MM

Hadronic Interactions

Ralph Engel

Karlsruhe Institute of Technology (KIT)

Additional material for reading

https://indico.cern.ch/event/719824/
3 Particle physics 30
3.1 Historical relation of cosmic ray and particle physics 30
3.2 The Standard Model of particle physics 32
3.3 Quark model of hadrons and hadron masses 41
3.4 Oscillation of neutral mesons 45
3.5 Electron-positron annihilation 47
3.6 Weak decays 49
3.7 QCD-improved parton model and high- p_{\perp} processes 52
3.8 Concepts for describing low- p_{\perp} processes 60
4 Hadronic interactions and accelerator data 65
4.1 Basics 65
4.2 Total and elastic cross sections 72
4.3 Phenomenology of particle production 84
4.4 Nuclear targets and projectiles 97
4.5 Hadronic interaction of photons 101
4.6 Extrapolation to very high energy 105
16 Extensive air showers 313
16.1 Basic features of air showers 313
16.2 The Heitler-Matthews splitting model 315
16.3 Muons in air showers 316
16.4 Nuclei and the superposition model 320
16.5 Elongation rate theorem 323
16.6 Shower universality and cross section measurement 324
16.7 Particle detector arrays 326
16.8 Atmospheric Cherenkov light detectors 330
16.9 Fluorescence telescopes 334
16.10 Radio signal detection 337

Cosmic ray flux and interaction energies

Modeling of hadronic interactions

Time-of-flight walls

NA6I experiment in CERN SPS beam
Main TPCs

Typical particle multiplicities: 5 to 15 secondaries

Cross section and interaction rate

Definition

(Units: 1 barn $=10^{-28} \mathrm{~m}^{2}$
$1 \mathrm{mb}=10^{-27} \mathrm{~cm}^{2}$)

Interaction rate
Flux of particles
on single target

$$
\Phi=\frac{\mathrm{d} N_{\text {beam }}}{\mathrm{d} A \mathrm{~d} t}
$$

Total cross section: count number of interaction types (elastic, inelastic)
Inclusive cross section: count number of particles of certain type in final state

Cross section and interaction rate

Definition

Beam

(Units: I barn $=10^{-28} \mathrm{~m}^{2}$
$\left.1 \mathrm{mb}=10^{-27} \mathrm{~cm}^{2}\right)$

Flux of particles on single target

$$
\Phi=\frac{d N_{\mathrm{beam}}}{d A d t}
$$

$$
\frac{d N_{\mathrm{int}}}{d t d V}=\frac{\rho_{\mathrm{target}}}{\left\langle m_{\mathrm{target}}\right\rangle} \sigma \Phi
$$

$$
\begin{aligned}
& d X=\rho_{\mathrm{target}} d l \\
& \cdots--------------->\quad \frac{d \Phi}{d X}=-\frac{\sigma}{\left\langle m_{\mathrm{target}}\right\rangle} \Phi \\
& \frac{d N_{\mathrm{int}}}{d t d V}=\frac{d N_{\mathrm{int}}}{d l d t d A}=-\rho_{\mathrm{target}} \frac{d \Phi}{d X} \\
& \\
& \left\langle m_{\mathrm{air}}\right\rangle \approx 14.51 m_{p}=24160 \mathrm{mb} \mathrm{~g} \mathrm{~cm}^{-2}
\end{aligned}
$$

The Earth's atmosphere in numbers

altitude (km)	vertical depth $\left(\mathrm{g} / \mathrm{cm}^{2}\right)$	local density $\left(10^{-3} \mathrm{~g} / \mathrm{cm}^{3}\right)$	Molière unit (m)	Cherenkov threshold (MeV)	Cherenkov angle $\left(^{\circ}\right)$
40	3	3.8×10^{-3}	2.4×10^{4}	386	0.076
30	11.8	1.8×10^{-2}	5.1×10^{3}	176	0.17
20	55.8	8.8×10^{-2}	1.0×10^{3}	80	0.36
15	123	0.19	478	54	0.54
10	269	0.42	223	37	0.79
5	550	0.74	126	28	1.05
3	715	0.91	102	25	1.17
1.5	862	1.06	88	23	1.26
0.5	974	1.17	79	22	1.33
0	1032	1.23	76	21	1.36

In reality the temperature and hence the scale height decrease with increasing altitude until the tropopause $(12-16 \mathrm{~km})$. At sea level $h_{0} \cong 8.4 \mathrm{~km}$, and for $40<X_{v}<200 \mathrm{~g} / \mathrm{cm}^{2}$, where production of secondary particles peaks, $h_{0} \cong 6.4 \mathrm{~km}$.

Particle	Constituent quarks	$\begin{gathered} \text { Mass } \\ (\mathrm{MeV}) \end{gathered}$	Mean life $(c \tau)$	Decay channels	branching ratio (\%)
p	uud	938.3	∞	-	-
n	$u d d$	939.6	$2.64 \times 10^{8} \mathrm{~km}$	$p e^{-} \bar{\nu}_{e}$	100
$N^{+}(1444)$	uud	1440	$\approx 300 \mathrm{MeV}$	$\begin{gathered} p \pi^{0} \\ n \pi^{+} \\ p \pi^{+} \pi^{-} \\ n \pi^{+} \pi^{0} \\ p \gamma \end{gathered}$	0.35-0.48
$\Delta^{+}(1230)$	uud	1232	117 MeV	$\begin{gathered} p \pi^{0} \\ n \pi^{+} \end{gathered}$	$\begin{aligned} & 66.7 \\ & 33.3 \end{aligned}$
Λ^{0}	$u d s$	1115.7	7.89 cm	$\begin{gathered} p \pi^{-} \\ n \pi^{+} \\ p e^{-} \bar{\nu}_{e} \\ p \mu^{-} \bar{\nu}_{\mu} \end{gathered}$	$\begin{gathered} 63.9 \\ 35.8 \\ 8.3 \times 10^{-2} \\ 16.3 \times 10^{-2} \end{gathered}$
Σ^{+}	uus	1189.4	2.40 cm	$\begin{gathered} p \pi^{0} \\ n \pi^{+} \end{gathered}$	$\begin{aligned} & 51.6 \\ & 48.3 \end{aligned}$
Ξ^{-}	$d s s$	1321.7	4.91 cm	$\Lambda \pi^{-}$	99.9
Ω^{-}	sss	1672.5	2.46 cm	$\begin{aligned} & \Lambda K^{-} \\ & \Xi^{0} \pi^{-} \\ & \Xi^{-} \pi^{0} \end{aligned}$	$\begin{gathered} 67.8 \\ 23.6 \\ 8.6 \end{gathered}$
Λ_{c}^{+}	$u d c$	2286	$59.9 \mu \mathrm{~m}$	$\begin{gathered} \Lambda / p / n \ldots \\ \Lambda e^{+} \nu_{e} \\ \Lambda \mu^{+} \nu_{\mu} \end{gathered}$	$\begin{array}{r} 73 \\ 2.1 \\ 2.0 \end{array}$

