

Air Shower Physics

Ralph Engel

Karlsruhe Institute of Technology (KIT)

Extensive air showers

Simulation of shower development (i)

Proton shower of low energy (knee region)

Simulation of shower development (ii)

Simulation of air shower tracks (i)

Simulation of air shower tracks (ii)

Particles of an iron shower

Iron 10¹³ eV

24929 m

Particles of an proton shower

③ J.Oehlschlaeger,R.Engel,FZKarlsruhe

Proton 10¹³ eV

21336 m

Particles of a gamma-ray shower

Gamma 10 ¹³ eV

© J.Oehlschlaeger, R.Engel, FZKarlsruhe

)

Time structure in shower front

J.Oehlschlaeger, R.Engel, FZKarlsruhe

Atmosphere and interaction length

Altitude (km)	Vertical depth (g/cm ²)	Local density (10 ⁻³ g/cm ³)	Molière unit (m)	Electron Cherenkov threshold (MeV)	Cherenkov angle (°)
40	3	3.8×10^{-3}	2.4×10^{4}	386	0.076
30	11.8	1.8×10^{-2}	5.1 × 10 ³	176	0.17
20	55.8	8.8 × 10 ⁻²	1.0×10^{3}	80	0.36
15	123	0.19	478	54	0.54
10	269	0.42	223	37	0.79
5	550	0.74	126	28	1.05
3	715	0.91	102	25	1.17
1.5	862	1.06	88	23	1.26
0.5	974	1.17	79	22	1.33
0	1,032	1.23	76	21	1.36

US standard atmosphere

Atmospheric depth

$$\int \rho_{\rm air} \, \mathrm{d}l = X$$

Interaction length

$$\lambda_{\text{int}} = \frac{\langle m_{\text{air}} \rangle}{\sigma_{\text{int}}} = \frac{24160 \,\text{mb g/cm}^2}{\sigma_{\text{int}}}$$

$$\frac{\mathrm{d}\Phi}{\mathrm{d}X} = -\frac{\sigma_{\mathrm{int}}}{\langle m_{\mathrm{air}} \rangle} \Phi = -\frac{1}{\lambda_{\mathrm{int}}} \Phi$$

Typical values

$$\lambda_{\pi} \approx \lambda_{K} \approx 120 \,\mathrm{g/cm^{2}}$$

 $\lambda_{p} \approx 90 \,\mathrm{g/cm^{2}}$
 $\lambda_{Fe} \approx 5 \,\mathrm{g/cm^{2}}$

Competing processes of interaction and decay

Interaction length

$$\lambda_{\mathrm{int}} = rac{\langle m_{\mathrm{air}} \rangle}{\sigma_{\mathrm{int}}}$$

$$\lambda_{\pi}\approx\lambda_{K}\approx120\,g/cm^{2}$$

Decay length

$$l_{dec} = \beta c \tau \Gamma \approx c \tau \frac{E}{m}$$
$$\lambda_{dec} = \rho l_{dec} \approx c \tau \rho \frac{E}{m}$$

 10^{10} π^{\pm} D^\pm K^{\pm} 10^{8} n Decay length λ_{dec} (cm²/g) 10^{6} 10^{4} 10^{2} $\lambda_{int}(K^{\pm}$ 10^{0} 10^{-2} 10^{-4} 10¹⁰ 10² 10^{4} 10^{6} 10⁸ Lab. energy (GeV) Altitude of 8 km

(Fedynitch 2017)

Hadronic cascades

Electromagnetic showers

Heitler model

Cascade equations

Energy loss $\frac{dE}{dX}$ of electron: $\frac{dZ}{dX}$

$$\frac{\mathrm{d}E}{\mathrm{d}X} = -\alpha - \frac{E}{X_0}$$

Critical energy: $E_c = \alpha X_0 \sim 85 \,\mathrm{MeV}$ Radiation length: $X_0 \sim 36 \,\mathrm{g/cm^2}$

