Introduction to Neutrino Physics

Paolo Lipari
INFN Roma La Sapienza
ISAPP School 2019
Cosmic Ray Vision from the Southern Sky
Malargue, Argentina march $3^{\text {rd }} 2019$

Discovery of the Neutrino

Prediction of its existence (1930) (Wolfgang Pauli)

Neutrino Theory
(1933)
(Enrico Fermi)
First Detection
(1953)
(F. Reines, C. Cowan)

1930:
 PREDICTION of the EXISTENCE of the NEUTRINO.

Wolfgang PAULI

Study of Nuclear Beta Decay

Nuclear BETA Decay

Missing

Energy
Momentum
Angular momentum

Carbon-14

 6 protons, 8 neutronsNitrogen-14
7 protons,
7 neutrons

Nuclear BETA Decay

Carbon-14 6 protons, 8 neutrons

Nitrogen-14
7 protons,
7 neutrons

1933

Enrico Fermi
[Nobel Prize in 1938]

develops the theory of Beta Decay

Current-Current Interaction

Fermi : Current- Current Interaction

Fermi : Current- Current Interaction

Neutrino Cross section

Fermi : Current- Current Interaction

$\bar{\nu}$

Neutrino Cross section
$\sigma \approx 10^{-44} \mathrm{~cm}^{2}$

Neutrino Energy few MeV

$$
\sigma \approx 10^{-44} \mathrm{~cm}^{2}
$$

Interaction Probability
$=10^{-11}$

$$
n \rightarrow p+e^{-}+\overline{\nu_{e}}
$$

$\nu_{e}+n \rightarrow p+e^{-}$

$$
n \rightarrow p+e^{-}+\overline{\nu_{e}}
$$

Quark description

$\nu_{e}+n \rightarrow p+e^{-}$

$$
\begin{aligned}
& n \rightarrow p+e^{-}+\bar{\nu}_{e} \\
& \nu_{e}+n \rightarrow p+e^{-} \\
& \bar{\nu}_{e}+p \rightarrow n+e^{+}
\end{aligned}
$$

Detection Method

Neutrino Discovery (antineutrinos
from Nuclear Reactors
Reines e Cowan 1953-1956

$\bar{\nu}_{e}+p \rightarrow n+e^{+}$

$$
\begin{aligned}
E_{\mathrm{visible}}^{\mathrm{prompt}} & =\left(E_{e^{+}}-m_{e}\right)+2 m_{e} \\
& =E_{\bar{\nu}_{e}}-\left(m_{e}+m_{n}-m_{p}\right) \\
& \simeq E_{\bar{\nu}_{e}}-1.8 \mathrm{MeV}
\end{aligned}
$$

$m_{p}+E_{\bar{\nu}_{e}} \simeq m_{n}+E_{e^{+}}$
$E_{e^{+}} \simeq E_{\bar{\nu}_{e}}-\left(m_{n}-m_{p}\right)$

Delayed coincidence e+ n

Delayed neutron capture (after thermalization of the neutron)

$$
n+p \rightarrow d+\gamma(2.2 \mathrm{MeV})
$$

Neutrino Detection:

Delayed Coincidence of prompt energy release (the positron) and delayed neutron capture photon

Standard Model

Interactions are due to the EXCHANGE of SPIN 1 Particles

Neutral Currents
$e^{-} \xrightarrow{\sim}$

Interactions are due to the EXCHANGE of SPIN 1 Particles

ELECTROMAGNETISM Exchange of Photons

$$
M(\gamma)=0
$$

STRONG Interaction
Exchange of Gluons

$$
M(\text { gluon })=0
$$

WEAK Interaction
Exchange of 3 Massive Particles

$$
\begin{aligned}
& M\left(W^{ \pm}\right) \simeq 85 M_{\text {proton }} \\
& M\left(Z^{0}\right) \simeq 97 M_{\text {proton }}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {elettrico }}=\frac{e}{r} \quad \begin{array}{l}
\text { Potential of a point } \\
\text { electric charge }
\end{array} \\
& V_{\text {debole }}=\frac{g}{r} e^{-\frac{c}{\hbar} M r} \quad \begin{array}{l}
\text { Potential } \\
\text { Weak Force }
\end{array} \\
& V_{\text {debole }}=\frac{g}{r} e^{-r / R_{0}} \quad R_{0}=\frac{\hbar}{c} \frac{1}{M} \\
& \text { Short Range } \\
& R_{0} \simeq 2 \times 10^{-16} \mathrm{~cm}
\end{aligned}
$$

Comparing the Cross section of two Processes:

$$
e^{-}+p \rightarrow e^{-}+p
$$

$$
\nu_{e}+n \rightarrow e^{-}+p
$$

$e^{-}+p \rightarrow e^{-}+p$
Rutherford Formula:

$Q^{2}=\left(p_{e}-p_{e}^{\prime}\right)^{2}$

$$
\frac{d \sigma_{e p}}{d Q^{2}} \simeq \frac{\alpha^{2}}{Q^{4}}(\hbar c)^{2}
$$

$$
\nu_{e}+n \rightarrow e^{-}+p
$$

$$
e \rightarrow g=\frac{e}{\sin \theta_{\text {Weinberg }}}
$$

$$
\underbrace{\substack{\text { P }}}_{\mathrm{n}}
$$

$$
\begin{aligned}
\sigma_{\nu n} & =\int d Q^{2} \frac{d \sigma_{\nu n}}{d Q^{2}} \\
& \simeq \frac{\left(4 \pi g^{2}\right)^{2}}{M_{W}^{4}}\left(Q_{\max }^{2}-Q_{\min }^{2}\right)
\end{aligned}
$$

$Q_{\text {max }}^{2}=\left(p_{\nu}+p_{n}\right)^{2}=M^{2}+2 M E_{\nu}$

$$
\sigma_{\nu}\left(E_{\nu}\right) \sim \frac{\alpha^{2}}{M_{W}^{4}} M_{p} E_{\nu}(\hbar c)^{2} \sim 10^{-38} E(\mathrm{GeV}) \mathrm{cm}^{2}
$$

PARITY SYMMETRY

Can we understand if we see the real world or a "Mirror Image" of the world?