Particle	Constituent quarks	$\begin{aligned} & \text { Mass } \\ & (\mathrm{MeV}) \end{aligned}$	Mean life $(c \tau)$	Decay channels	branching ratio (\%)
π^{+}	$u \bar{d}$	139.6	7.80 m	$\begin{gathered} \mu^{+} \nu_{\mu} \\ \mu^{+} \nu_{\mu} \gamma \\ e^{+} \nu_{e} \end{gathered}$	$\begin{gathered} 99.99 \\ 2.0 \times 10^{-2} \\ 1.2 \times 10^{-2} \end{gathered}$
π^{0}	$\frac{1}{\sqrt{2}}(d \bar{d}-u \bar{u})$	135.0	25.5 nm	$\begin{gathered} \gamma \gamma \\ e^{+} e^{-} \gamma \end{gathered}$	$\begin{aligned} & 98.8 \\ & 1.17 \end{aligned}$
K^{+}	$u \bar{s}$	493.7	3.71 m	$\begin{gathered} \mu^{+} \nu_{\mu} \\ \pi^{+} \pi^{0} \\ \pi^{+} \pi^{-} \pi^{+} \\ \pi^{0} e^{+} \nu_{e} \\ \pi^{0} \mu^{+} \nu_{\mu} \\ \pi^{+} \pi^{0} \pi^{0} \end{gathered}$	$\begin{aligned} & 63.6 \\ & 20.7 \\ & 5.59 \\ & 5.07 \\ & 3.35 \\ & 1.76 \end{aligned}$
K^{0}	$d \bar{s}$	497.6	-	-	-
K_{L}^{0}	$\frac{1}{\sqrt{2}}(d \bar{s}-s \bar{d})$	497.6	15.34 m	$\begin{gathered} \pi^{ \pm} e^{\mp} \nu_{e} \\ \pi^{ \pm} \mu^{\mp} \nu_{\mu} \\ \pi^{0} \pi^{0} \pi^{0} \\ \pi^{+} \pi^{-} \pi^{0} \\ \pi^{+} \pi^{-} \end{gathered}$	$\begin{aligned} & 40.5 \\ & 27.0 \\ & 19.5 \\ & 12.5 \\ & 0.19 \end{aligned}$
K_{S}^{0}	$\frac{1}{\sqrt{2}}(d \bar{s}+s \bar{d})$	497.6	2.68 cm	$\begin{gathered} \pi^{+} \pi^{-} \\ \pi^{0} \pi^{0} \\ \pi^{+} \pi^{-} \gamma \end{gathered}$	$\begin{aligned} & 69.2 \\ & 30.7 \\ & 0.18 \end{aligned}$

Some useful relations (units)

- Speed of light: $c=2.9979 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}$
- Gravitational constant: $G=6.6738 \times 10^{-8} \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{~s}^{-2}$
- Planck constant: $h=6.626 \times 10^{-27} \mathrm{ergs}=4.136 \times 10^{-15} \mathrm{eV} \mathrm{s}$, $\hbar=h /(2 \pi)=1.0546 \times 10^{-27} \mathrm{erg} \mathrm{s}$
- Boltzmann constant: $k_{B}=8.6173 \times 10^{-5} \mathrm{eV} \mathrm{K}^{-1}=1.3806 \times 10^{-16} \mathrm{erg} \mathrm{K}^{-1}$
- Avogadro constant: $N_{A}=6.0221 \times 10^{23}$. By definition, N_{A} atoms of carbon ${ }^{12} \mathrm{C}$ have a mass of 12 g . Therefore, the mean mass of a nucleon can be written as $m_{N}=\left(m_{p}+m_{n}\right) / 2 \approx\left(1 / N_{A}\right) \mathrm{g}=1.6605 \times 10^{-24} \mathrm{~g}$.
- Energy units: $1 \mathrm{erg}=10^{-7} \mathrm{~J}, 1 \mathrm{eV}=1.6022 \times 10^{-12} \mathrm{erg}$, $1 \mathrm{~cm}^{-1}=0.000123986 \mathrm{eV}, 1 \mathrm{fm}=5.06773 \mathrm{GeV}^{-1}$
- A photon of $E_{\gamma}=1 \mathrm{keV}$ has a frequency of $\nu=2.4 \times 10^{17} \mathrm{~Hz}$. This statement is based on $E_{\gamma}=h \nu$. Direct conversion of units using $\hbar=$ $h /(2 \pi)=6.582 \times 10^{-22} \mathrm{MeV}$ s would give a result that differs by 2π.
- Distances: $1 \mathrm{pc}=3.0857 \times 10^{18} \mathrm{~cm}, 1 \mathrm{AU}=1.496 \times 10^{13} \mathrm{~cm}$
- Cross sections: $1 \mathrm{mb}=10^{-27} \mathrm{~cm}^{2},(1 \mathrm{fm})^{2}=10 \mathrm{mb}$, $(1 \mathrm{GeV})^{-2}=0.389365 \mathrm{mb}$
- Thomson cross section: $\sigma_{\mathrm{T}}=8 \pi r_{e}^{2} / 3=665.25 \mathrm{mb}=6.652 \times 10^{-25} \mathrm{~cm}^{2}$, where r_{e} is the classical electron radius $r_{e}=e^{2} /\left(m_{e} c^{2}\right)=2.818 \times 10^{-13} \mathrm{~cm}$
- Solar mass and luminosity: $M_{\odot}=1.9885 \times 10^{33} \mathrm{~g}, L_{\odot}=3.828 \times 10^{33} \mathrm{erg} \mathrm{s}^{-1}$
- Flux density used in radio astronomy (Jansky): $1 \mathrm{Jy}=10^{-26} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}=$ $10^{-23} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1}$
- Magnetic field strength: $1 \mathrm{G}=10^{-4} \mathrm{~T}$