Cascade equations

$$\frac{\mathrm{d}\Phi_e(E)}{\mathrm{d}X} = -\frac{\sigma_e}{\langle m_{\mathrm{air}} \rangle} \Phi_e(E) + \int_E^{\infty} \frac{\sigma_e}{\langle m_{\mathrm{air}} \rangle} \Phi_e(\tilde{E}) P_{e \to e}(\tilde{E}, E) \mathrm{d}\tilde{E} + \int_E^{\infty} \frac{\sigma_{\gamma}}{\langle m_{\mathrm{air}} \rangle} \Phi_{\gamma}(\tilde{E}) P_{\gamma \to e}(\tilde{E}, E) \mathrm{d}\tilde{E} + \alpha \frac{\partial \Phi_e(E)}{\partial E}$$

$$X_{\max} \approx X_0 \ln\left(\frac{E_0}{E_c}\right) \qquad \qquad N_{\max} \approx \frac{0.31}{\sqrt{\ln(E_0/E_c) - 0.33}} \frac{E_0}{E_c}$$

Shower age and Greisen formula

Longitudinal profile

$$N_e(X) \approx \frac{0.31}{\left[\ln E_0/E_c\right]^{1/2}} \exp\left\{\frac{X}{X_0} \left(1 - \frac{3}{2}\ln s\right)\right\}$$

(Greisen 1956, see also Lipari PRD 2009)

Energy spectrum particles

$$\frac{\mathrm{d}N_e}{\mathrm{d}E} \sim \frac{1}{E^{1+s}}$$

Mean longitudinal shower profile

Calculation with cascade Eqs.

Photons

- Pair production
- Compton scattering

Electrons

- Bremsstrahlung
- Moller scattering

Positrons

- Bremsstrahlung
- Bhabha scattering

(Bergmann et al., Astropart.Phys. 26 (2007) 420)

Energy spectra of secondary particles

Number of photons divergent

- Typical energy of electrons and positrons $E_c \sim 80 \text{ MeV}$
- Electron excess of 20 30%
- Pair production symmetric
- Excess of electrons in target

(Bergmann et al., Astropart.Phys. 26 (2007) 420)

Lateral distribution of shower particles

$$\frac{\mathrm{d}N}{\mathrm{d}\Omega} = \frac{1}{64\pi} \frac{1}{\ln(191Z^{-1/3})} \left(\frac{E_s}{E}\right)^2 \frac{1}{\sin^4 \theta/2} \qquad \qquad E_s \approx 21 \,\mathrm{MeV}$$

Expectation value

$$\int \theta^2 \frac{\mathrm{d}N}{\mathrm{d}\Omega} \,\mathrm{d}\Omega$$

$$\langle \theta^2 \rangle \sim \left(\frac{E_s}{E} \right)^2$$

Displacement of particle

$$r \sim \left(\frac{E_s}{E}\right) \frac{X_0}{\rho_{\rm air}}$$

$$\frac{\mathrm{d}N_e}{\mathrm{d}E} \sim \frac{E_c}{E^{1+s}}$$

$$\frac{\mathrm{d}N_e}{r\,\mathrm{d}r} \sim \left(\frac{r}{r_1}\right)^{s-2} \left(1+\frac{r}{r_1}\right)^{s-4.5}$$

$$r_1 = \left(\frac{E_s}{E_c}\right) \frac{X_0}{\rho_{\rm air}}$$

Moliere unit (78 m at sea level)

Nishimura-Kamata-Greisen lateral distribution function

Hadronic showers

Muon production in hadronic showers

Assumptions:

- cascade stops at $E_{part} = E_{dec}$
- each hadron produces one muon

Primary particle proton

 π^0 decay immediately

 Π^{\pm} initiate new cascades

$$N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha}$$
$$\alpha = \frac{\ln n_{\text{ch}}}{\ln n_{\text{tot}}} \approx 0.82\dots0.95$$

Electromagnetic energy and energy transfer

Energy transferred to electromagnetic component

(RE, Pierog, Heck, ARNPS 2011)

Model dependence of correction to obtain total energy small

Superposition model

Proton-induced shower

$$N_{\rm max} = E_0/E_c$$

$$X_{\rm max} \sim \lambda_{\rm eff} \ln(E_0)$$

$$N_{\mu} = \left(\frac{E_0}{E_{\rm dec}}\right)^{\alpha} \qquad \alpha \approx 0.9$$

