psi_{n})]} \right\}$$

- *E*: energy of the particle
- *p*: momentum
- p_{T} : transverse momentum
- φ : azimuth angle
- Ψ_n : azimuth angle of the symmetry plane (nth-harmonic)
- v_n differential flow

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

Azimuthal anisotropy

To compute the EP resolution, we assumed the angles showed in figure.

$$\Psi = \frac{1}{n} \operatorname{ATan2} \left[\frac{\sum_{i=1}^{m} w_i \operatorname{Sin}(n\varphi_i)}{\sum_{i=1}^{m} w_i \operatorname{Cos}(n\varphi_i)} \right]$$

 $\Phi_i \rightarrow \text{cell angle}$ $w_i \rightarrow multiplicity in$ *i-cell* $n \rightarrow$ order of the azimuthal anisotropy

$$\cos\left(n*[\Psi_{\rm V0+}-\Psi_{\rm MC}]\right)$$

AliFITv5

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

Elliptic flow

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

86

Elliptic flow

Configuration 1. This is the original AliFITv6 and has 5 rings, with 16 cells per ring.

Configuration 2. Rings 1 to 4 have 8 cells each one and ring 5 has 16 cells. 48 cells

Configuration 3. It has rings 1 to 3 with 8 cells per ring and rings 4 and 5 with 16 cells each one. 56 cells

Configuration 4. This is the original AliFITv5 and has 5 rings, with 8 cells per ring. 40 cells

Lavout	Event plane resolution						
Layout	0-10%	10-20%	20-30%	30-40%	40-50%	50-60%	
Config. 1	0.712	0.883	0.9	0.879	0.809	0.7	
Config. 2	0.692	0.867	0.893	0.865	0.792	0.681	
Config. 3	0.7	0.871	0.896	0.87	0.808	0.688	
Config. 4	0.69	0.856	0.884	0.851	0.78	0.655	

Configuration 1. This is the original AliFITv6 and has 5 rings, with 16 cells per ring.

Configuration 2. Rings 1 to 4 have 8 cells each one and ring 5 has 16 cells. 48 cells

Configuration 3. It has rings 1 to 3 with 8 cells per ring and rings 4 and 5 with 16 cells each one. 56 cells

Configuration 4. This is the original AliFITv5 and has 5 rings, with 8 cells per ring. 40 cells

lls ells ells ells 14

Lavout	Event plane resolution						
Layout	0-10%	10-20%	20-30%	30-40%	40-50%	50-60%	
Config. 1	0.69	0.679	0.617	0.553	0.408	0.312	8
Config. 2	0.655	0.636	0.57	0.502	0.357	0.281	4
Config. 3	0.672	0.661	0.59	0.518	0.38	0.291	5
Config. 4	0.619	0.605	0.524	0.484	0.344	0.259	4

Configuration 1. This is the original AliFITv6 and has 5 rings, with 16 cells per ring. Configuration 2. Rings 1 to 4 have 8 cells each one and ring 5 has 16 cells. 48 cells Configuration 3. It has rings 1 to 3 with 8 cells per ring and rings 4 and 5 with 16 cells each one.

Configuration 4. This is the original AliFITv5 and has 5 rings, with 8 cells per ring. 40 cells

cells cells cells ce∦ୁଞ

Quadrangular flow 0.9 Configuration 1 Event plane resolution Configuration 2 0.8 onfiguration 3 0.7 Configuration 4 0.6 0.5 0.4 0.3

Lavout	Event plane resolution						
Layout	0-10%	10-20%	20-30%	30-40%	40-50%	50-60%	
Config. 1	0.376	0.395	0.333	0.265	0.216	0.169	
Config. 2	0.294	0.323	0.269	0.212	0.161	0.131	
Config. 3	0.339	0.375	0.304	0.233	0.173	0.153	
Config. 4	0.246	0.245	0.204	0.171	0.121	0.082	

0.2

0.

0^L

10

20

30

80 cells 48 cells 56 cells 40 cells 16

50

Centrality (%)

40

60

89

More details on Varlen and Ruben's slides

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

Elliptic flow

Configuration 1. This is the original AliFITv6 and has 5 rings, with 16 cells per ring.

Configuration 2. Rings 1 to 4 have 8 cells each one and ring 5 has 16 cells. 48 cells

Configuration 3. It has rings 1 to 3 with 8 cells per ring and rings 4 and 5 with 16 cells each one. 56 cells

Configuration 4. This is the original AliFITv5 and has 5 rings, with 8 cells per ring. 40 cells

A more realistic analysis is a future work. (MSc. thesis of Valeria Zelina **Reyna Ortiz**)

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

More details on Varlen and Ruben's slides

Event plane resolution for higher order harmonics flow with the V0+ detector

M. Rodriguez Cahuantzi¹ and L. Valencia Palomo¹

1. Benemerita Universidad Autonoma de Puebla, Mexico

mario.rodriguez.cahuantzi@cern.ch

The azimuthal anisotropy is a very important observable to study the Quark-Gluon Plasma in noncentral heavy-ion collisions. An experimental approach to the azimuthal anisotropy relies on the determination of the event plane. For this reason, the event plane resolution is a key measurement for some of the detectors that will be installed in ALICE during Long Shutdown 2. Among these, the V0+ that will replace the actual V0 system. In the present analysis note we report on the expected performance of the V0+ detector for the event plane resolution for higher order harmonics. All the results were obtained at the hits level. reason the resolution of the event plane

ALICE-ANA-2017-xxx November 15, 2017

Abstract

A more realistic analysis is a future work. (MSc. thesis of Valeria Zelina **Reyna Ortiz**)

90

Final comments

Торіс	Product	People involved	to be ready for	thesis	level
Ratio mu+/mu- for single muon events and multimuons		B. Alessandro, <mark>E. Gonzalez</mark> , A. Fernández, M. Rodríguez Cahuantzi, M. Sitta	Dec. 2019	-	DhD
Detailed study of high muon multiplicity events	regular ALICE paper	B. Alessandro, <mark>E. Gonzalez</mark> , A. Fernández, M. Rodríguez Cahuantzi, M. Sitta	Dec. 2019		PIID
Sensitive studies for an RPC detector with 2 gas mixtures	paper	D. Blanco, M. Rodríguez Cahuantzi, M. A. Subieta	Nov. 2018	1	MSc.
Measurement of double diffractive cross section	regular ALICE paper	A. Villatoro Tello , A. Fernández Tellez, M. Rodríguez Cahuantzi, I. León, R. Orava	Nov. 2019	1	PhD.
Analysis of central production of pi+pi- in diffractive events	Analysis note	S. Paisano , M. Rodríguez Cahuantzi	April 2019	1	BSc.
Performance of the ALICE cosmic ray detector, ACORDE	regular ALICE paper	A. Fernández, M.I. Martínez Hernández, M. Rodríguez CAhuantzi, L.A.P. Moreno, Abraham Villatoro	Sept. 2019		
Upgrade of the ALICE cosmic ray detector	NIM paper	A. Fernández, M.I. Martínez Hernández, M. Rodríguez CAhuantzi, L.A.P. Moreno, Abraham Villatoro	Dec. 2018		
LHC forward physics	paper	M.I. Martínez Hernández, L.A.P. Moreno, JC Cabanillas, M. Rodríguez Cahuantzi, A. Villatoro Tello, I. Leon Monzon	published		
Physics performance of FIT	analysis note	V. Z. Reyna Ortiz, M. Rodríguez Cahuantzi	XXX?	1	MSc.

Mario Rodríguez Cahuantzi <mrodriguez@fcfm.buap.mx>, FCFM-BUAP