Neutrino \quad spin $1 / 2$

Spin direction

Momentum direction

Anti-Neutrino

Spin direction

Momentum direction

Spin $1 / 2$ Particles are described by 4 components "Dirac Spinors"

Left and Right Chirality Projectors

$$
\psi_{L}=\left(\frac{1-\gamma_{5}}{2}\right) \psi \left\lvert\, \begin{aligned}
& \text { Left-Chirality } \\
& \text { component of a fermion } \\
& \text { interacts with the W bosons. }
\end{aligned}\right.
$$

$$
\psi_{R}=\left(\frac{1+\gamma_{5}}{2}\right) \psi
$$

Only the

For a massless particle CHIRALITY $=$ HELICITY
$e^{-}, \quad \mu^{-}, \quad \tau^{-}$
$\nu_{e}, \quad \nu_{\mu}, \quad \nu_{\tau}$
$u, \quad d, \quad s, \quad c, \quad b, \quad t$
Particles: Left-chirality

$$
\begin{aligned}
P_{\text {Left }} & \simeq 1-\frac{m^{2}}{E^{2}} \\
P_{\text {Right }} & \simeq \frac{m^{2}}{E^{2}}
\end{aligned}
$$

$$
\begin{array}{lllll}
& e^{+}, & \mu^{+}, & \tau^{+} & \\
& \bar{\nu}_{e}, & \bar{\nu}_{\mu}, & \bar{\nu}_{\tau} & \\
\bar{u}, & \bar{d}, & \bar{s}, & \bar{c}, & \bar{b}, \\
\hline
\end{array}
$$

Anti-Particles: Right-chirality

$$
\begin{aligned}
& P_{\text {Left }} \simeq \frac{m^{2}}{E^{2}} \\
& P_{\text {Right }} \simeq 1-\frac{m^{2}}{E^{2}}
\end{aligned}
$$

Fermion Particles in the Standard Model

$$
\begin{array}{ccc}
\binom{u}{d^{\prime}}_{L} & \binom{c}{s^{\prime}}_{L} & \binom{t}{b^{\prime}}_{L} \\
d_{R} & s_{R} & b_{R}
\end{array}
$$

$$
\begin{gathered}
\binom{H^{+}}{H^{\circ}} \\
Y=+\frac{1}{2}
\end{gathered}
$$

$$
\left.\begin{array}{ccc}
\binom{\nu_{e}}{e}_{L} & \binom{\nu_{\mu}}{\mu}_{L} & \binom{\nu_{\tau}}{\tau}_{L} \\
e_{R} & \mu_{R} & \tau_{R}
\end{array}\right\}=-\frac{1}{2}
$$

Neutrino
Neutrino

Neutrino

Possible
Picture

Neutrino

Impossible
Picture

Neutrino

Possible
 Picture
 Impossible Picture

Neutrino

Parity violation
${ }^{60} \mathrm{Co} \rightarrow{ }^{60} \mathrm{Ni}+e^{-}+\bar{\nu}_{e}$

Conservation of angular momentum

Forbidden
\triangle

DISCOVERY of PARITY VIOLATION

Lee and Yang

"Madame" Wu

Cobalt-60 in a Cryostat

Neutrino

Possible Picture

Neutrino

Impossible Picture

Neutrino

Possible Picture

Anti-Neutrino

Possible Picture

Charge Conjugation Operation

APPROXIMATE SYMMETRY of NATURE

CP Transformation
$\mathbf{C}=$ Charge Conjugation [Particle \longleftrightarrow Anti-Particle]
$\mathbf{P}=$ Parity
[Reflection in a Mirror]

Paul M. Dirac

The
 NEUTRINO FLAVOR

3 type (FLAVORs) of Neutrinos

νe
 $\nu \mu$
 ν_{τ}

$\bar{\nu}_{e}$

$\bar{\nu} \mu$

$\bar{\nu}_{\tau}$

In 1947 Powell, Occhialini and Lattes discover the existence of the pion thanks to observation of Cosmic Rays with Emulsions in the Chacaltaya Laboratory.

FLAVOR

FLAVOR

Electron-flavor

$$
\begin{aligned}
& \binom{u}{d^{\prime}}_{L} \\
& u_{R} \quad d_{R} \\
& \binom{\nu_{e}}{e^{-}}_{L} \\
& \left(e^{-}\right)_{R} \\
& \left(\nu_{e}\right)_{R}
\end{aligned}
$$

$$
\begin{aligned}
& \binom{t}{b^{\prime}}_{L} \\
& t_{R} \quad b_{R} \\
& \binom{\nu_{\tau}}{\tau^{-}}_{L} \\
& \left(\tau^{-}\right)_{R} \\
& \left(\nu_{\tau}\right)_{R}
\end{aligned}
$$

PION DECAY

$$
\begin{gathered}
\pi^{+}=[\bar{u} d] \\
\pi^{-}=[\bar{d} u]
\end{gathered}
$$

$$
\pi^{0}=\frac{1}{\sqrt{2}}[\bar{u} u+[\bar{d} d]
$$

$$
\begin{aligned}
\pi^{+} \rightarrow & \mu^{+}+\nu_{\mu} \\
& \downarrow \\
& e^{+}+\nu_{e}+\bar{\nu}_{\mu}
\end{aligned}
$$

$$
\begin{gathered}
\pi^{+} \rightarrow e^{+} \nu_{e} \\
\begin{array}{c}
\pi^{+} \rightarrow \mu^{+} \nu_{\mu} \\
\pi^{+} \rightarrow \tau^{+} \nu_{\tau}
\end{array} \text { Dynamically suppressed } \\
\text { Kinematically Forbidden }
\end{gathered}
$$

Decay is nearly forbidden by Angular Momentum Conservation

Pion (spin 0)

CHIRALITY

 versusHELICITY
$e^{-}, \quad \mu^{-}, \quad \tau^{-}$
$\nu_{e}, \quad \nu_{\mu}, \quad \nu_{\tau}$
$u, \quad d, \quad s, \quad c, \quad b, \quad t$
Particles: Left-chirality

$$
\begin{gathered}
P_{\text {Left }}=1-\frac{m^{2}}{E^{2}} \\
P_{\text {Right }}=\frac{m^{2}}{E^{2}}
\end{gathered}
$$

Anti-Particles: Right-chirality

$$
\begin{aligned}
P_{\text {Left }} & =\frac{m^{2}}{E^{2}} \\
P_{\text {Right }} & =1-\frac{m^{2}}{E^{2}}
\end{aligned}
$$

MUON DECAY: $\mu^{-} \rightarrow \nu_{\mu}+e^{-} \bar{\nu}_{e}$

How Many Light Neutrinos Exist ?

$Z^{0} \rightarrow \nu_{\alpha}+\bar{\nu}_{\alpha}$
$\Gamma_{\nu \bar{\nu}}=166.9 \mathrm{MeV}$
$\Gamma_{\text {invisible }}=N_{\nu} \Gamma_{\nu \bar{\nu}}$
$\Gamma_{\text {invisible }}=\Gamma_{\text {tot }}-\Gamma_{\mathrm{vis}}=498 \pm 4.2 \mathrm{MeV}$
$N_{\nu}=\frac{\Gamma_{\mathrm{inv}}}{\Gamma_{\nu \bar{\nu}}}=2.994 \pm 0.012$