Total and elastic cross sections

LHC results

I. Low energy interactions: resonance formation, spin-dependent angular decay, up to $\sim 3 \mathrm{GeV}$

2. Intermediate energy:

 approximate scaling, up to 1000 GeV
3. High energy interactions:

 scaling violation, multiple interactions and minijet production
Compilation of total cross sections

I. Low energy region

Hadronic interaction of photons

Scaling region (longitudinal phase space)
Minijet region (scaling violation)

Photoproduction of resonances

CMB: Energy threshold not sharp

$$
E_{\gamma, \max } \approx 10^{-3} \mathrm{eV}
$$

$$
E_{p, \Delta}=\frac{m_{\Delta}^{2}-m_{p}^{2}}{2 E_{\gamma, \max }(1-\cos \theta)} \approx 10^{20} \mathrm{eV}
$$

In proton rest frame:

$$
E_{\gamma, \mathrm{lab}} \approx 300 \mathrm{MeV}
$$

Decay branching ratio proton:neutron $=2: 1$
Mean proton energy loss 20\%
Decay isotropic up to spin effects

Well-established resonances in photoproduction

Baryon resonances and their physical parameters implemented in SOPHIA (see text). Superscripts ${ }^{+}$and ${ }^{0}$ in the parameters refer to $p \gamma$ and $n \gamma$ excitations, respectively. The maximum cross section, $\sigma_{\max }=4 m_{\mathrm{N}}^{2} M^{2} \sigma_{0} /\left(M^{2}-m_{\mathrm{N}}^{2}\right)^{2}$, is also given for reference

Resonance	M	Γ	$10^{3} b_{\gamma}^{+}$	σ_{0}^{+}	$\sigma_{\max }^{+}$	$10^{3} b_{\gamma}^{0}$	σ_{0}^{0}	$\sigma_{\max }^{0}$
$\Delta(1232)$	1.231	0.11	5.6	31.125	411.988	6.1	33.809	
$N(1440)$	1.440	0.35	0.5	1.389	7.124	0.3	0.831	4.292
$N(1520)$	1.515	0.11	4.6	25.567	103.240	4.0	22.170	90.082
$N(1535)$	1.525	0.10	2.5	6.948	27.244	2.5	6.928	27.334
$N(1650)$	1.675	0.16	1.0	2.779	7.408	0.0	0.000	0.000
$N(1675)$	1.675	0.15	0.0	0.000	0.000	0.2	1.663	4.457
$N(1680)$	1.680	0.125	2.1	17.508	46.143	0.0	0.000	0.000
$\Delta(1700)$	1.690	0.29	2.0	11.116	28.644	2.0	11.085	28.714
$\Delta(1905)$	1.895	0.35	0.2	1.667	2.869	0.2	1.663	2.875
$\Delta(1950)$	1.950	0.30	1.0	11.116	17.433	1.0	11.085	17.462

Breit-Wigner resonance cross section

$$
\sigma_{\mathrm{bw}}(s ; M, \Gamma, J)=\frac{s}{\left(s-m_{\mathrm{N}}^{2}\right)^{2}} \frac{4 \pi b_{\gamma}(2 J+1) s \Gamma^{2}}{\left(s-M^{2}\right)^{2}+s \Gamma^{2}}
$$

Direct pion production

Possible interpretation: p fluctuates from time to time to n and m^{+}

Heisenberg uncertainty relation $\Delta E \Delta t \approx 1$

Energy threshold very low:

$$
E_{\mathrm{cm}, \min }=m_{\pi}+m_{p} \approx 1.07 \mathrm{GeV}
$$

(Δ^{+}resonance: I. 232 GeV)

Lifetime of fluctuations

Consider photon with momentum k

$$
\text { n } v_{i}=\rho, \omega, \phi, \ldots
$$

Heisenberg uncertainty relation $\Delta E \Delta t \approx 1$

Length scale (duration) of hadronic interaction $\quad \Delta t_{\mathrm{int}}<1 \mathrm{fm} \approx 5 \mathrm{GeV}^{-1}$

$$
\Delta t \approx \frac{1}{\Delta E}=\frac{1}{\sqrt{k^{2}+m_{V}^{2}}-k}=\frac{1}{k\left(\sqrt{1+m_{V}^{2} / k^{2}}-1\right)} \approx \frac{2 k}{m_{V}^{2}}
$$

Fluctuation long-lived for $k>3 \mathrm{GeV}$

$$
\Delta t \approx \frac{2 k}{m_{V}^{2}}>\Delta t_{\mathrm{int}}
$$

Multiparticle production: vector meson dominance

Photon is considered as superposition of "bare" photon and hadronic fluctuation

$$
|\gamma\rangle=\left|\gamma_{\text {bare }}\right\rangle+P_{\text {had }} \sum_{i}\left|V_{i}\right\rangle \quad P_{\text {had }}=\rho, \omega, \phi, \ldots>\frac{1}{300} \cdots \frac{1}{250}
$$

Cross section for hadronic interaction $\sim 1 / 300$ smaller than for pi-p interactions

Multiparticle

Elastic scattering

Putting all together: description of total cross section

- PDG: 9 resonances, decay channels, angular distributions
- Regge parametrization at higher energy
- Direct contribution: fit to difference to data

Many measurements available, still approximations necessary

Comparison with measured partial cross sections

Comparison with measured partial cross sections

Measurement of nucleus disintegration

Ion beam

Photodissociation

Effective em. dissociation cross section

(Pshenichnov 2002)

Example: photo-dissociation of nuclei

Saclay \& Livermore data

Projectile: $30 \mathrm{AGeV} \mathrm{Pb}$, different targets

(Smirnov, 2005)