Assumption: nucleus of mass A and energy E_0 corresponds to A nucleons (protons) of energy $E_n = E_0/A$

$$N_{\rm max}^A = A\left(\frac{E_0}{AE_c}\right) = N_{\rm max}$$

$$X_{\text{max}}^{A} \sim \lambda_{\text{eff}} \ln(E_0/A)$$
$$N_{\mu}^{A} = A \left(\frac{E_0}{AE_{\text{dec}}}\right)^{\alpha} = A^{1-\alpha} N_{\mu}$$

Superposition model: correct prediction of mean Xmax

iron nucleus

Glauber approximation (unitarity)

$$n_{\text{part}} = \frac{\sigma_{\text{Fe}-\text{air}}}{\sigma_{\text{p}-\text{air}}}$$

Superposition and semi-superposition models applicable to inclusive (averaged) observables

Measured components of air showers

core distance (km)

Longitudinal shower profile

Number of charged particles (x10⁹)

(x10⁹)

Number of charged particles

Mean depth of shower maximum

⁽RE, Pierog, Heck, ARNPS 2011)

Different slopes for em. and hadronic showers

(RE, Pierog, Heck, ARNPS 2011)

Derivation of elongation rate theorem

Elongation rate theorem

$$D_e^{\rm had} = X_0(1-B_n-B_\lambda)$$

(Linsley, Watson PRL46, 1981)

$$B_n = \frac{d\ln n_{\rm tot}}{d\ln E}$$

Large if multiplicity of high energy particles rises very fast, **zero in case of scaling**

$$B_{\lambda} = -\frac{1}{X_0} \frac{d\lambda_{\text{int}}}{d\ln E}$$

Large if cross section rises rapidly with energy

Note: $D_{10} = \log(10)D_e$

Mean depth of shower maximum

⁽RE, Pierog, Heck, ARNPS 2011)

Elongation rates and model features

Elongation rate theorem $D_{10}^{\text{had}} = \ln 10 X_0 (1 - B_n - B_\lambda)$ (Linsley, Watson PRL46, 1981) factor ~ 87 g/cm² $B_n = \frac{d\ln n_{\rm tot}}{d\ln E}$ Large if multiplicity of high energy particles rises very fast, **zero in** case of scaling $B_{\lambda} = -\frac{1}{X_0} \frac{d\lambda_{\text{int}}}{d\ln E}$ Large if cross section rises rapidly with energy

Air shower ground arrays: N_e and N_μ

Air shower ground arrays: $N_{\rm e}$ and N_{μ}

Measurement of hadronic cross section

Cross section measurement with air showers

Universality features of high-energy showers (i)

Simulated shower profiles

Profiles shifted in depth

Depth of X_1 and X_{max} strongly correlated, use X_{max} for analysis

Selection of protons: select very deep showers

Cross section measurement: composition

Cross section measurement: self-consistency

Simulation of data sample with different cross sections, interpolation to measured low-energy values

measured slope of X_{max} distribution

$$\sigma_{p-\mathsf{air}} = \left(505 \ \pm 22_{\mathrm{stat}} \ \left(^{+26}_{-34}\right)_{\mathrm{sys}}
ight) \ \mathrm{mb}$$

High-energy frontier: proton-air cross section

(Pierre Auger Collab. 1107.4804, Phys. Rev. Lett. 2012)

The muon problem

Muon number in inclined showers

(Auger, PRD91, 2015)

Several measurements: indications for muon discrepancy

Number of muons in showers with θ >60°

Hybrid events: N19 used for muon counting

- Muonic component dominates
 - (\approx 20% residual e.m. component)
- Energy estimator N₁₉:

 $N_{19} = \rho_{\mu} / \rho_{\mu, 19}(x, y, \theta, \phi)$

• zenith angle independent

Simulated muon maps (magnetic deflection)

Ultimative test: simulation of individual events

Phenomenological model ansatz

Energy scaling: em. particles and muons

Muon scaling: hadronically produced muons and muon interaction/decay products

Full detector simulation after re-scaling

a really good description ?