NEUTRINO FLAVOR OSCILLATIONS

3 Neutrinos states: 3 masses

States with definite masses in general do not coincide with the "flavor" states

$$
\left.\left.\begin{array}{ll}
\left\{\left|\nu_{e}\right\rangle,\right. & \left|\nu_{\mu}\right\rangle,
\end{array}\left|\begin{array}{ll}
\text { Flavor basis } \\
\left\{\left|\nu_{\tau}\right\rangle\right\} & \\
\left\{\left|\nu_{1}\right\rangle,\right. & \left|\nu_{2}\right\rangle,
\end{array}\right| \nu_{3}\right\rangle\right\}, \text { Mass basis }
$$

$$
\begin{aligned}
W^{-} & \rightarrow \bar{u}+d^{\prime} \\
& \rightarrow \bar{c}+s^{\prime} \\
& \rightarrow \bar{t}+b^{\prime}
\end{aligned}
$$

$$
-(+2 / 3)+(-1 / 3)=-1
$$

$$
\begin{aligned}
W^{+} & \rightarrow e^{+} \nu_{e} \\
& \rightarrow \mu^{+} \nu_{\mu} \\
& \rightarrow \tau^{+} \nu_{\tau}
\end{aligned}
$$

Cabibbo, Kobayashi, Maskawa matrix

$\left(\begin{array}{l}d^{\prime} \\ s^{\prime} \\ b^{\prime}\end{array}\right)=V^{\mathrm{CKM}}\left(\begin{array}{l}d \\ s \\ b\end{array}\right)$

$$
\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=U^{\mathrm{PMNS}}\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

Pontecorvo, Maki, Nakagawa, Sakata Matrix

2 Flavor case

$\left|\nu_{\mu}\right\rangle=\cos \theta\left|\nu_{1}\right\rangle+\sin \theta\left|\nu_{2}\right\rangle$

$$
\Delta m^{2}=m_{2}^{2}-m_{1}^{2}
$$

Neutrino Propagation

$$
|\nu(0)\rangle=\left|\nu_{\mu}\right\rangle=\cos \theta\left|\nu_{1}\right\rangle+\sin \theta\left|\nu_{2}\right\rangle
$$

$\nu_{\mu} \quad$ created at $\mathrm{t}=0$

 with momentum p$$
E_{i}=\sqrt{p^{2}+m_{i}^{2}} \simeq p+\frac{m_{i}^{2}}{2 p} \simeq E+\frac{m_{i}^{2}}{2 E}
$$

Different mass components
have different energy

$$
|\nu(t)\rangle=\cos \theta e^{-i E_{1} t}\left|\nu_{1}\right\rangle+\sin \theta e^{-i E_{2} t}\left|\nu_{2}\right\rangle
$$

Oscillation Probability

$$
\begin{aligned}
& P\left(\nu_{\mu} \rightarrow \nu_{\tau} ; t\right)= \\
& =\left|\left\langle\nu_{\tau} \mid \nu(t)\right\rangle\right|^{2} \\
& =\left.\left|\left\{-\sin \theta\left\langle\nu_{1}\right|+\cos \theta\left\langle\nu_{2}\right|\right\}\right|\left\{\cos \theta e^{-i E_{1} t}\left|\nu_{1}\right\rangle+\sin \theta e^{-i E_{2} t}\left|\nu_{2}\right\rangle\right\}\right|^{2} \\
& =\cos ^{2} \theta \sin ^{2} \theta\left|e^{-i E_{2} t}-e^{-i E_{1} t}\right|^{2} \\
& =2 \cos ^{2} \theta \sin ^{2} \theta\left\{1-\cos \left[\left(E_{2}-E_{1}\right) t\right\}\right. \\
& =\sin ^{2} 2 \theta \sin ^{2}\left[\frac{\Delta m^{2}}{4 E} t\right]
\end{aligned}
$$

$$
P\left(\nu_{\mu} \rightarrow \nu_{\tau} ; L\right)=\sin ^{2} 2 \theta \sin ^{2}\left[1.27 \Delta m^{2}\left(\mathrm{eV}^{2}\right) \frac{L(\mathrm{Km})}{E(\mathrm{GeV})}\right]
$$

3 Flavor Oscillations

3 X 3
Unitary Matrix 3 angles 6 phases

Mixing Matrix: 3 angles, 1 phase
(relevant for neutrino oscillations)

$$
\begin{aligned}
U & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{13} s_{23} e^{i \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{i \delta} & c_{13} s_{23} \\
s_{12} s_{23}-c_{12} s_{13} c_{23} e^{i \delta} & -c_{12} s_{23}-s_{12} s_{13} c_{23} e^{i \delta} & c_{13} c_{23}
\end{array}\right)
\end{aligned}
$$

U* : Mixing Matrix for Antineutrinos
More complex expressions for the Oscillation Probabilities

3 - Flavor Transitions

$$
|\nu(0)\rangle=\left|\nu_{\alpha}\right\rangle=\sum_{j} U_{\alpha j}^{*}\left|\nu_{j}\right\rangle
$$

$$
|\nu(t)\rangle=\sum_{j} U_{\alpha j}^{*} e^{-i E_{j} t}\left|\nu_{j}\right\rangle
$$

$$
\begin{aligned}
A\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; t\right) & =\left\langle\nu_{\beta} \mid \nu(t)\right\rangle \\
& =\left\{U_{\beta k}\left\langle\nu_{k}\right|\right\}\left\{e^{-i E_{j} t} U_{\alpha}^{*}\left|\nu_{j}\right\rangle\right\} \\
& =U_{\beta k} U_{\alpha j}^{*} e^{-i E_{j} t}\left\langle\nu_{k} \mid \nu_{j}\right\rangle \\
& =U_{\beta j} U_{\alpha j}^{*} e^{-i E_{j} t}
\end{aligned}
$$

Oscillation Probability

$$
\begin{aligned}
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) & =\left|\sum_{j} U_{\beta j} J_{\alpha j}^{*} e^{-i m_{j}^{2} \frac{L}{2 L_{k}}}\right|^{2} \quad \mathrm{~L}, \mathrm{E} \\
& =\sum_{j=1,3}\left|U_{\beta j}\right|^{4}\left|U_{\alpha j}\right|^{4} \\
& +\sum_{j<k} 2 \operatorname{Re}\left[U_{\beta j} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\alpha k}\right] \cos \left(\frac{\Delta m_{j k L}^{2} L}{2 E}\right) \\
& +\sum_{j<k} 2 \operatorname{Im}\left[U_{\beta j} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\alpha k}\right] \sin \left(\frac{\Delta m_{j k}^{2} L}{2 E}\right)
\end{aligned}
$$

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\left|\sum_{j} U_{\beta j} U_{\alpha j}^{*} e^{-i m_{j}^{2} \frac{L}{2 E_{\nu}}}\right|^{2}
$$

$P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \neq P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right)$
$P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \neq P\left(\nu_{\beta} \rightarrow \nu_{\alpha}\right)$
$P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=P\left(\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha}\right)$

CP violated
T violated

The "BOX description" of the Neutrinos

Neutrino Description

Normal Hierarchy
Inverted Hierarchy

Mass of the lightest Neutrino m_{0}

DIRAC or MAJORANA?

$\nu_{\mathrm{L}} \quad \nu_{\mathrm{R}}$
 $$
\bar{\nu}_{\mathrm{L}} \quad \bar{\nu}_{\mathrm{R}}
$$

ν_{L}

Dirac Particle

e_{L}^{-}
e_{R}^{-}
e_{L}^{+}
e_{R}^{+}

$$
\begin{array}{cc}
\nu_{\mathrm{L}} & \nu_{\mathrm{R}} \\
\bar{\nu}_{\mathrm{L}} & \bar{\nu}_{\mathrm{R}}
\end{array}
$$

ν_{L}

Gedanken

Experiment

Massive Neutrino at rest in the center of this room.