Energy considerations for nuclei

Energy of nucleus needed for formation of giant dipole resonance in CMB

Nucleus at rest

$$
\begin{aligned}
& \\
s= & \left(p_{\gamma}+p_{A}\right)^{2} \\
= & p_{\gamma}^{2}+p_{A}^{2}+2\left(p_{\gamma} \cdot p_{A}\right) \\
& =\left(A m_{p}\right)^{2}+2 A m_{p} E_{\gamma}
\end{aligned}
$$

$$
\text { Iron: } \quad E_{A} \sim 310^{20} \mathrm{eV}
$$

$$
\text { Helium: } \mathrm{E}_{\mathrm{A}} \sim 21019 \mathrm{eV}
$$

Nucleus with E_{A} in CMB field

$$
s=\left(A m_{p}\right)^{2}+2 E_{\gamma}^{\mathrm{CMB}} E_{A}(1-\cos \theta)
$$

Photo-disintegration for energies

$$
E_{A} \geq A \frac{m_{p} E_{\gamma}}{(1-\cos \theta) E_{\gamma}^{\mathrm{CMB}}}
$$

Radiation fields as possible target

Comparison of energy loss lengths

Photo-pion production

Energy loss length

Photo-dissociation (giant dipole resonance)

Parametrization of cross sections

Example: resonances in hadron-hadron interactions

2. Intermediate energy region

Expectations from uncertainty relation

Assumptions:

- hadrons built up of partons
- partons deflected/liberated in collision process, small momentum
- partons fragment into hadrons (pions, kaons,...) after interaction
- interaction viewed in c.m. system (other systems equally possible)

Heisenberg uncertainty relation

$$
\begin{aligned}
& \quad \Delta x \Delta p_{x} \simeq 1 \\
& \Gamma=E_{p} / m_{p}
\end{aligned}
$$

Longitudinal momenta of secondaries

$$
\left\langle p_{\|}\right\rangle \sim \Delta p_{\|} \approx \frac{1}{R^{\prime}} \approx \frac{1}{5} E_{p}
$$

Transverse momenta of secondaries

$$
\left\langle p_{\perp}\right\rangle \sim \Delta p_{\perp} \sim \frac{1}{R} \approx 200 \mathrm{MeV}
$$

QCD-inspired interpretation: color flow model

Partonic view:

't Hooft: large- N_{c} limit of QCD

(Note: small momentum transfer, no asymptotic freedom of partons)

Color flow:

One-gluon exchange: two color fields (strings)

Comparison to $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation into quarks

Confinement in QCD

$$
V(r)=-\frac{4}{3} \frac{\alpha_{\mathrm{s}}}{r}+\lambda r
$$

String fragmentation

Kinematic distribution of secondary particles

Ansatz

- Lorentz-invariant under transformations along string direction
- Transverse momenta result of vacuum fluctuations

$$
\begin{array}{rlr}
& \downarrow & \\
\mathrm{d} N & =f(p) \delta\left(p^{2}-m^{2}\right) \mathrm{d}^{4} p & \\
& \text { Lorentz invariant function } \\
& =f(p) \frac{\mathrm{d}^{3} p}{2 E} & \begin{array}{l}
\text { Separation of long. and transverse } \\
\text { degrees of freedom }
\end{array} \\
& =\frac{1}{2} f(p) \mathrm{d}^{2} p_{\perp} \frac{\mathrm{d} p_{\|}}{E} & \\
& =\frac{1}{2} f_{\perp}\left(p_{\perp}\right) \mathrm{d}^{2} p_{\perp} f_{\|}(y) \mathrm{d} y & \\
& \sim \exp \left(-\beta p_{\perp}^{2}\right) \mathrm{d}^{2} p_{\perp} \quad f_{\|}(y) \mathrm{d} y &
\end{array}
$$

Rapidity and pseudorapidity

$$
\begin{aligned}
\mathrm{d} N & =f(p) \delta\left(p^{2}-m^{2}\right) \mathrm{d}^{4} p \\
& =f(p) \frac{\mathrm{d}^{3} p}{2 E} \\
& =\frac{1}{2} f(p) \mathrm{d}^{2} p_{\perp} \frac{\mathrm{d} p_{\|}}{E} \\
& \frac{\mathrm{~d} p_{\|}}{E}=\mathrm{d} y \\
& =\frac{1}{2} f_{\perp}\left(p_{\perp}\right) \mathrm{d}^{2} p_{\perp} f_{\|}(y) \mathrm{d} y
\end{aligned}
$$

Polar angle relative to beam axis

Experiments without particle identification: pseudorapidity

Rapidity

$$
y=\frac{1}{2} \ln \frac{E+p_{\|}}{E-p_{\|}}=\ln \frac{E+p_{\|}}{m_{\perp}}
$$

$$
\text { Transverse mass } \quad m_{\perp}=\sqrt{m^{2}+p_{\perp}^{2}}
$$

Rapidity of massless particles

$$
y=\frac{1}{2} \ln \frac{1+\cos \theta}{1-\cos \theta}=-\ln \tan \frac{\theta}{2}
$$

$$
\eta=-\ln \tan \frac{\theta}{2}
$$

Pseudorapidity and polar angle

η	deg.	mrad.
3	5.7	99
5	0.77	13
8	0.04	0.7
10	0,005	0.09

- Central $(|\eta|<1)$
- Endcap $(1<|\eta|<3.5)$
- Forward $(3<|\eta|<5)$, HF
- CASTOR+T2 $(5<|\eta|<6.6)$
- FSC $(6.6<|\eta|<8)$
- ZDC $(|\eta|>8)$, LHCf

Rapidity of massless particles

$$
y=\frac{1}{2} \ln \frac{1+\cos \theta}{1-\cos \theta}=-\ln \tan \frac{\theta}{2}
$$

Experiments without particle identification: pseudorapidity

String fragmentation and rapidity

Lorentz invariance of splittings in strings:
Transformation of rapidity

$$
y^{\prime}=y+\text { const } .
$$

$$
f_{\|}\left(y^{\prime}\right)=f_{\|}(y)=\rho
$$

time

- •••••••••

Final state particles: two-string model

Final state particles: two-string model

Color flow and final state particles (ii)

Partonic view:

Other predicted color flow configurations

Two-gluon exchange: diffraction dissociation

At very high energy (multi-gluon exchange):
Almost 50% of all events are elastic or inelastic diffractive scattering
Rapidity y