(Auger, PRL 117, 2016)

Further hint to muon deficit

Analysis of world data set on muons (i)

Telescope Array 101 **EAS-MSU** SUGAR **NEVOD-DECOR** 10^{3} AMIGA Yakutsk HiRes-MI, 10^{0} HiRes-MIA $E_{\mu,\min}/\text{GeV}$ IceCube AMIGA **SUGAR** r/m KASCADE-Grande Pierre Auger irande 10^{2} 10^{-1} - IceCube Pierre Auger NEVOD-DECOR 10^{-2} Telescope Array -EAS-MSU 10^{1} $10^{\overline{19}}$ 10^{15} 10^{18} $10^{\overline{18}}$ $10^{\overline{15}}$ 10^{17} 1019 10^{16} 10¹⁶ 10^{17} E/eV E/eV

Muon energy threshold

Dembinski et al., Working group, UHECR 2018, Paris

Muon lateral distance

k

Analysis of world data set on muons (ii)

High-energy interactions determine shower maximum

Interactions of all energies of relevance to muons

51

Muon production at large lateral distance

Muon observed at 1000 m from core

Modification of characteristics of interactions ?

Logarithmic interpolation starting at 10^{15} eV

$$f(E) = 1 + (f_{19} - 1) \frac{\ln(E/10^{15} \,\mathrm{eV})}{\ln(10^{19} \,\mathrm{eV}/10^{15} \,\mathrm{eV})}$$

Modification factor at 10¹⁹ eV

Modification of

- cross sections (p-air, π-air, K-air)
- secondary particle multiplicity
- elasticity (leading particle)

Implementation

- rescaling after event generation
- separate treatment of leading particle
- conservation of energy and charge
- modified version of CONEX
- available for different interaction models
- shown here for SIBYLL

Results for proton showers: Ne, Nµ

(R. Ulrich et al. PRD83 (2011) 054026)

Muon production in hadronic showers

Assumptions:

- cascade stops at $E_{part} = E_{dec}$
- each hadron produces one muon

Primary particle proton

 π^0 decay immediately

 Π^{\pm} initiate new cascades

$$N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha}$$
$$\alpha = \frac{\ln n_{\text{ch}}}{\ln n_{\text{tot}}} \approx 0.82 \dots 0.95$$

55

Modification of ratio of neutral to charged pions

String fragmentation: baryon pairs

Muon production and hadronic energy flow

¹ Baryon-Antibaryon pair production (Pierog, Werner)

- Baryon number conservation
- Low-energy particles: large angle to shower axis
- Transverse momentum of baryons higher
- Enhancement of mainly **low-energy** muons

(Grieder ICRC 1973; Pierog, Werner PRL 101, 2008)

2 Leading particle effect for pions (Drescher 2007, Ostapchenko 2014)

- Leading particle for a π could be ρ^0 and not π^0
- Decay of ρ^0 almost 100% into two charged pions

3 New hadronic physics at high energy (Farrar, Allen 2012)

- Inhibition of π^0 decay (Lorentz invariance violation etc.)
- Chiral symmetry restauration

 $\pi^{\pm} \sim 30\%$ chance to have π^{0} as leading particle

Rho production in π -p interactions (Sibyll 2.1 \rightarrow Sibyll 2.3)

(Riehn et al., ICRC 2015)

NA61 experiment at CERN SPS

(former NA49 detector, extended)

Invariant mass of two charged tracks

Some NA61 results

(Prado ICRC 2017, EPJ 2016)

NA61 results and extrapolation to high energy

Predictions for muon number at ground (updated)

Baryon pairs: enhancement of low-energy muons

EPOS

(Pierog, Werner PRL 101, 2008)

Relative energy spectrum of muons in EAS

Muon energy spectra relative to that of Sibyll 2.1

Discrimination by IceCube (surface array and in-ice muon data)?

IceCube: discrimination of enhancement scenarios?

Correlation of low energy muons (surface) and in-ice muon bundles

IceTop: E_µ ~1 GeV

Time scale late early

(IceCube, Gonzalez & Dembinski et al. 2016)

IceCube: $E_{\mu} > 300 \text{ GeV}$

IceCube: discrimination of enhancement scenarios?