Spin pointing Down

Layer of Matter

Accelerate the neutrino to relativistic energy in the direction
 Opposite to the spin.

A few of the
Left-Handed particles interact and generate Negative Muons

Crucial
Gedanken
Experiment

Accelerate the neutrino to relativistic energy In the direction parallel to the spin

Right-Handed particles Never Interact

The Neutrino is a DIRAC $\quad \nu_{\mu}$ Particle

Layer of Matter

Accelerate the neutrino to relativistic energy In the direction parallel to the spin

Right-Handed particles Interacting generate Positive Muons

The Neutrino is a
MAJORANA V_{μ} Particle

Layer of Matter

Gedanken Experiment

Neutrino at Rest with spin pointing downward.

Double beta decay

Atomic Number

Double Beta Decay

${ }_{32}^{76} \mathrm{Ge} \rightarrow{ }_{34}^{76} \mathrm{Se}+e^{-} e^{-} \bar{\nu}_{e} \bar{\nu}_{e}$

Double Beta Decay

$$
\nu_{e}=\bar{\nu}_{e}
$$

Neutrino-less
Double beta decay

Resolution

TABLE V. Isotopic abundance and Q -value for the known $2 \nu \beta \beta$ emitters [175].

Isotope	isotopic abundance (\%)	$Q_{\beta \beta}[\mathrm{MeV}]$
${ }^{48} \mathrm{Ca}$	0.187	4.263
${ }^{76} \mathrm{Ge}$	7.8	2.039
${ }^{82} \mathrm{Se}$	9.2	2.998
${ }^{96} \mathrm{Zr}$	2.8	3.348
${ }^{100} \mathrm{Mo}$	9.6	3.035
${ }^{116} \mathrm{Cd}$	7.6	2.813
${ }^{130} \mathrm{Te}$	34.08	2.527
${ }^{136} \mathrm{Xe}$	8.9	2.459
${ }^{150} \mathrm{Nd}$	5.6	3.371

$\left.T_{1 / 2}^{2 \nu}{ }^{[76} \mathrm{Ge}\right] \simeq 1.78 \times 10^{21} \mathrm{yr}$

$$
T_{1 / 2}^{0 \nu}\left[{ }^{76} \mathrm{Ge}\right] \gtrsim 2 \times 10^{25} \mathrm{yr}
$$

TABLE VII. In this table, the main features and performances of some past, present and future $0 \nu \beta \beta$ experiments are listed.

Experiment	Isotope	Techinique	Total mass $[\mathrm{kg}]$	Exposure [kg yr]	$\begin{aligned} & \text { FWHM @ } Q_{\beta \beta} \\ & {[\mathrm{keV}]} \end{aligned}$	Background [counts/keV/kg/yr]	$\begin{aligned} & S^{0 \nu}{ }_{(90 \% \text { C. L. })} \\ & {\left[10^{25} \mathrm{yr}\right]} \end{aligned}$
Past							
Cuoricino, [179]	${ }^{130} \mathrm{Te}$	bolometers	$40.7\left(\mathrm{TeO}_{2}\right)$	19.75	5.8 ± 2.1	0.153 ± 0.006	0.24
CUORE-0, [180]	${ }^{130} \mathrm{Te}$	bolometers	$39\left(\mathrm{TeO}_{2}\right)$	9.8	5.1 ± 0.3	0.058 ± 0.006	0.29
Heidelberg-Moscow, [181]	${ }^{76} \mathrm{Ge}$	Ge diodes	$11\left({ }^{\text {enr }} \mathrm{Ge}\right)$	35.5	4.23 ± 0.14	0.06 ± 0.01	1.9
IGEX, [182, 183]	${ }^{76} \mathrm{Ge}$	Ge diodes	8.1 (${ }^{\mathrm{enr}} \mathrm{Ge}$)	8.9	~ 4	$\lesssim 0.06$	1.57
GERDA-I, [167, 184]	${ }^{76} \mathrm{Ge}$	Ge diodes	17.7 (${ }^{\text {nr }} \mathrm{Ge}$)	21.64	3.2 ± 0.2	~ 0.01	2.1
NEMO-3, [185]	${ }^{100} \mathrm{Mo}$	tracker + calorimeter	$6.9\left({ }^{100} \mathrm{Mo}\right)$	34.7	350	0.013	0.11
Present							
EXO-200, [186]	${ }^{136} \mathrm{Xe}$	LXe TPC	175 (${ }^{\text {enr }} \mathrm{Xe}$)	100	89 ± 3	$(1.7 \pm 0.2) \cdot 10^{-3}$	1.1
KamLAND-Zen, [187, 188]	${ }^{136} \mathrm{Xe}$	loaded liquid scintillator	348 (${ }^{\text {enr }} \mathrm{Xe}$)	89.5	244 ± 11	~ 0.01	1.9
Future							
CUORE, [189]	${ }^{130} \mathrm{Te}$	bolometers	$741\left(\mathrm{TeO}_{2}\right)$	1030	5	0.01	9.5
GERDA-II, [174]	${ }^{76} \mathrm{Ge}$	Ge diodes	$37.8\left({ }^{\text {enr }} \mathrm{Ge}\right)$	100	3	0.001	15
LUCIFER, [190]	${ }^{82} \mathrm{Se}$	bolometers	$17\left(\mathrm{Zn}^{82} \mathrm{Se}\right)$	18	10	0.001	1.8
MAJORANA D., [191]	${ }^{76} \mathrm{Ge}$	Ge diodes	44.8 (${ }^{\text {enr } / \mathrm{nat}} \mathrm{Ge}$)	$100^{\text {a }}$	4	0.003	12
NEXT, [192, 193]	${ }^{136} \mathrm{Xe}$	Xe TPC	100 (${ }^{\text {nr }} \mathrm{Xe}$)	300	$12.3-17.2$	$5 \cdot 10^{-4}$	5
AMoRE, [194]	${ }^{100} \mathrm{Mo}$	bolometers	$200\left(\mathrm{Ca}^{\text {enr }} \mathrm{MoO}_{4}\right)$	295	9	$1 \cdot 10^{-4}$	5
nEXO, [195]	${ }^{136} \mathrm{Xe}$	LXe TPC	4780 (enrXe)	$12150{ }^{\text {b }}$	58	$1.7 \cdot 10^{-5} \mathrm{~b}$	66
PandaX-III, [196]	${ }^{136} \mathrm{Xe}$	Xe TPC	1000 (${ }^{\text {nr }} \mathrm{Xe}$)	$3000{ }^{\text {c }}$	12-76	0.001	$11^{\text {c }}$
SNO+, [197]	${ }^{130} \mathrm{Te}$	loaded liquid scintillator	2340 (${ }^{\text {nat }} \mathrm{Te}$)	3980	270	$2 \cdot 10^{-4}$	9
SuperNEMO, [198, 199]	${ }^{82} \mathrm{Se}$	tracker + calorimeter	$100\left({ }^{82} \mathrm{Se}\right)$	500	120	0.01	10