Momentum fractions of string ends

Asymmetric momentum sharing of valence quarks: most energy given to di-quark

Quark in nucleon (example: SIBYLL)

$$
f_{\mathrm{q} \mid \mathrm{nuc}}(x) \sim \frac{(1-x)^{3}}{\left(x^{2}+\mu^{2}\right)^{\frac{1}{4}}}
$$

Many other parametrizations work well in describing data (example: DPMJET, FLUKA)

$$
f_{\mathrm{q} \mid \mathrm{nuc}}(x) \sim \frac{(1-x)^{\frac{3}{2}}}{\sqrt{x}} \quad \quad f_{\mathrm{q} \mid \mathrm{mes}}(x) \sim \frac{1}{\sqrt{x(1-x)}}
$$

Sea quark momentum fractions

$$
f_{\mathrm{q}_{\mathrm{sea}}}(x) \sim \frac{1}{x} \quad \text { or } \quad f_{\mathrm{q} \text { sea }}(x) \sim \frac{1}{\sqrt{x}}
$$

Particle production spectra (i)

Fluctuations: generation of sea quark anti-quark pair and leading/excited hadron

Leading particle effect:
approx. 40-50\% of energy
of primary particle given
to leading particle

Beam momentum fraction

Particle production spectra (ii)

Central particle production

Fluctuations: generation of sea quark anti-quark pair and leading/excited hadron

Kinematic variables: Feynman X_{F}

Example: 100 GeV p-p collisions, charged secondaries

$$
x_{F}=\frac{p_{\|}}{p_{\max }} \approx \frac{2 p_{\|}}{\sqrt{s}}
$$

Transverse momentum ~350 MeV:
small $\left|\mathbf{x}_{\mathrm{F}}\right|$ corresponds to small pseudorapidity (large angles)

Feynman scaling

Feynman (1972)

$$
2 E \frac{d N}{d^{3} p} \rightarrow \frac{d N}{d x_{F} d^{2} p_{\perp}} \rightarrow f\left(x_{F}, p_{\perp}\right)
$$

Implication: distribution at high-energy approximately independent of energy

$$
\frac{d N}{d x} \approx \tilde{f}(x) \quad x=E / E_{\text {prim }}
$$

NA22 European Hybrid Spectrometer data

Secondary particle multiplicities

Secondary particle multiplicities

Power-law increase of number of secondary particles

$$
n_{\mathrm{ch}} \sim s^{0.1}
$$

proton - proton, $\mathrm{E}_{\text {lab }}=200 \mathrm{GeV}$

proton - proton, $\mathrm{E}_{\text {lab }}=200 \mathrm{GeV}$		
	Exp.	DPMJET-IIII
charged	7.69 ± 0.06	7.64
neg.	2.85 ± 0.03	2.82
p	1.34 ± 0.15	1.26
n	0.61 ± 0.30	0.66
π^{+}	3.22 ± 0.12	3.20
π^{-}	2.62 ± 0.06	2.55
$\mathrm{~K}^{+}$	0.28 ± 0.06	0.30
$\mathrm{~K}^{-}$	0.18 ± 0.05	0.20
Λ	0.096 ± 0.01	0.10
$\bar{\Lambda}$	0.0136 ± 0.004	0.0105

Leading particles

Interaction of hadrons with nuclei

Glauber approximation:
$\sigma_{\text {inel }}=\int d^{2} \vec{b}\left[1-\prod_{k=1}^{A}\left(1-\sigma_{\text {tot }}^{N N} T_{N}\left(\vec{b}-\vec{s}_{k}\right)\right)\right] \approx \int d^{2} \vec{b}\left[1-\exp \left\{-\sigma_{\text {tot }}^{N N} T_{A}(\vec{b})\right\}\right]$

$$
\sigma_{\text {prod }} \approx \int d^{2} \vec{b}\left[1-\exp \left\{-\sigma_{\text {ine }}^{N N} T_{A}(\vec{b})\right\}\right]
$$

Coherent superposition of elementary nucleonnucleon interactions

Example: proton-carbon cross section

Number of participating target nucleons (I.8 at 100 GeV)

String configuration for nucleus as target

SIBYLL: central \& leading particle production

NA49 p-p and $\mathrm{p}-\mathrm{C}$ at 158 GeV

Proton-proton and proton-nucleus distributions very similar

SIBYLL: central \& leading particle production

NA49 p-p and $\mathrm{p}-\mathrm{C}$ at I 58 GeV

Leading particle effect less pronounced due to additional interactions with nucleons in target nucleus

Leading particle effect and nuclei

Projectile component of net proton spectrum

Central collisions:

- no leading particle effect,
- secondaries of highest energy are mesons

Basic features of multiparticle production

- Leading particle effect
- ~50\% of energy carried by leading nucleon
- incoming proton: p:n ~ 2:I (approximately)
- Secondary particles
- power-law increase of multiplicity
- quark counting: ~ $33 \% \pi^{0}, 66 \% \pi^{ \pm}$
- transverse momentum energy-independent
- scaling of secondary particle distributions
- baryons are pair-produced, delayed threshold
- Total cross sections
- no good microscopic model (Regge theory)
- often parametrization of data used
- Glauber model for nuclei
- Diffraction (rapidity gaps)
- elastic scattering \& low-mass diffraction dissociation
- large multiplicity fluctuations

Comparison of low/intermediate energy models

DPMJET II \& III
(Ranft / Roesler, RE, Fedynitch, Ranft, Bopp)

FLUKA

(Ferrari, Sala, Ranft, Roesler)

GHEISHA

(Fesefeld)

- microscopic (universal) model
- resonances for low energy hadron projectiles (HADRIN, NUCRIN)
- two- and multi-string model
- microscopic (universal) model
- resonances (PEANUT), photodissociation
- two-string model, DPMJET at high energy
- parametrization of data (GEANT 3)
- wide range of projectiles/targets
- limited to $\mathrm{E}_{\text {lab }}<500 \mathrm{GeV}$

UrQMD

(Bleicher et al.)

SOPHIA

(Mücke, RE, et al.)

