The Pierre Auger Observatory Spectrum, Composition, Anisotropies, Hadronic Interactions

M. Unger (KIT)

Hybrid Detection of Air Showers

Hybrid Detection of Air Showers

Energy Calibration

Energy Scale

fluorescence yield in air:

Rosado, Bianco, Arqueros, APP 55 (2014) 51

energy scale uncertainty:

Absolute fluorescence yield	3.4%
Fluor. spectrum and quenching param.	1.1%
Sub total (Fluorescence yield - sec. 2)	3.6%
Aerosol optical depth	3%÷6%
Aerosol phase function	1%
Wavelength depend. of aerosol scatt.	0.5%
Atmospheric density profile	1%
Sub total (Atmosphere - sec. 3)	3.4%÷6.2%
Absolute FD calibration	9%
Nightly relative calibration	2%
Optical efficiency	3.5%
Sub total (FD calibration - sec. 4)	9.9%
Folding with point spread function	5%
Multiple scattering model	1%
Simulation bias	2%
Constraints in the Gaisser-Hillas fit	$3.5\% \div 1\%$
Sub total (FD profile rec sec. 5)	6.5% ÷5.6%
Invisible energy (sec. 6)	3%÷1.5%
Stat. error of the SD calib. fit (sec. 7)	0.7%÷1.8%
Stability of the energy scale (sec. 7)	5%
Total	14%

V.Verzi for the Pierre Auger Collaboration, ICRC2013

Energy Spectrum

Energy Spectrum

 $\Phi(E) = \frac{N(E, E + \Delta E)}{t \,\Omega \, A \, \Delta E} \equiv \frac{N(E, E + \Delta E)}{\mathcal{E} \Delta E}$

- number of particles N
- measurement time t
- area A
- solid angle Ω
- "exposure" \mathcal{E} (e.g. km² sr yr)

SD: geometric area, A = constFD: A = f(E) (and $t_{\text{FD}} \sim 0.15 t_{\text{SD}}$)

more precisely (for a flat detector):

$$\mathcal{E} = t \int_{0}^{2\pi} \int_{\cos \theta_{\min}}^{1} \cos \theta \, A \, \mathrm{d} \cos \theta$$
$$= A t \pi \left(1 - \cos^{2} \theta_{\min}\right)$$

UHECR Energy Spectrum 14 Years Ago

UHE Exposure

Auger Energy Spectra

Combined Energy Spectrum

Combined Energy Spectrum

Combined Energy Spectrum

[11 of 47]

Mass Composition

Primary Mass and Longitudinal Shower Profiles

R. Engel 2004

Primary Mass and Longitudinal Shower Profiles

R. Engel 2004

X_{max} **Distributions**

X_{max} Distribution – Mean

- first interaction $\langle X_1 \rangle$: λ_p
- shower development: $\langle \Delta X \rangle$: $\propto \ln E$
- $\langle X_{\max} \rangle_p = \lambda_p + D \ln E$

X_{max} Distribution – Mean

- first interaction $\langle X_1 \rangle$: λ_p
- shower development: $\langle \Delta X \rangle$: $\propto \ln E$
- $\langle X_{\max} \rangle_p = \lambda_p + D \ln E$
- superposition model: nucleus $(E, A) \equiv A$ nucleons (E/A, 1)
- $\langle X_{\max} \rangle_A = \lambda_p + D \ln(E/A)$

E: primary energy, $\lambda_p:$ proton interaction length, D: elongation rate, A: mass number

why $\langle X_{\max} \rangle_A = \lambda_p + D \ln(E/A)$ and not $\langle X_{\max} \rangle_A = \underline{\lambda_A} + D \ln(E/A)$?

why $\langle X_{\max} \rangle_A = \lambda_p + D \ln(E/A)$ and not $\langle X_{\max} \rangle_A = \underline{\lambda_A} + D \ln(E/A)$?

\rightarrow Semi-superposition theorem

J. Engel et al., PRD (1992)

If the number of participating nucleons scales as

$$\langle n_{\text{part}} \rangle = A \, \frac{\lambda_A}{\lambda_p}$$

then the inclusive distribution of depths of nucleon interactions is

$$f(X) = 1/\lambda_p \exp(-X_{\rm int}/\lambda_p)$$

(independently of how the spectators fragment!)

Standard Deviation of X_{max} Distribution

- $\sigma(X_{\max})_A^2 = \lambda_A^2 + \sigma(X_{\max} X_{\text{first}})_A^2$
- $\sigma(X_{\max})_p > \sigma(X_{\max})_A > \sigma(X_{\max})_p / \sqrt{A}$
- mixed composition:

$$\sigma(X_{\max})^2 = \langle \sigma_i^2 \rangle + \left(\left\langle \left\langle X_{\max} \right\rangle_i^2 \right\rangle - \left\langle X_{\max} \right\rangle^2 \right)$$

Average X_{max} Fluorescence Detector

Average X_{max} Fluorescence Detector

X_{max} with SD

[18 of 47]

$X_{\text{max}} \, \text{with SD}$

[18 of 47]

Average X_{max} Fluorescence and Surface Detector

Standard Deviation of X_{max} Distribution (FD)

X_{max} Moments vs. Air Shower Simulations

lines: air shower simulations using post-LHC hadronic interaction models

(p-He-N-Fe)-fit of X_{max} Distributions

FD data:

Composition Fractions

[23 of 47]