[^0]\[

$$
\begin{gathered}
{\left[t^{1 / 2}\right]^{-1}=G_{0 \nu}|\mathcal{M}|^{2}\left|f\left(m_{i}, U_{\mathrm{e} i}\right)\right|^{2}} \\
f\left(m_{i}, U_{\mathrm{e} i}\right) \equiv \frac{m_{\beta \beta}}{m_{\mathrm{e}}}=\frac{1}{m_{\mathrm{e}}}\left|\sum_{k=1,2,3} U_{\mathrm{e} k}^{2} m_{k}\right| \\
m_{\beta \beta}=\left|\sum_{i=1,2,3} \mathrm{e}^{i \xi_{i}}\right| U_{\mathrm{e} i}^{2}\left|m_{i}\right|
\end{gathered}
$$
\]

WHY is the NEUTRINO MASS so much smaller than the other Fermion Masses ?

Possible Answer:

Because the Neutrino is a Majorana Fermion.

Neutrino as

Astrophysical Messenger

Essentially all our knowledge about the Universe outside the solar system Stars, Galaxies, is because we have "seen" it
[that is we have observed photons emitted from this far regions of space.

Light (Photons)

"Nuncius Sidereus"

Messenger from the stars

History of Astronomy :

Improvement of the "telescope". expansion of the range of wavelengths available for observations.
New telescopes

New astrophysical objects.
Deeper understanding of known astrophysical objects

New, more dramatic expansion of
our method to " $S E E$ " the Universe

Use of NEW PARTICLES as "MESSENGERS of the STARS"

Photons

Neutrinos

Cosmic Rays
Gravitational Waves

New, more dramatic expansion of our method to "SEE" the Universe

Use of NEW PARTICLES as "MESSENGERS of the STARS"

Photons
Neutrinos
Cosmic Rays
Gravitational Waves

A "Messenger"
with very different properties
that will allow us to
"SEE" the universe
in a profoundly different way
Very small cross section. neutrinos arrive from the "deep interior" of astrophysical sources

Neutrino Astronomy
has just been born at the end of the last Century

TWO ${ }_{(+1)}$ ASTROPHYSICAL OBJECTS
have been "seen" in neutrinos"
The SUN
SuperNova SN1987A
The Earth: (Geophysical Neutrinos detection)

Natural Neutrino Fluxes

 $\mathrm{d} \phi_{\nu} / \mathrm{d} \log \left[\mathrm{E}_{\nu}\right]\left(\mathrm{cm}^{2} \mathrm{~s}\right)^{-1}$

23 decades

SOLAR NEUTRINOS

Source of Energy of the SUN : Nuclear Fusion

$$
4 p+2 e^{-} \rightarrow{ }^{4} \mathrm{He}+2 \nu_{e}
$$

Energy Released per each Cycle
$Q=4 m_{p}+2 m_{e}-m_{H e}=26.73 \mathrm{MeV}$

$$
\Phi_{\nu_{e}} \simeq \frac{1}{4 \pi d_{\odot}^{2}} \frac{2 L_{\odot}}{\left(Q-\left\langle E_{\nu}\right\rangle\right)}
$$

$$
\phi_{\nu_{\odot}} \sim 6 \times 10^{10}\left(\mathrm{~cm}^{2} \mathrm{~s}\right)^{-1}
$$

SOLAR NEUTRINOS. II. EXPERIMENTAL*

Raymond Davis, Jr.
Chemistry Department, Brookhaven National Laboratory, Upton, New York (Received 6 January 1964)

$$
\nu_{e}+{ }^{37} \mathrm{Cl} \rightarrow{ }^{37} \mathrm{Ar}+e^{-}
$$

On the other hand, if one wants to measure the solar neutrino flux by this method one must use a much larger amount of $\mathrm{C}_{2} \mathrm{Cl}_{4}$, so that the expected ${ }^{37} \mathrm{Ar}$ production rate is well above the background of the counter, 0.2 count per day. Using Bahcall's expression,

$$
\begin{aligned}
& \sum \varphi_{\nu}(\text { solar }) \sigma_{\text {abs }} \\
& \quad=(4 \pm 2) \times 10^{-35} \sec ^{-1}\left({ }^{37} \mathrm{Cl} \text { atom }\right)^{-1},
\end{aligned}
$$

then the expected solar neutrino captures in 100000 gallons of $\mathrm{C}_{2} \mathrm{Cl}_{4}$ will be 4 to 11 per day, which is an order of magnitude larger than the counter background.

Super

SK-I: ${ }^{8}$ B Solar Neutrino Flux
Kamiokande

DATA/SM $=0.465 \pm 0.015$

NEUTRINOS

from
SUPERNOVAE
EXPLOSIONS
(Gravitational Collapse)

Energy ~ 30 MeV

Neutrinos from Supernovae

Onion Structure

Collapse (Implosion)

Degenerate iron core:

$$
\begin{aligned}
& p \approx 10^{9} \mathrm{~g} \mathrm{~cm}^{-3} \\
& T \approx 10^{01} \mathrm{~K} \\
& M_{\mathrm{Fe}} \approx 1.5 \mathrm{M}_{\text {sun }} \\
& \mathrm{R}_{\mathrm{Fe}} \approx 8000 \mathrm{~km}
\end{aligned}
$$

From Georg Raffelt

From Georg Raffelt

Newborn Neutron Star

$$
\begin{aligned}
& \text { Gravitational binding energy } \\
& E_{b} \approx 3 \times 10^{53} \mathrm{erg} \approx 17 \% M_{\text {sun }} c^{2}
\end{aligned}
$$

This shows up as 99\% Neutrinos
1% Kinetic energy of explosion (1% of this into cosmic rays) 0.01\% Photons, outshine host galaxy

Neutrino luminosity

$$
\begin{aligned}
L_{V} & \approx 3 \times 10^{53} \mathrm{erg} / 3 \mathrm{sec} \\
& \approx 3 \times 10^{19} L_{\text {sun }}
\end{aligned}
$$

While it lasts, outshines the entire visible universe

From Georg Raffelt

The neutrinos from SN1987A still the subject of many works every year !

Kamiokande + IMB detection of SN1987A

Controversial Results from other detectors [LSD - Mont Blanc]
A. Mirizzi and G. G. Raffelt,
"New analysis of the SN 1987A neutrinos with a flexible spectral shape," Phys. Rev. D 72, 063001 (2005) [astro-ph/0508612].

$$
\varphi(E)=\frac{1}{E_{0}} \frac{(\alpha+1)^{(\alpha+1)}}{\Gamma(\alpha+1)}\left(\frac{E}{E_{0}}\right)^{\alpha} \exp \left[-(\alpha+1) \frac{E}{E_{0}}\right]
$$

A. Mirizzi and G. G. Raffelt, "New analysis of the SN 1987A neutrinos with a flexible spectral shape," Phys. Rev. D 72, 063001 (2005) [astro-ph/0508612].