RELDIS

(Pshenichnov)

- combination of microscopic model with data parametrization (no Glauber calc.)
- optimized for interactions of nuclei
- dedicated photon-nucleon model
- resonances, two-strings, $\mathrm{E}_{\text {lab }}<500 \mathrm{GeV}$
- dedicated photodissociation model for nuclei, wide range of nuclei

Example:Waxman-Bahcall neutrino limit (i)

Maximum "'reasonable" neutrino flux due to interaction of cosmic rays in sources

Assumptions:

- sources accelerate only protons (other particles yield fewer neutrinos)
- injection spectrum at sources known (power law index -2)
- each proton interacts once on its way to Earth (optically thin sources)

Proton flux at sources

$$
\Phi_{p}\left(E_{p}\right)=\frac{d N_{p}}{d E_{p} d A d t d \Omega}=A E_{p}^{-\alpha}
$$

Master equation

$$
\Phi_{v}\left(E_{v}\right)=\int \frac{d N_{v}}{d E_{v}}\left(E_{p}\right) \Phi_{p}\left(E_{p}\right) d E_{p}
$$

Spectrum weighted moments (i)

$$
\Phi_{\mathrm{v}}\left(E_{\mathrm{v}}\right)=\int \frac{d N_{\mathrm{v}}}{d E_{v}}\left(E_{p}\right) \Phi_{p}\left(E_{p}\right) d E_{p}
$$

Aim: re-writing of equation for scaling of yield function

Scaling of neutrino yield

$$
x=\frac{E_{\mathrm{v}}}{E_{p}}
$$

fraction of proton energy given to neutrino

$$
\begin{equation*}
\frac{d N_{\mathrm{v}}}{d E_{\mathrm{v}}}\left(E_{p}\right)=\frac{1}{E_{p}} \frac{d N_{\mathrm{v}}}{d x} \tag{I}
\end{equation*}
$$

energy-independent yield function

Elementary math

$$
\begin{align*}
& d E_{p}=\frac{E_{v}}{x^{2}} d x \tag{2}\\
& \Phi_{p}\left(E_{p}\right)=A E_{p}^{-\alpha}=A\left(\frac{E_{v}}{x}\right)^{-\alpha}=x^{\alpha} A E_{v}^{-\alpha} \tag{3}
\end{align*}
$$

Spectrum weighted moments (ii)

$$
\Phi_{\mathrm{v}}\left(E_{\mathrm{v}}\right)=\int \frac{d N_{\mathrm{v}}}{d E_{\mathrm{v}}}\left(E_{p}\right) \Phi_{p}\left(E_{p}\right) d E_{p}
$$

substitutions (I) - (3)

$$
\Phi_{v}\left(E_{v}\right)=\int_{0}^{1} x^{\alpha-1} \frac{d N_{v}}{d x} A E_{v}^{-\alpha} d x
$$

$$
\Phi_{v}\left(E_{V}\right)=\left[\int_{0}^{1} x^{\alpha-1} \frac{d N_{v}}{d x} d x\right] A E_{v}^{-\alpha}
$$

Spectrum weighted moment (just a number that depends

Proton flux (but with neutrino energy instead of proton energy) only on particle physics)

Example:Waxman-Bahcall neutrino limit (ii)

Proton spectrum with $\alpha=2$

$$
\Phi_{v}\left(E_{v}\right)=\left[\int_{0}^{1} x \frac{d N_{v}}{d x} d x\right] A E_{v}^{-2}
$$

Spectrum weighted moment for $\alpha=2$:
mean energy fraction of proton given to neutrino times number of neutrinos per interaction

Relevant interaction \& decay chain (33% of all interactions with small $E_{c m}$)

$$
p+\gamma \longrightarrow n \pi^{+} \longrightarrow n \mu^{+} \mathrm{v}_{\mu} \longrightarrow \underbrace{}_{\begin{array}{c}
20 \% \text { of } \mathrm{p} \\
\text { energy }
\end{array}} \longrightarrow \underbrace{e^{+} \mathrm{v}_{e} \overline{\mathrm{v}}_{\mu} \mathrm{v}_{\mu}}
$$

$$
\Phi_{v_{\mu}}\left(E_{v_{\mu}}\right)=0.33 \times 0.2 \times 0.25 A E_{v_{\mu}}^{-2}
$$

Atmospheric muons and neutrinos

Atmosphere is dense target, secondary particles can interact or decay

Example: pion flux in atmosphere at depth X
Spectrum weighted moment

$$
\frac{\mathrm{d} \Phi_{\pi}(E, X)}{\mathrm{d} X}=-\left(\frac{1}{\Lambda_{\pi}}+\frac{\varepsilon_{\pi}}{E X \cos \theta}\right) \Phi_{\pi}(E, X)+\frac{Z_{N \pi}}{\lambda_{N}} \Phi_{N}(E) e^{-X / \Lambda_{N}}
$$

Regeneration of particle flux through interaction

$$
\begin{aligned}
\Lambda_{N}=\lambda_{N} /\left(1-Z_{N N}\right) \quad \varepsilon_{\pi} & =\frac{m_{\pi} h_{0}}{\tau_{\pi} \cos \theta} \\
X_{v} & =X_{0} E^{-h / h_{0}}
\end{aligned}
$$

Loss of pions due to decay

Generation of pions by primary nucleons

Muon and neutrino fluxes: pion and kaon flux have to be folded with decay distributions

Spectrum weighted moments for $\alpha=2.7$

Detailed simulation of interactions for air target with DPMJET

(Honda et al., C2CR 2005)

3. High energy region

Transition from intermediate to high energy

Intermediate energy:

- $E_{\text {lab }}<I, 500 \mathrm{GeV}$
- $\mathrm{E}_{\mathrm{cm}}<50 \mathrm{GeV}$
- dominated by valence quarks

Lifetime of fluctuations $\quad \Delta t \approx \frac{1}{\Delta E}=\frac{1}{\sqrt{p^{2}+m^{2}}-p}=\frac{1}{p\left(\sqrt{1+m^{2} / p^{2}}-1\right)} \approx \frac{2 p}{m^{2}}$

High energy regime:

- $E_{\text {lab }}>21,000 \mathrm{GeV}$
- $E_{c m}>200 \mathrm{GeV}$
- dominated by gluons and sea quarks

Transition from intermediate to high energy

Intermediate energy:

- $E_{\text {lab }}<I, 500 \mathrm{GeV}$
- $\mathrm{E}_{\mathrm{cm}}<50 \mathrm{GeV}$
- dominated by valence quarks