SIBYLL2.3

SIBYLL2.1

(data-proton)/(iron-proton) 80 1 87 8 <log₁₀(dE/dX₁₅₀₀)> <log₁₀(dE/dX₁₅₀₀)> <β> Iron 0.6 0.4 W Systematics Systematics λ=2.45 m, VEMCal -3% λ=2.45 m, VEMCal -3% 0.2 λ=2.05 m, VEMCal + 3% λ=2.05 m, VEMCal + 3% Light yield Light yield proton In-ice muons **IceCube Preliminary** IceCube Preliminarv -0.2 -0.4 (~300 GeV) 1.8 2 log₁₀(S₁₂₅/VEM) 0.8 0.6 0.8 1.2 1.2 1.4 1.4 1.6 1.6 QGSJet-II.04 **EPOS-LHC** (data-proton)/(iron-proton) <log₁₀(dE/dX₁₅₀₀)> <log₁₀(dE/dX₁₅₀₀)> < 6> iron 0.8 0.6 Surface muons 0.4 (~1 GeV) Systematics Systematics λ=2.45 m, VEMCal -3% λ=2.45 m, VEMCal -3% 0.2 λ=2.05 m, VEMCal + 3% λ=2.05 m, VEMCal + 3% Light yield Light yield proton IceCube Preliminary IceCube Preliminarv -0.2 -0.4 1.8 2 log₁₀(S₁₂₅/VEM) 0.8 0.8 1.2 1.4 0.6 1.2 1.6 1.4 1.6 log (de Mindder, Gaisser, IceCube, ICRC 2017)

Outlook: muon production depth

(Cazon et al. Astropart. Phys. 23, 2005 & 1201.5294)

Depth of maximum muon production

EPOS prediction: muons are produced too deep in atmosphere

QGSJET predictions consistent with Auger data

Summary

Different air shower observables are sensitive to hadronic interactions of different energies

- em. particles and X_{max}: first few high-energy interactions
- muons and $X\mu_{max}$: wide range of interaction energies

Model building relies heavily on measurements at accelerators

LHC tuning and further developments have led to an convergence of the predictions

- X_{max} data: interpreted as heavier in mass than before
- N_{μ} data: interpreted as lighter in mass than before
- selfconsistency improved

Overall good description of most shower features reached

Shortcomings clearly revealed in dedicated air shower measurements

- correlation of two independent measurements
- none of the LHC-tuned models much better in data description than others

LHC measurements of p-O and further air shower studies important for progress

Models should be used with care, cross-checks always needed

Backup slides

Change of model predictions thanks to LHC data

(Pierog, ICRC 2017)

UHECRs: How to detect them

TA event simulation for surface array

87

Auger event simulation for surface array

Composition and model sensitivity ?

89

Depth of shower maximum (Auger results)

Particle physics with the upgraded Auger Observatory

 ρ_{μ} (Mod) / ρ_{μ} (QII, p)

Results on muon number of showers still not understood, important effect missing in models?

(Auger Collab. Phys. Rev. D91, 2015 & ICRC 2015)

Example of power of upgraded detectors

92

Exotic models for the knee

New physics: scaling with nucleon-nucleon cms energy

LHC data probe the region beyond the knee

Problem of limited phase space coverage

Example: generic LHC detector coverage

Electron Profile

More than 50% of all measured secondaries from particles of $\eta > 8$

(Ulrich, DPG meeting 2014)

200

400

Number

10⁷

10⁶

10⁵

E

0

The Pierre Auger Observatory

Telescope Array (TA)

Northern hemisphere: Utah, USA

Auger event simulation for surface array

TA event simulation for surface array

Several shower observables

Auger: comparison of surface detector signals

(Independent confirmation with several other observables)

TA: comparison of surface detector signals

SD energies 27% higher than FD energies (QGSJET II, protons)

Yakutsk: direct measurement of muons

Comparison of surface detectors

Auger: thick water-Cherenkov detectors (large part of signal due to muons, large acceptance to inclined showers)

Complementary surface detector arrays

Telescope Array: thin scintillators (main part of signal due to em. particles, low sensitivity to muons)

Accounting for different sensitivity to muons

(HadInt Working Group, UHECR 2012)

Results for proton showers: Xmax

(R. Ulrich et al. PRD83 (2011) 054026)

Auger data 2009

Change of interaction physics?