23 february 1987

32 years ago

We want a new close-by (... but not too much.....) Gravitational Collapse Supernova

Scientific Potential (with the new detectors) is very important

$$
{ }^{238} \mathrm{U} \underset{100 \%}{ }{ }^{206} \mathrm{~Pb}+8^{4} \mathrm{He}+6 e^{-}+6 \overline{\nu_{e}}+51.7[\mathrm{MeV}]
$$

$$
{ }^{232} \mathrm{Th} \underset{100 \%}{ }{ }^{208} \mathrm{~Pb}+6^{4} \mathrm{He}+4 e^{-}+4 \overline{\nu_{e}}+42.7[\mathrm{MeV}]
$$

$$
{ }^{40} \mathrm{~K} \xrightarrow[89.28 \%]{ }{ }^{40} \mathrm{Ca}+e^{-}+\overline{\nu_{e}}+1.311[\mathrm{MeV}]
$$

152 events observed Geoneutrino results

"signal" $25{ }^{+19}-18$

Nature 436, 28 July 2005

BOREXINO

(march 2010)
$9.9_{-3.4}^{+4.1}$ Events (1 sigma)
$3.9_{-1.3}^{+1.6}\binom{+5.8}{-3.2}$ events $/(100$ ton $\cdot \mathrm{yr})$

ATMOSPHERIC NEUTRINOS

Atmospheric v energy spectrum

$$
\phi_{\nu_{\alpha}}(E, \theta)=\phi_{\nu_{\alpha}}(E, \pi-\theta)
$$

Up-Down Symmetry

Fully Contained (FC)

Partially Contained (PC)

Upward-going Muons (Up- μ)

Atmospheric Neutrino events

Soudan-2 detector

Cherenkov Radiation

in water, $\mathbf{n}=1.33$ as $\beta \rightarrow 1, \theta_{\mathrm{Ch}} \rightarrow 41$ degrees
~340 photons/cm pathlength

Photomultiplier Tubes (PMTs)
 $300 \mathrm{~nm}<\lambda<600 \mathrm{~nm}$

IMB detector

SuperKamiokande detector

50,000 tons of ultrapure water
2 m of water $=$ veto counter
Fiducial volume $=22,500$ tons
11,146 (20 inch) PMT's 1,885 veto PMT's

11,146 20 inch Photomultipliers (PMT's) (40 \% of surface is sensitive)

e-like

ELECTRON NEUTRINO

Neutrino Event Classes

Super-Kamiokande data

1489day FC+PC data + 1678day upward going muon data

1-ring e-like
 1-ring μ-like

 Up-going

Down-going

Broad Range
$P_{\nu_{\mu} \rightarrow \nu_{\mu}}\left(L, E_{\nu}\right)=1-\sin ^{2} 2 \theta \sin ^{2}\left[\frac{\Delta m^{2} L}{4 E_{\nu}}\right]$

$P_{\nu_{\mu} \rightarrow \nu_{\mu}}= \begin{cases}1 & \text { for } L \text { small, }, \\ 1-\frac{\sin ^{2} 2 \theta}{2} & \text { for } L \text { large. }\end{cases}$

$$
\simeq \frac{\lambda_{\mathrm{osc}}^{*}}{2} \simeq \frac{2 \pi\left\langle E_{\nu}\right\rangle}{\left|\Delta m^{2}\right|}
$$

HIGH ENERGY NEUTRINO

DETECTION

The Km3 concept

New Concept "Beaded string"

Amundsen-Scott South Pole station

Deployment of the strings

1400
1500

High-energy events in IceCube-40

$\sim \mathrm{EeV}$ air shower

~ $\mathbf{1 0 0} \mathbf{~ T e V ~ n m ~ i n d u c e d ~}$ muon

More events

A cascade event, candidate for a high energy ne $\sim 50 \mathrm{TeV}$

Observation of
neutrino-induced muons
(see $1 / 2$ of the sky)

IceCube - Point Sources - 7 years

No significant PS reported

No correlation with list of 74 sources in both hemispheres. Galactic \& Extragalactic

Most recent data periods:
~80k nothern hemisephere evt/yr (atm v)
$\sim 35 \mathrm{k}$ southern hemisepher evt/yr (atm μ)
~200 starting tracks. Southern sky

ANTARES - Point Sources

Sky map in equatorial coordinates of pre-trial p-values

Phys. Rev. D96 (2017), 082001

New class of events where the Neutrino interacts inside the detector Fiducial Volume
"High Energy Starting Events"

HESE

Outer Layer of the detector is used as a Veto
No PMT us have a hit in the veto With an "early time"
[charged particles can exit the detector, but not enter]

Starting events

- total calorimetry
- complete sky coverage
- flavor determined
- some will be muon neutrinos with good angular resolution

loss in statistics is compensated by event definition

"TRACK"

| Deposited Energy (TeV) | Time (M.JD) | Declination (deg.) | RA (deg.) | Med. Ang. Resolution (deg.) | Topology |
| :--- | :--- | :--- | :--- | :--- | :--- | | $1040.7_{-144.4}^{+131.6}$ | 55782.5161816 | -27.9 | 265.6 | 13.2 | Shower |
| :--- | :--- | :--- | :--- | :--- | :--- |

Two Classes of events

"Tracks"

$$
\nu_{\mu}\left(\bar{\nu}_{\mu}\right)+N \rightarrow \mu^{\mp}+\text { hadrons }
$$

"Showers"

$$
\begin{aligned}
& \nu_{e}\left(\bar{\nu}_{e}\right)+N \rightarrow e^{\mp}+\text { hadrons } \\
& \nu_{\tau}\left(\bar{\nu}_{\tau}\right)+N \rightarrow \tau^{\mp}+\text { hadrons } \\
& \nu_{\alpha}\left(\bar{\nu}_{\alpha}\right)+N \rightarrow \nu_{\alpha}\left(\bar{\nu}_{\alpha}\right)+\text { hadrons }
\end{aligned}
$$

Tau Neutrinos

$$
\begin{gathered}
\tau^{-} \rightarrow \nu_{\tau}+\left(\mu^{-}+\bar{\nu}_{\mu}\right) \\
\tau^{-} \rightarrow \nu_{\tau}+\left(e^{-}+\bar{\nu}_{\mu}\right) \\
\tau^{-} \rightarrow \nu_{\tau}+\left(q_{d}+\bar{q}_{u}\right)
\end{gathered}
$$