Lifetime of fluctuations $\quad \Delta t \approx \frac{1}{\Delta E}=\frac{1}{\sqrt{p^{2}+m^{2}}-p}=\frac{1}{p\left(\sqrt{1+m^{2} / p^{2}}-1\right)} \approx \frac{2 p}{m^{2}}$

High energy regime:

- $E_{\text {lab }}>21,000 \mathrm{GeV}$
- $E_{c m}>200 \mathrm{GeV}$
- dominated by gluons and sea quarks

Scattering of quarks and gluons: jet production

Interpretation within perturbative QCD

QCD parton model: inclusive minijet cross section

Proton-proton cross section

$$
\sigma_{Q C D}=\sum_{i, j, k, l} \frac{1}{1+\delta_{k l}} \int d x_{1} d x_{2} \int_{p_{\perp} \text { cuaff }} d p_{\perp}^{2} f_{i}\left(x_{1}, Q^{2}\right) f_{j}\left(x_{2}, Q^{2}\right) \frac{d \sigma_{i, j-k, l}}{d p_{\perp}}
$$

Perturbative QCD predictions for parton densities

Evolution of parton number given by DGLAP equation (and non-linear versions of it)

HERA data

$$
\frac{d f_{i}\left(x, Q^{2}\right)}{d \log Q^{2}}=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \int_{x}^{1} \frac{d y}{y} \sum_{j} f_{j}\left(y, Q^{2}\right) P_{j \rightarrow i}\left(\frac{x}{y}\right) \longleftarrow \quad \begin{aligned}
& \text { Prediction of } \\
& \text { perturbative QCD }
\end{aligned}
$$

Parton densities not really known at very low \mathbf{x}

Range of x values (momentum fractions) needed in calculation

HERA measurement range

$$
\hat{s}=x_{1} x_{2} s \geq 4 p_{\perp}^{2}
$$

Strong dependence on cutoff parameter

Factor ~ $10 . . .150$

Numerical values depend on chosen parton density parametrization

Limited predictive power due to dependence on transverse momentum cutoff

$$
\sigma_{Q C D}=\sum_{i, j, k, l} \frac{1}{1+\delta_{k l}} \int d x_{1} d x_{2} \int_{p_{\perp}^{\text {cutoff }}} d p_{\perp}^{2} f_{i}\left(x_{1}, Q^{2}\right) f_{j}\left(x_{2}, Q^{2}\right) \frac{d \sigma_{i, j \rightarrow k, l}}{d p_{\perp}}
$$

Multiple parton-parton interactions

Proton-proton cross section

Average number of minijet pairs

$$
\left\langle n_{\mathrm{jet}}\right\rangle=\frac{\sigma_{\mathrm{QCD}}}{\sigma_{\mathrm{ine}}}
$$

QCD prediction:

inclusive cross section

Geometric view: Poissonian probability distribution

Peripheral collision:

only very few parton-pairs interacting

Central collision:

many parton-pairs interacting

$$
P_{n}=\frac{\left\langle n_{\text {hard }}(\vec{b})\right\rangle^{n}}{n!} \exp \left(-\left\langle n_{\text {hard }}(\vec{b})\right\rangle\right)
$$

Need to know mean number of interactions as function of impact parameter
mean number of interactions for given impact parameter of collision

Multiple soft and hard interactions

$$
\sigma_{n_{s}, n_{h}}=\int d^{2} b \frac{\left[n_{\mathrm{soft}}(b, s)\right]^{n_{s}}}{n_{s}!} \frac{\left[n_{\mathrm{hard}}(b, s)\right]^{n_{h}}}{n_{h}!} e^{-n_{\mathrm{hard}}(b, s)-n_{\mathrm{soft}}(b, s)}
$$

$$
n_{s}=I, n_{h}=0
$$

$$
n_{s}=I, n_{h}=1
$$

Interaction of two (soft) parton pairs

Two soft interactions

Generic diagram of interaction of two parton pairs

- gluon exchange between each pair produces two strings
- sea quarks needed for string ends (different combinations possible)
- each string fragments into hadrons with small transverse momenta

Comparison with collider data

Note: one cut pomeron means one soft or hard interaction

Charged particle multiplicity distribution at 200 GeV cms.

Charged particle pseudorapidity distributions

Status of Feynman scaling

Feynman scaling

Feynman scaling violated for small $\left|\mathrm{X}_{\mathrm{F}}\right|$

$$
\frac{d N}{d y d^{2} p_{\perp}} \approx \frac{d N}{d y} g\left(p_{\perp}^{2}\right)
$$

$$
2 E \frac{d N}{d^{3} p}=\frac{d N}{d y d^{2} p_{\perp}} \longrightarrow f\left(x_{F}, p_{\perp}\right)
$$

Feynman scaling might approximately
hold in forward direction hold in forward direction

Problem: high parton densities

Non-linear effects / Saturation:

- parton wave functions overlap
- number of partons does not increase anymore at low x
- extrapolation to very high energy unclear

Simple geometric criterion
nucleus

Comparison of high energy interaction models

- universal model

DPMJET II. 5 and III
(Fedynitch, Ranft / Roesler, RE, Ranft, Bopp)

- saturation for hard partons via geometry criterion
- HERA parton densities

EPOS

(Pierog, Werner et al.)

- universal model
- saturation by RHIC data parametriztions
- custom-developed parton densities
- no saturation corrections
- old pre-HERA parton densities
- replaced by QGSJET II
- saturation correction for soft partons via pomeron-resummation
- custom-developed parton densities
- saturation for hard partons via geometry criterion
- HERA parton densities

High parton densities: modification of minijet threshold

QGSJET II: high parton density effects

Re-summation of enhanced pomeron graphs

EPOS - high parton density effects (i)

With effective coupling
$A_{\text {pom }} \sim x_{1}^{\beta} x_{2}^{\beta-\varepsilon}$

$$
\text { Parametrization } \begin{aligned}
\varepsilon_{S} & =a_{S} \beta_{S} Z \\
\varepsilon_{H} & =a_{H} \beta_{H} Z
\end{aligned}
$$

No effective coupling

$$
A_{\mathrm{pom}} \sim\left(x_{1} x_{2}\right)^{\beta}
$$ projectile partons

target partons

EPOS - high parton density effects (ii)