Model by Farrar & Allen, UHECR 2012 Restoration of chiral symmetry Strong enhancement of baryon production

Importance of correlations for fluctuations

Nuclear fragmentation is important for quantitative predictions

Early muons: importance of shower front curvature

Curvature of shower front sensitive to early muons

Curvature should be measured

(Cazon et al. Astropart. Phys. 23, 2005)

Backup slides

Performance plots of recent model versions

Scaling: model predictions (i)

115

Scaling: model predictions (ii)

116

Scaling: model predictions (iii)

Inelasticity: fraction of beam particle energy that is transferred to secondary particles except the leading one

(Pierog ISVHECRI 2018)

Elasticity = 1 - Inelasticity

Particle	Constituent quarks	$\begin{array}{c} \text{Mass} \\ \text{(MeV)} \end{array}$	$\begin{array}{c} \text{Mean life} \\ (c\tau) \end{array}$	Decay channels	branching ratio (%)
p	uud	938.3	∞	_	_
n	udd	939.6	$2.64 imes 10^8 { m km}$	$p \ e^- \ \overline{\nu}_e$	100
$N^{+}(1444)$	uud	1440	$\approx 300{\rm MeV}$	$p \pi^{0}$ $n \pi^{+}$ $p \pi^{+} \pi^{-}$ $n \pi^{+} \pi^{0}$	
				$p \gamma$	0.35 - 0.48
$\Delta^{+}(1230)$	uud	1232	$117\mathrm{MeV}$	$p \pi^0$ $n \pi^+$	
Λ^0	uds	1115.7	$7.89\mathrm{cm}$	$p \pi^{-}$ $n \pi^{+}$ $p e^{-} \overline{\nu}_{e}$ $p \mu^{-} \overline{\nu}_{\mu}$	$\begin{array}{c} 63.9\\ 35.8\\ 8.3\times10^{-2}\\ 16.3\times10^{-2} \end{array}$
Σ^+	uus	1189.4	$2.40\mathrm{cm}$	$p \pi^0$ $n \pi^+$	$51.6\\48.3$
Ξ^{-}	dss	1321.7	$4.91\mathrm{cm}$	$\Lambda~\pi^-$	99.9
Ω^{-}	<i>\$\$\$</i>	1672.5	$2.46\mathrm{cm}$	$\begin{array}{c} \Lambda \ K^- \\ \Xi^0 \ \pi^- \\ \Xi^- \ \pi^0 \end{array}$	$67.8 \\ 23.6 \\ 8.6$
Λ_c^+	udc	2286	$59.9\mu{ m m}$	$egin{array}{lll} \Lambda/p/n & \ldots \ \Lambda & e^+ & u_e \ \Lambda & \mu^+ & u_\mu \end{array}$	$73 \\ 2.1 \\ 2.0$

Particle	Constituent quarks	$\begin{array}{c} \text{Mass} \\ \text{(MeV)} \end{array}$	$\begin{array}{c} \text{Mean life} \\ (c\tau) \end{array}$	Decay channels	branching ratio (%)
π^+	$u\overline{d}$	139.6	$7.80\mathrm{m}$	$ \begin{array}{c} \mu^+ \nu_\mu \\ \mu^+ \nu_\mu \gamma \\ e^+ \nu_e \end{array} $	99.99 2.0×10^{-2} 1.2×10^{-2}
π^0	$\frac{1}{\sqrt{2}}\left(d\overline{d} - u\overline{u}\right)$	135.0	$25.5\mathrm{nm}$	$e^+ e^- \gamma$	$\begin{array}{c} 98.8 \\ 1.17 \end{array}$
K^+	$u\overline{s}$	493.7	$3.71\mathrm{m}$	$ \begin{array}{c} \mu^{+} \nu_{\mu} \\ \pi^{+} \pi^{0} \\ \pi^{+} \pi^{-} \pi^{+} \\ \pi^{0} e^{+} \nu_{e} \\ \pi^{0} \mu^{+} \nu_{\mu} \\ \pi^{+} \pi^{0} \pi^{0} \end{array} $	63.6 20.7 5.59 5.07 3.35 1.76
K^0	$d\overline{s}$	497.6	_	_	_
K_L^0	$\frac{1}{\sqrt{2}} \left(d\overline{s} - s\overline{d} \right)$	497.6	$15.34\mathrm{m}$	$ \begin{array}{c} \pi^{\pm} \ e^{\mp} \ \nu_{e} \\ \pi^{\pm} \ \mu^{\mp} \ \nu_{\mu} \\ \pi^{0} \ \pi^{0} \ \pi^{0} \\ \pi^{+} \ \pi^{-} \ \pi^{0} \\ \pi^{+} \ \pi^{-} \end{array} $	$\begin{array}{c} 40.5 \\ 27.0 \\ 19.5 \\ 12.5 \\ 0.19 \end{array}$
K_S^0	$\frac{1}{\sqrt{2}}\left(d\overline{s} + s\overline{d}\right)$	497.6	$2.68\mathrm{cm}$	$\begin{array}{c} \pi^+ \ \pi^- \\ \pi^0 \ \pi^0 \\ \pi^+ \ \pi^- \ \gamma \end{array}$	$69.2 \\ 30.7 \\ 0.18$