Path-length of tau's before decay

$$
\tau_{\tau}=2.9 \times 10^{-13}
$$

$$
\ell_{\tau}=c \tau \frac{E}{m} \simeq 49 \mathrm{~m} E_{P e V}
$$

Atmospheric neutrino self veto

Two cases

1. Stefan Schönert et al. Phys. Rev. D79 (2009) 043009
Can be evaluated analytically

Effect of VETO: rejection of atmospheric neutrinos

Effect allows to separate

Atmosphericcharm
from isotropic astrophysical

Absorption of neutrinos in the Earth

Fraction of up-going neutrinos (isotropic flux) that survives crossing the Earth

"Glashow Resonance"

$$
\begin{aligned}
& E^{*}=\frac{M_{W}^{2}-m_{e}^{2}}{2 m_{e}} \simeq 6.4 \mathrm{PeV} \\
& \bar{\nu}_{e}+e^{-} \rightarrow W^{-} \rightarrow \ldots \\
& \left(p_{\bar{\nu}_{e}}+p_{e}\right)^{2}=M_{W}^{2} \\
& m_{e}^{2}+2 m_{e} E_{\bar{\nu}}=M_{W}^{2}
\end{aligned}
$$

High-Energy Starting Events (HESE) - 7.5 yr

No evidence for point sources, nor a correlation with the galactic plane

High-Energy Starting Events (HESE) - 7.5 yr

Prior result 6 years ICRC 2017 arxiv:1710.01191
Updates to calibration and ice optical properties 103 events, with 60 events $>60 \mathrm{TeV}$
\rightarrow Changes to RA, Dec, energy

High Energy Starting Events

Track [(small) black circles]
Showers [(large) blue circles]
$E_{\text {vis }} \gtrsim 30 \mathrm{TeV}$

IceCube 4-years HESE events

High Energy Starting Events [HESE]

First evidence for an extra-terrestrial h.e. neutrino flux

High Energy Starting Events [HESE]

First evidence for an extra-terrestrial h.e. neutrino flux

Upgoing (neutrino induced) Muons

Upgoing muon events

$E_{\mu} \gtrsim 200 \mathrm{TeV}$

EXTRA-GALACTIC

 NEUTRINOS
AGN GRB

Main candidate sources

Intimate relation with UHECR [extragalactic cosmic rays]

The 3-dimensional lampposts ensemble "paradox" [Kepler - Olbers paradox].

Linear sequence of lampposts:
Most of the light you receive from the nearest lamppost

3D ensemble of lampposts: [Euclidean static space] Light diverges !

Homogeneous (in average) density of sources: spherical shells between radii: 1, 2, 3, 4, ...

All spherical shells contribute equally.: DIVERGENCE!

Homogeneous (in average) density of sources: spherical shells between radii: 1, 2, 3, 4,

All spherical shells contribute equally.: DIVERGENCE!
$\left(\frac{1}{4 \pi R^{2}}\right)\left(4 \pi R^{2} \Delta R\right)$
Divergence cured
By cosmological effects

$$
R_{\text {Hubble }}=\frac{c}{H_{0}} \simeq 3 \mathrm{Gpc}
$$

Expected flavor composition of High energy astrophysical neutrinos

[Standard mechanism of production]

$$
\nu_{e} \simeq \nu_{\mu} \simeq \nu_{\tau}
$$

$$
\begin{aligned}
P_{\nu_{\alpha} \rightarrow \nu_{\beta}}\left(E_{\nu}, L\right) & =\left|\sum_{j} U_{\beta j} U_{\alpha j}^{*} e^{-i m_{j}^{2} \frac{L}{2 E_{\nu}}}\right|^{2} \\
& =\sum_{j=1,3}\left|U_{\beta j}\right|^{2}\left|U_{\alpha j}\right|^{2} \\
& +\sum_{j<k} 2 \operatorname{Re}\left[U_{\beta j} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\alpha k}\right] \cos \left(\frac{\Delta m_{j k}^{2} L}{2 E}\right) \\
& +\sum_{j<k} 2 \operatorname{Im}\left[U_{\beta j} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\alpha k}\right] \sin \left(\frac{\Delta m_{j k}^{2} L}{2 E}\right)
\end{aligned}
$$

Space averaged flavor transition probability

Neutrinos created in volume of sufficiently large linear size

$$
X_{\text {source }} \gg E /\left|\Delta m_{j k}^{2}\right|
$$

Oscillating terms average to zero

$$
\begin{aligned}
& \left\langle P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)\right\rangle=\sum_{j}\left|U_{\alpha j}\right|^{2}\left|U_{\beta j}\right|^{2} \\
& \simeq\left(\begin{array}{cc}
1-2 v & v \\
v & (1-v) / 2 \\
v & (1-v) / 2 \\
v & (1-v) / 2 \\
(1-v) / 2
\end{array}\right) \simeq\left(\begin{array}{ccc}
0.6 & 0.2 & 0.2 \\
0.2 & 0.4 & 0.4 \\
0.2 & 0.4 & 0.4
\end{array}\right) \\
& \quad \theta_{13} \simeq 0 \\
& \quad \theta_{23} \simeq 45^{\circ} \\
& \quad v=\cos ^{2} \theta_{12} \sin ^{2} \theta_{12} \simeq 0.2
\end{aligned}
$$

$$
\left(\begin{array}{lll}
0.6 & 0.2 & 0.2 \\
0.2 & 0.4 & 0.4 \\
0.2 & 0.4 & 0.4
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

$$
\begin{aligned}
\pi^{+} \rightarrow & \mu^{+} \nu_{\mu} \\
& \longmapsto e^{+} \quad \nu_{e} \bar{\nu}_{\mu}
\end{aligned}
$$

$\xlongequal{\text { "Standard }}$ mechanism" \(\left($$
\begin{array}{l}1 \\
2 \\
0\end{array}
$$\right) \Longrightarrow\left(\begin{array}{l}1

1

1\end{array}\right)\)| much more |
| :---: |
| "astrophysically |
| plausible" |

"Muon
absorption"

Very high
magnetic field

1

0\end{array}\right) \Longrightarrow\left($$
\begin{array}{c}v \\
(1-v) / 2 \\
(1-v) / 2\end{array}
$$\right) \approx\left($$
\begin{array}{c}0.2 \\
0.4 \\
0.4\end{array}
$$\right)\)
"Neutron
decay"

Nuclear
fragmentation
$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \Longrightarrow\left(\begin{array}{c}1-2 v \\ v \\ v\end{array}\right) \approx\left(\begin{array}{c}0.6 \\ 0.2 \\ 0.2\end{array}\right)$

Include

best fit of oscillation parameters (delta dependence)

Significant presence of tau-neutrinos

A 5.9 PeV event in IceCube

Glashow Resonance

Resonance: $\mathrm{E}_{v}=6.3 \mathrm{PeV}$

Work in progress

 Typical visible energy is 93%Event identified in a partially-contained PeV search (PEPE)
Deposited energy: $5.9 \pm 0.18 \mathrm{PeV}$ (stat only)

