The Pierre Auger Observatory ${ }^{*}$

Spectrum, Composition, Anisotropies, Hadronic Interactions M. Unger (KIT)

The Pierre Auger Observatory

The Pierre Auger Observatory

The Pierre Auger Observatory

Hybrid Detection of Air Showers

Hybrid Detection of Air Showers

$\begin{array}{lllllll}0 & 10 & 20 & 30 & 40 & 50 & 60\end{array}$
$\mathrm{dE} / \mathrm{dX}\left[\mathrm{PeV} /\left(\mathrm{gcm}^{-2}\right)\right]$

Energy Calibration

S_{1000}

$\begin{array}{lllllll}0 & 10 & 20 & 30 & 40 & 50 & 60\end{array}$
$\mathrm{dE} / \mathrm{dX}\left[\mathrm{PeV} /\left(\mathrm{gcm}^{-2}\right)\right]$

Energy Scale

fluorescence yield in air:

Rosado, Bianco, Arqueros, APP 55 (2014) 51
energy scale uncertainty:

Absolute fluorescence yield	3.4%
Fluor. spectrum and quenching param.	1.1%
Sub total (Fluorescence yield - sec. 2)	$\mathbf{3 . 6 \%}$
Aerosol optical depth	$3 \% \div 6 \%$
Aerosol phase function	1%
Wavelength depend. of aerosol scatt.	0.5%
Atmospheric density profile	1%
Sub total (Atmosphere - sec. 3)	$\mathbf{3 . 4 \%} \div \mathbf{6 . 2 \%}$
Absolute FD calibration	9%
Nightly relative calibration	2%
Optical efficiency	3.5%
Sub total (FD calibration - sec. 4)	$\mathbf{9 . 9 \%}$
Folding with point spread function	5%
Multiple scattering model	1%
Simulation bias	$\mathbf{2 \%}$
Constraints in the Gaisser-Hillas fit	$3.5 \% \div 1 \%$
Sub total (FD profile rec. - sec. 5)	$\mathbf{6 . 5 \%} \div \mathbf{5 . 6 \%}$
Invisible energy (sec. 6)	$\mathbf{3 \%} \div \mathbf{1 . 5 \%}$
Stat. error of the SD calib. fit (sec. 7)	$\mathbf{0 . 7 \%} \div \mathbf{1 . 8 \%}$
Stability of the energy scale (sec. 7)	$\mathbf{5 \%}$
Total	$\mathbf{1 4 \%}$

Energy Spectrum

Energy Spectrum

$$
\Phi(E)=\frac{N(E, E+\Delta E)}{t \Omega A \Delta E}=\frac{N(E, E+\Delta E)}{\mathcal{E} \Delta E}
$$

- number of particles N
- measurement time t
- - area A
- solid angle Ω
more precisely (for a flat detector):
- "exposure" \mathcal{E} (e.g. km² sryr)

$$
\begin{aligned}
\mathcal{E} & =t \int_{0}^{2 \pi} \int_{\cos \theta_{\min }}^{1} \cos \theta A d \cos \theta \\
& =\operatorname{At\pi }\left(1-\cos ^{2} \theta_{\min }\right)
\end{aligned}
$$

SD: geometric area, $A=$ const
FD: $A=f(E)$ (and $t_{\mathrm{FD}} \sim 0.15 t_{\mathrm{SD}}$)

UHECR Energy Spectrum 14 Years Ago

Physics Letters B 556 (2003) 1-6
Has the GZK suppression been discovered?
John N. Bahcall ${ }^{\text {a }}$, Eli Waxman ${ }^{\text {b }}$

PHYSICAL REVIEW D 74, 043005 (2006)
On astrophysical solution to ultrahigh energy cosmic rays
Veniamin Berezinsky

HiRes Collaboration, Proc. 29th ICRC (2005)

UHE Exposure

Auger Energy Spectra

Combined Energy Spectrum

Combined Energy Spectrum

Combined Energy Spectrum

E/eV

Mass Composition

Primary Mass and Longitudinal Shower Profiles

Primary Mass and Longitudinal Shower Profiles

$X_{\max }$ Distributions

$X_{\max }$ Distribution - Mean

- first interaction $\left\langle X_{1}\right\rangle: \lambda_{p}$
- shower development: $\langle\Delta X\rangle$: $\propto \ln E$
- $\left\langle X_{\max }\right\rangle_{p}=\lambda_{p}+D \ln E$

$\mathrm{X}_{\text {max }}$ Distribution - Mean

- first interaction $\left\langle X_{1}\right\rangle: \lambda_{p}$
- shower development: $\langle\Delta X\rangle$: $\propto \ln E$
- $\left\langle X_{\max }\right\rangle_{p}=\lambda_{p}+D \ln E$
- superposition model: nucleus $(E, A) \equiv A$ nucleons $(E / A, 1)$
- $\left\langle X_{\max }\right\rangle_{A}=\lambda_{p}+D \ln (E / A)$
E : primary energy, λ_{p} : proton interaction length, D : elongation rate, A : mass number

why

$$
\left\langle X_{\max }\right\rangle_{A}=\lambda_{p}+D \ln (E / A)
$$

and not
$\left\langle X_{\max }\right\rangle_{A}=\underline{\lambda_{A}}+D \ln (E / A)$

why

$$
\left\langle X_{\max }\right\rangle_{A}=\lambda_{p}+D \ln (E / A)
$$

and not

$$
\left\langle X_{\max }\right\rangle_{A}=\underline{\lambda_{A}}+D \ln (E / A)
$$