Some useful relations (units)

- Speed of light: $c = 2.9979 \times 10^{10} \,\mathrm{cm \, s^{-1}}$
- Gravitational constant: $G = 6.6738 \times 10^{-8} \,\mathrm{cm}^3 \,\mathrm{g}^{-1} \,\mathrm{s}^{-2}$
- Planck constant: $h = 6.626 \times 10^{-27} \text{ erg s} = 4.136 \times 10^{-15} \text{ eV s}$, $\hbar = h/(2\pi) = 1.0546 \times 10^{-27} \text{ erg s}$
- Boltzmann constant: $k_B = 8.6173 \times 10^{-5} \text{ eV K}^{-1} = 1.3806 \times 10^{-16} \text{ erg K}^{-1}$
- Avogadro constant: $N_A = 6.0221 \times 10^{23}$. By definition, N_A atoms of carbon 12 C have a mass of 12 g. Therefore, the mean mass of a nucleon can be written as $m_N = (m_p + m_n)/2 \approx (1/N_A) \text{ g} = 1.6605 \times 10^{-24} \text{ g}.$
- Energy units: $1 \text{ erg} = 10^{-7} \text{ J}$, $1 \text{ eV} = 1.6022 \times 10^{-12} \text{ erg}$, $1 \text{ cm}^{-1} = 0.000123986 \text{ eV}$, $1 \text{ fm} = 5.06773 \text{ GeV}^{-1}$
- A photon of $E_{\gamma} = 1 \text{ keV}$ has a frequency of $\nu = 2.4 \times 10^{17} \text{ Hz}$. This statement is based on $E_{\gamma} = h\nu$. Direct conversion of units using $\hbar = h/(2\pi) = 6.582 \times 10^{-22} \text{ MeV}$ s would give a result that differs by 2π .
- Distances: $1 \text{ pc} = 3.0857 \times 10^{18} \text{ cm}, 1 \text{ AU} = 1.496 \times 10^{13} \text{ cm}$
- Cross sections: $1 \text{ mb} = 10^{-27} \text{ cm}^2$, $(1 \text{ fm})^2 = 10 \text{ mb}$, $(1 \text{ GeV})^{-2} = 0.389365 \text{ mb}$
- Thomson cross section: $\sigma_{\rm T} = 8\pi r_e^2/3 = 665.25 \,\mathrm{mb} = 6.652 \times 10^{-25} \,\mathrm{cm}^2$, where r_e is the classical electron radius $r_e = e^2/(m_e c^2) = 2.818 \times 10^{-13} \,\mathrm{cm}$
- Solar mass and luminosity: $M_{\odot} = 1.9885 \times 10^{33} \,\mathrm{g}, L_{\odot} = 3.828 \times 10^{33} \,\mathrm{erg \, s^{-1}}$
- Flux density used in radio astronomy (Jansky): $1 \text{ Jy} = 10^{-26} \text{W m}^{-2} \text{ Hz}^{-1} = 10^{-23} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1}$
- Magnetic field strength: $1 \text{ G} = 10^{-4} \text{ T}$

UHECRs: How to detect them

121