Potential hadronic nature of this event under study

IceCube GCN 21916 17/09/23

```
TITLE: GCN CIRCULAR
NUMBER: }2191
SUBJECT: IceCube-170922A - IceCube observation of a high-energy neutrino candidate event
DATE: 17/09/23 01:09:26 GMT
FROM: Erik Blaufuss at U. Maryland/IceCube <blaufuss@icecube.umd.edu>
Claudio Kopper (University of Alberta) and Erik Blaufuss (University of Maryland) report on behalf of the IceCube
Collaboration (http://icecube.wisc.edu/).
On 22 Sep, 2017 IceCube detected a track-like, very-high-energy event with a high probability of being of astrophysical
origin. The event was identified by the Extremely High Energy (EHE) track event selection. The IceCube detector was in a
normal operating state. EHE events typically have a neutrino interaction vertex that is outside the detector, produce a muon
that traverses the detector volume, and have a high light level (a proxy for energy).
After the initial automated alert (https://gcn.gsfc.nasa.gov/notices_amon/50579430_130033.amon), more
sophisticated reconstruction algorithms have been applied offline, with the direction refined to:
Date: 22 Sep, 2017
Time: 20:54:30.43 UTC
RA: 77.43 deg (-0.80 deg/+1.30 deg 90% PSF containment) J2000
Dec: 5.72 deg (-0.40 deg/+0.70 deg 90% PSF containment) J2000
We encourage follow-up by ground and space-based instruments to help identify a possible astrophysical source for the
candidate neutrino.
The IceCube Neutrino Observatory is a cubic-kilometer neutrino detector operating at the geographic South Pole, Antarctica.
The IceCube realtime alert point of contact can be reached at roc@icecube.wisc.edu
```


Fermi-LAT detection of increased gamma-ray activity of TXS 0506+056, located inside the IceCube-170922A error region.

ATel \#10791; Yasuyuki T. Tanaka (Hiroshima University), Sara Buson (NASA/GSFC), Daniel Kocevski (NASA/MSFC) on behalf of the Fermi-LAT collaboration on 28 Sep 2017; 10:10 UT
Credential Certification: David J.Thompson (David.J.Thompson@nasa.gov)
Subjects: Gamma Ray, Neutrinos, AGN
Referred to by ATel \#: 10792, 10794, 10799, 10801, 10817, 10830, 10831, 10833, 10838, 10840, 10844, 10845, 10861, 10890, 10942, 11419, 11430

Great source of excitement

Texas Survey of Radio Sources [365 Mhz, (1974-1983)] 66841 sources [TXS]

Very Long Baseline Array (VLBA) [ensemble of 10 radio telescopes]

8000 km baseline

$$
\alpha=2.059 \pm 0.042
$$

$$
\Phi_{\gamma}[1 \div 100 \mathrm{GeV}]=4.94 \times 10^{-9} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

$$
L(E)=\phi_{\gamma}(E) \times E^{2} \simeq 4.5 \times 10^{45} \frac{\mathrm{erg}}{\mathrm{~s}}
$$

Three More Topics:
[1.] "Cosmogenic Neutrinos"
[2.] Neutrinos from Dark Matter Self-annihilation
[3.] New Concepts for Neutrino detection

Neutrino Astronomies

Energy Loss Mechanisms for Protons:

NEUTRINO PRODUCTION

Proton Energy Evolution with Redshift

High Energy Proton Horizon

$\rightarrow v+\bar{v}+$ other particles
Accretion of DM
Particles in the Sun (and Earth)

Number of neutrinos in the sun

$$
\begin{array}{l|l|l}
\frac{d N}{d t}=C_{c}-C_{a} N^{2}-C_{e} N \\
\begin{array}{l}
\text { Capture } \\
\text { Rate }
\end{array} & \begin{array}{l}
\text { Annihilation } \\
\text { Rate }
\end{array} & \begin{array}{l}
\text { Evaporation } \\
\text { Rate }
\end{array} \\
\hline
\end{array}
$$

$$
\Gamma_{a}(t)=\eta \int_{\text {Sun }} d^{3} \mathbf{x}\left\langle\sigma_{\mathrm{ann}} v\right\rangle n^{2}(t, \mathbf{x})=\frac{C_{a}}{2} N^{2}
$$

$\frac{d N}{d t}=C_{c}-C_{a} N^{2}$
$N(t)=\sqrt{\frac{C_{c}}{C_{a}}} \tanh \left\{\frac{t}{\tau_{c}}\right\}$
$\tau_{c} \equiv\left(C_{c} C_{a}\right)^{-1 / 2}$

$$
\xrightarrow{t \gg \tau_{c}} \sqrt{\frac{C_{c}}{C_{a}}} \quad \begin{aligned}
& t=t_{\odot}=4.6 \mathrm{Gyr} \\
& \tau_{c, \odot} \approx 10^{8} \mathrm{yr}
\end{aligned}
$$

$$
\Gamma_{a}(t)=\frac{C_{c}}{2} \tanh ^{2}\left\{\frac{t}{\tau_{c}}\right\} \xrightarrow{t \gg \tau_{c}} \frac{C_{c}}{2}
$$

Annihilation Rate

SuperKamiokande detector

Muon (up-going) fron the direction of the SUN.

No excess from the sun direction $(\cos$ theta $=1)$

Red line= estimated Background from atmospheric neutrinos

Neutrino Astronomy: beyond the "Km3 concept"

Radio, Acoustic,.....

Radio Detection of neutrinos

ANITA-II over

http:/ / arxiv.org/abs/1003.2961
RICAP 25-05-2011
Tom Gaisser

FIG. 3: Events remaining after unblinding. The Vpol neutrino channel contains two surviving events. Three candidate UHECR events remain in the Hpol channel. Ice depths are from BEDMAP [12].

Vpol:1 neutrino candidate; HPol:3525 1019 eV

RICE experiment architecture

- Antarctic ice is neutrino target
- In-ice array of radio antennas
- 20 channels, 200-500 MHz
- Depths 100-300 meters
- Signal digitized at the surface
- Deployed near South Pole Station

10^{7} to $10^{11} \mathrm{GeV}$: Radio ice Cherenkov detection Askaryan Radio Array (ARA)

- a very large radio neutrino detector at the South Pole

Ref: Allison et al., Astropart.Phys. 35 (2012) 457-477, arXiv:1105.2854 (Design and performance paper)

Scientific Goal:

- Discover and determine the flux of highest energy cosmic neutrinos.
- Understanding of highest energy cosmic rays, other phenomena at highest energies.

Method:

Monitor the ice for radio pulses generated by interactions of cosmic neutrinos with nuclei of the 2.8 km thick ice sheet at the South Pole

Poster session at this conference:

\rightarrow H. Landsman, ARA Design and Status
\rightarrow J. Davies, ARA prototype and first station

ARA37
= Cable runs
\downarrow Power Hubs

Areal coverage: ~13Ukm²

10^{7} to $10^{11} \mathrm{GeV}$: Radio ice Cherenkov detection

ARIANNA

- L. Gerhardt et al., Nucl.Instrum.Meth. A624 (2010) 85-91
- Poster 18-3: J. Tatar. S. Barwick
31×31 array
[$30 \mathrm{~km} \times 30 \mathrm{~km}$]

ARIANNA

US, S. Korea, England, New Zealand

Barwick, astro-ph/0610631

Direct Ray

Reflected Ray

[^0]: $\mathrm{a}_{\text {our }}$ assumption (corresponding sensitivity from Fig. 14 of Ref. [191]).
 $b_{\text {we assume }} 3$ tons fiducial volume.
 c our assumption by rescaling NEXT.