?
\rightarrow Semi-superposition theorem

If the number of participating nucleons scales as

$$
\left\langle n_{\text {part }}\right\rangle=A \frac{\lambda_{A}}{\lambda_{p}}
$$

then the inclusive distribution of depths of nucleon interactions is

$$
f(X)=1 / \lambda_{p} \exp \left(-X_{\text {int }} / \lambda_{p}\right)
$$

(independently of how the spectators fragment!)

Standard Deviation of $\mathrm{X}_{\max }$ Distribution

- $\sigma\left(X_{\max }\right)_{A}^{2}=\lambda_{A}^{2}+\sigma\left(X_{\max }-X_{\text {first }}\right)_{A}^{2}$
- $\sigma\left(X_{\max }\right)_{p}>\sigma\left(X_{\max }\right)_{A}>\sigma\left(X_{\max }\right)_{p} / \sqrt{A}$
- mixed composition:

$$
\sigma\left(X_{\max }\right)^{2}=\left\langle\sigma_{i}^{2}\right\rangle+\left(\left\langle\left\langle X_{\max }\right\rangle_{i}^{2}\right\rangle-\left\langle X_{\max }\right\rangle^{2}\right)
$$

Average $\mathbf{X}_{\max }$ Fluorescence Detector

Average $X_{\max }$ Fluorescence Detector

$X_{\max }$ with $S D$

$X_{\text {max }}$ with SD

Average $X_{\max }$ Fluorescence and Surface Detector

Standard Deviation of $X_{\max }$ Distribution

$\mathrm{X}_{\max }$ Moments vs. Air Shower Simulations

lines: air shower simulations using post-LHC hadronic interaction models

(p-He-N-Fe)-fit of $X_{\max }$ Distributions

FD data:

$$
\lg (E / \mathrm{eV})=17.2 \ldots 18.1
$$

Examples of 4-component fit:

$$
\lg (E / \mathrm{eV})=17.8 \ldots>19.5
$$

p He N Fe

Composition Fractions

玉 QGSJETII 04 玉 EPOS－LHC 百 SIBYLL 2.3

［23 of 47］

Combined Fit of Spectrum and $X_{\max }$ Distributions

minimal astrophysical model
Pierre Auger Coll., JCAP 1704 (2017) no.04, 038

- $E_{\text {max }}=R_{\text {cut }} Z$
- power law injection $E^{-\gamma}$
- five mass groups: p, He, N, Si
- source evolution $(1+z)^{m}$
- 1D propagation with CRPropa3
extended model
D. Wittkowski for the Pierre Auger Coll., ICRC15
- local large scale structure (Dolag+12)
- extragalactic magnetic field (Sigl+03)
- 4D propagation with CRPropa3
- Gilmore+12 EBL photon field

Combined Fit of Spectrum and $X_{\max }$ Distributions

Combined Fit of Spectrum and $X_{\max }$ Distributions

Searching for the Sources of UHECRs (a) Large-scale Anisotropy

The Local Large Scale Structure

D.Allard Astropart.Phys. 39 (2012) 33
Y.Hoffman et al, Nat.Astron. 2 (2018) 680

Pierre Auger Coll., PRD 2014 and ICRC17 (only stat. uncert. shown)
[26 of 47]

Observation of a Dipolar Anisotropy of UHECR ${ }_{(\mathrm{E}>8 \mathrm{Eev})}$

amplitde: $6.5_{-0.9}^{+1.3} \%$, significance: 5.2σ

UHECRs from Galaxy?

stellar distribution from Weber\&deBoer10, coherent and random JF12 field

$$
8 \mathrm{EV} \sim \mathrm{p} \rightarrow
$$

$\leftarrow 1 \mathrm{EV} \sim \mathrm{N}$

Dipolar Anisotropy and Large Scale Structure

Energy Dependence of UHECR Dipole

Energy Dependence of UHECR Dipole

Searching for the Sources of UHECRs (b) Intermediate-scale Anisotropy

Intermediate-scale Anisotropy

test for isotropy using catalogues of extragalactic γ-ray sources

AGNs from the 2FHL Catalog (Fermi-LAT, > 50 GeV) within 250 Mpc
Ackermann+ 16

Star-forming or starburst galaxies
e.g. M82, close to the TA hotspot
'Starbursts' from Fermi-LAT search lis (HCN survey) within 250 Mpc with radio flux $>0.3 \mathrm{Jy}$