(Werner et al., PRC 2006)

Uncertainty in energy extrapolation!

$$
\begin{aligned}
Z_{T}(i, j)= & z_{0} \exp \left(-b_{i j}^{2} / 2 b_{0}^{2}\right) \\
& +\sum_{\substack{\text { target nucleons } \\
j^{\prime} \neq j}} z_{0}^{\prime} \exp \left(-b_{i j^{\prime}}^{2} / 2 b_{0}^{2}\right)
\end{aligned}
$$

$$
b_{0}=w_{B} \sqrt{\sigma_{\text {inel } p p} / \pi}
$$

$$
\begin{aligned}
& z_{0}=w_{Z} \log s / s_{M}, \\
& z_{0}^{\prime}=w_{Z} \sqrt{\left(\log s / s_{M}\right)^{2}+w_{M^{2}}},
\end{aligned}
$$

Different implementations of soft interactions

SIBYLL 2.1:

strings connected to valence quarks; first fragmentation step with harder fragmentation function

QGSJET \& SIBYLL 2.3:

fixed probability of strings connected to valence quarks or sea quarks; explicit construction of remnant hadron

EPOS:

strings always connected to sea quarks; bags of sea and valence quarks fragmented statistically

EPOS: remant vs. string contributions

EPOS: change from remnant-dominated to string-dominated particle production

Different implementations of two-gluon scattering

Kinematics etc. given by parton densities and perturbative QCD

Two strings stretched between quark pairs from gluon fragmentation

Charged particle distribution in pseudorapidity

Detailed LHC comparison

(D‘Enterria et al., APP 35, 2011)

Models for air showers typically better in agreement with LHC data

Cross section measurements at LHC

LHCf: very forward photon production at 7 TeV

Arm 2

Arm 1

$$
p p \rightarrow \gamma X
$$

(Itow, ICRC 2015)
(LHCf Collab.)

Combined CMS and TOTEM measurements

Nominal vertex

Shifted vertex

T2

Performance plots of recent model versions

Scaling: model predictions (i)

Scaling: model predictions (ii)

Scaling: model predictions (iii)

Inelasticity: fraction of beam particle energy that is transferred to secondary particles except the leading one

(Pierog ISVHECRI 2018)
Elasticity = 1 - Inelasticity

Collective effects - hydrodynamics and hadronization

Very high energy density at initial stage of collision: hydrodynamical state of q and g (Quark-Gluon Plasma)

Particle spectra affected by radial flow

Effect on cosmic ray observables expected to be small, but see Baur et al. arXiv:1902.09265

(Werner ISAPP 2018)

Omega to pion ratio (GC)

thick lines $=\mathrm{pp}(7 \mathrm{TeV})$ thin lines $=\mathrm{pPb}(5 \mathrm{TeV})$ circles $=\mathrm{pp}(7 \mathrm{TeV})$ squares $=\mathrm{pPb}(5 \mathrm{TeV})$
stars $=\mathrm{PbPb}(2.76 \mathrm{TeV})$

Black disk scenario of high energy scattering ?

High energy scattering

Black Disk Model

- large number of minijets
- high perturbative saturation scale
- complete disintegration of leading particle

Not implemented as dominating process in current models

Interaction models for high and ultra-high energies

Minijet production changes characteristics of interactions

- Predicted within perturbative QCD
- Natural source of scaling violations
- Parameters for calculation very uncertain
- Saturation effects very important, not really understood
- Collective effects more and more established (Quark-Gluon Plasma?)

Models construction

- Construction elements very similar
- Model philosophies complementary
- Tuned to data from fixed target and collider experiments
- Differences in treatment of key questions for high-energy extrapolation

Difference between models does probably not cover full range of uncertainty

Appendix

QCD color flow and soft interaction topologies

Soft physics: large $\mathbf{N}_{\mathrm{c}}-\mathbf{N}_{\mathrm{f}}$ expansion of QCD

Problem: no small coupling constant for perturbative expansion in soft physics
't Hooft,Veneziano,Witten (1974)

$$
N_{c} \rightarrow \infty
$$

$$
g^{2} N_{c} \simeq 1
$$

$$
N_{c} / n_{f}=\mathrm{const}
$$

Graphs can be sorted according to number of colors and power of coupling constant

Topology of graph: surface on which it can be drawn without crossing color lines

Planar diagrams preferred: planar diagram theory of QCD

Color flow topologies in large- $\mathbf{N}_{\mathrm{c}} / \mathbf{n}_{\mathrm{f}}$ QCD (i)

Partons only asymptotically free, work with 'strings' instead

Example:
meson propagation
time

Scattering process:

Color flow topologies in large- $\mathrm{N}_{\mathrm{c}} / \mathbf{n}_{\mathrm{f}}$ QCD (ii)

Reggeon exchange

flat topology (dependence on valence quark combinatorics)

Pomeron exchange
cylinder topology (does not depend on flavour of scattering particles)

time

Graphical representation of optical theorem (i)

Standard method of calculating cross sections

$$
\begin{aligned}
& \sigma_{\mathrm{tot}}=\frac{1}{\Phi} \sum_{X} \int d P_{X}\left|M_{p p \rightarrow X}\right|^{2} \\
& \begin{array}{l}
\text { sum over all } \\
\text { final states }
\end{array} \\
& \begin{array}{l}
\text { integration over phase } \\
\text { space of final state particles }
\end{array}
\end{aligned}
$$

Optical theorem (elastic scattering)

$$
=\frac{1}{s} \mathfrak{I} m\left(A_{\mathrm{ela}}(s, t=0)\right)
$$

$\mathfrak{J} m$
a
a

Graphical representation of optical theorem (ii)

Imaginary part of particle propagator

$$
\mathfrak{I} m\left(\frac{d^{4} k}{k^{2}-m^{2}+i \varepsilon}\right)=\delta\left(k^{2}-m^{2}\right) d^{4} k=\frac{d^{3} k}{2 E}
$$

cut particle lines correspond to particles in final state

Unitarity cuts (optical theorem): final state particles

Gluon-gluon scattering and cylinder topology

Standard procedure: total gluon-gluon cross section obtained by squaring matrix element

Same calculation using optical theorem: need to cut graph for elastic scattering

unitarity cut

leading contribution: cylinder topology