Combined Fit of Spectrum and X_{max} Distributions

minimal astrophysical model

Pierre Auger Coll., JCAP 1704 (2017) no.04, 038

- $E_{\max} = R_{\text{cut}} Z$
- power law injection $E^{-\gamma}$
- five mass groups: p, He, N, Si
- source evolution $(1+z)^m$
- 1D propagation with CRPropa3
- Gilmore+12 EBL photon field

extended model

D. Wittkowski for the Pierre Auger Coll., ICRC15

- local large scale structure (Dolag+12)
- extragalactic magnetic field (Sigl+03)
- 4D propagation with CRPropa3

Combined Fit of Spectrum and X_{max} Distributions

Combined Fit of Spectrum and X_{max} Distributions

Searching for the Sources of UHECRs (a) Large-scale Anisotropy

The Local Large Scale Structure

Observation of a Dipolar Anisotropy of UHECR (E > 8 EeV)

amplitde: 6.5 $^{+1.3}_{-0.9}$ %, significance: 5.2 σ

Pierre Auger Coll., Science 357 (2017) 1266 (smoothed at 45°)

UHECRs from Galaxy?

stellar distribution from Weber&deBoer10, coherent and random JF12 field

4 EV \sim He \rightarrow

Dipolar Anisotropy and Large Scale Structure

Energy Dependence of UHECR Dipole

Energy Dependence of UHECR Dipole

Searching for the Sources of UHECRs (b) Intermediate-scale Anisotropy

Intermediate-scale Anisotropy

test for isotropy using catalogues of extragalactic γ -ray sources

AGNs from the 2FHL Catalog (*Fermi*-LAT, > 50 GeV) within 250 Mpc

Ackermann+ 16

'Starbursts' from *Fermi*-LAT search lit (HCN survey) within 250 Mpc with radio flux > 0.3 Jy

Gao & Salomon 05

Assumption: UHECR flux \propto non-thermal photon flux

Analysis: unbinned maximum-likelihood analysis vs isotropy Sky model: $[\alpha \times \text{sources} + (1-\alpha) \times \text{isotropic}] \otimes \text{Fisher}(\theta)$

Intermediate-scale Anisotropy

Intermediate-scale Anisotropy

 γ AGN (E > 60 EeV, 6.7%, 6.9°, 2.7 σ)

CenA

Pierre Auger Coll., ApJ. Lett. 853 (2018) L29

The Full (-sky) Picture: TA and Auger

flux map:

- two "warm spots" with 4.7/4.2 σ local significance
- post-trial 2.2/1.3 σ
- aligned along super-galactic plane?

Particle Physics at UHE

Particle Physics at UHE

ATLAS@LHC

- $E_{\text{beam}} = 6.5 \text{ TeV}$
- $\sqrt{s} = 13 \text{ TeV}$
- 7 kt detector

Pierre Auger Observatory*

- $E_{beam} > 1 \times 10^8 \text{ TeV}$
- \sqrt{s} > 400 TeV**
- 20 kt water-Cherenkov
 25 Gt air calorimeter

* to scale but stacked, actual area: 3000 km² ** for *p*+air (> 60 TeV for Fe+air)

LHC and UHECR Luminosity

Hadronic Interactions at UHE (a) Cross Section

Measurement of the UHE Proton+Air Cross Section

tail of X_{max} distribution:

Measurement of the UHE Proton+Air Cross Section

R. Ulrich for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Proton+Proton Cross Section at $\sqrt{s} = 39$ and 66 TeV

R. Ulrich for the Pierre Auger Coll., Proc. 34th ICRC, arXiv:1509.03732

Hadronic Interactions at UHE (b) Muons in Air Showers

Muon Studies with Inclined Hybrid Events (62°-80°)

event 201114505353, $\theta = 75.6^{\circ}$, E = 15.5 EeV

 \mathbf{R}_{μ} vs. \mathbf{E}_{FD}

QGSJetll-03, $p, E = 10^{19} \text{ eV} \rightarrow R_{\mu} = 1$

$\langle {f R}_\mu \, angle / {f E_{FD}}$ vs. ${f E_{FD}}$

$\langle {f R}_\mu \, angle / {f E_{FD}}$ vs. ${f E_{FD}}$

Muon Scale vs. X_{max} (FD)

Hybrid Events, Data vs. Simulation

Pierre Auger Coll. PRL 117 (2016) 192001

Hybrid Events, Data vs. Simulation

Combined fit of energy scale R_E and had. component rescaling R_{had}

model	R_E	R_{had}
QGSJetll-04, p	$1.09 \pm 0.08 \pm 0.09$	$1.59 \pm 0.17 \pm 0.09$
QGSJetll-04, mixed	$1.00 \pm 0.08 \pm 0.11$	$1.61 \pm 0.18 \pm 0.11$
Epos-LHC, p	$1.04 \pm 0.08 \pm 0.08$	$1.45 \pm 0.16 \pm 0.08$
Epos-LHC, mixed	$1.00 \pm 0.07 \pm 0.08$	$1.33 \pm 0.13 \pm 0.09$

UHECR before Auger

UHECR in 2019

Las Meninas by Diego Velazquez 1656

UHECR before Auger

UHECR in 2019

Las Meninas by Diego Velazquez 1656

UHECR before Auger

UHECR in 2019

Las Meninas by Diego Velazquez 1656

Las Meninas by Diego Velazquez 1656

UHECR before Auger UHECR in 2019 mixed! proton! dipole! hot spot? multiplets cutoff cutoff? æ, e^+e^- dip! $A + \gamma$ ankle? GZK or E_{max} ? GZK!

Las Meninas by Diego Velazquez 1656

Thanks!