Gao \& Salomon 05

Assumption: UHECR flux α non-thermal photon flux
Analysis: unbinned maximum-likelihood analysis vs isotropy
Sky model: [$\boldsymbol{\alpha} \times$ sources $+(1-\boldsymbol{\alpha}) \times$ isotropic $] \otimes \operatorname{Fisher}(\boldsymbol{\theta})$

Intermediate-scale Anisotropy

Active galaxies

Starforming galaxies

Intermediate-scale Anisotropy

starburst galaxies ($E>39 \mathrm{EeV}, ~, 9.7 \%, 12.9^{\circ}, 4.0 \sigma$)

Observed Excess Map - E > 39 EeV

Model Excess Map - Starburst galaxies - E $>39 \mathrm{EeV}$
Residual Excess Map - Starburst galaxies - E > 39 EeV

Residual Excess Map - Active galactic nuclei - E $>60 \mathrm{EeV}$

$\gamma \mathrm{AGN}\left(E>60 \mathrm{EeV}, 6.7 \%, 6.9^{\circ}, 2.7 \sigma\right)$

The Full (-sky) Picture: TA and Auger

flux map:
$\Phi\left(\mathrm{E}_{\text {Auger } 7 \mathrm{~T}}>40 / 53.2 \mathrm{EeV}\right)\left[\mathrm{km}^{-2} \mathrm{sr}^{-1} \mathrm{yr} \mathrm{r}^{-1}\right]$ - Equatorial coordinates $-\mathrm{R}=2 \mathbf{0}^{\circ}$

- two "warm spots" with 4.7/4.2 σ local significance
- post-trial 2.2/1.3 σ
- aligned along super-galactic plane?

Particle Physics at UHE

Particle Physics at UHE

Pierre Auger Observatory

- $E_{\text {beam }}=6.5 \mathrm{TeV}$
- $\sqrt{s}=13 \mathrm{TeV}$
- 7 kt detector

- $E_{\text {beam }}>1 \times 10^{8} \mathrm{TeV}$
- $\sqrt{s}>400$ TeV**
- 20 kt water-Cherenkov
- 25 Gt air calorimeter
* to scale but stacked, actual area: $3000 \mathrm{~km}^{2}$
** for $p+$ air ($>60 \mathrm{TeV}$ for Fe+air)

LHC and UHECR Luminosity

Hadronic Interactions at UHE (a) Cross Section

Measurement of the UHE Proton+Air Cross Section

tail of $X_{\max }$ distribution:

$\langle E\rangle=10^{17.90} \mathrm{eV}$
$\Lambda_{\eta}=60.7 \pm 2.1$ (stat) ± 1.6 (syst) $\mathrm{g} / \mathrm{cm}^{2}$

$\langle E\rangle=10^{18.22} \mathrm{eV}$
$\Lambda_{\eta}=57.4 \pm 1.8$ (stat) $\pm \mathbf{1 . 6}$ (syst) $\mathrm{g} / \mathrm{cm}^{2}$

Measurement of the UHE Proton+Air Cross Section

Equivalent c.m. energy $\mathbf{/ s}_{\mathrm{pp}} \quad$ [TeV]

Proton+Proton Cross Section at $\sqrt{s}=39$ and 66 TeV

Hadronic Interactions at UHE (b) Muons in Air Showers

Muon Studies with Inclined Hybrid Events $\left(62^{\circ}-80^{\circ}\right)$

event $201114505353, \theta=75.6^{\circ}, E=15.5 \mathrm{EeV}$

QGSJetII-03, $p, E=10^{19} \mathrm{eV} \rightarrow R_{\mu}=1$

$\left\langle\mathbf{R}_{\mu}\right\rangle / \mathbf{E}_{\mathbf{F D}}$ VS. $\mathbf{E}_{\mathbf{F D}}$

[43 of 47]

$\left\langle\mathbf{R}_{\mu}\right\rangle / \mathbf{E}_{\mathbf{F D}}$ VS. $\mathbf{E}_{\mathbf{F D}}$

[43 of 47]

Muon Scale vs. $X_{\max }$ (FD)

Hybrid Events, Data vs. Simulation

example:

Hybrid Events, Data vs. Simulation

Combined fit of energy scale R_{E} and had. component rescaling $R_{\text {had }}$

Conclusions

UHECR before Auger

UHECR in 2019

Las Meninas by Diego Velazquez 1656

Las Meninas by Pablo Picasso 1957

Conclusions

UHECR before Auger

Las Meninas by Diego Velazquez 1656

UHECR in 2019

Las Meninas by Pablo Picasso 1957

Conclusions

UHECR before Auger

UHECR in 2019

Las Meninas by Diego Velazquez 1656

Las Meninas by Pablo Picasso 1957

Conclusions

UHECR before Auger

UHECR in 2019

Las Meninas by Diego Velazquez 1656

Las Meninas by Pablo Picasso 1957

Conclusions

UHECR before Auger

UHECR in 2019

Las Meninas by Diego Velazquez 1656

Las Meninas by Pablo Picasso 1957

Thanks!

