Introduction to Neutrino Physics

Paolo Lipari INFN Roma La Sapienza

ISAPP School 2019 Cosmic Ray Vision from the Southern Sky

Malargue, Argentina march 3rd 2019

Discovery of the Neutrino

Prediction of its existence (1930) (Wolfgang Pauli)

(1933)

(1953)

Neutrino Theory (Enrico Fermi)

First Detection (F. Reines, C. Cowan)

1930: PREDICTION of the EXISTENCE of the NEUTRINO.

Wolfgang PAULI

Study of Nuclear Beta Decay

Nuclear BETA Decay

Missing

Energy Momentum

Angular momentum

Carbon-14 6 protons,

8 neutrons

Nitrogen-14 7 protons, 7 neutrons

+ electron

Nuclear BETA Decay

neutrino

Carbon-14 6 protons,

8 neutrons

Nitrogen-14 7 protons, 7 neutrons Θ

+ electron

1933 Enrico Fermi [Nobel Prize in 1938]

develops the theory of Beta Decay

Current-Current Interaction

Neutrino Energy few MeV

 $\sigma \approx 10^{-44} \mathrm{~cm}^2$

Interaction Probability $= 10^{-11}$

Detection Method

Neutrino Discovery (antineutrinos from Nuclear Reactors

Reines e Cowan 1953-1956

$$\overline{\nu}_e + p \to n + e^+$$

$$E_{\text{visible}}^{\text{prompt}} = (E_{e^+} - m_e) + 2 m_e$$

$$= E_{\overline{\nu}_e} - (m_e + m_n - m_p)$$

$$\simeq E_{\overline{\nu}_e} - 1.8 \text{ MeV}$$

$$m_p + E_{\overline{\nu}_e} \simeq m_n + E_{e^+}$$

 $E_{e^+} \simeq E_{\overline{\nu}_e} - (m_n - m_p)$

Delayed coincidence e+ n Delayed neutron capture (after thermalization of the neutron)

$$n + p \rightarrow d + \gamma (2.2 \text{ MeV})$$

Neutrino Detection:

Delayed Coincidence of prompt energy release (the positron) and delayed neutron capture photon

Standard Model

Interactions are due to the EXCHANGE of SPIN 1 Particles

Interactions are due to the EXCHANGE of SPIN 1 Particles

ELECTROMAGNETISM Exchange of Photons

$$M(\gamma) = 0$$

STRONG Interaction Exchange of Gluons

M(gluon) = 0

WEAK Interaction Exchange of 3 Massive Particles

$$M(W^{\pm}) \simeq 85 \, M_{\rm proton}$$

 $M(Z^0) \simeq 97 M_{\rm proton}$

$$\begin{split} V_{\text{elettrico}} &= \frac{e}{r} & \text{Potential of a point} \\ V_{\text{elettric charge}} &= \frac{g}{r} \; e^{-\frac{c}{\hbar} M \, r} & \text{Potential} \\ V_{\text{debole}} &= \frac{g}{r} \; e^{-r/R_0} & \\ V_{\text{debole}} &= \frac{g}{r} \; e^{-r/R_0} & \\ R_0 &= \frac{\hbar}{c} \frac{1}{M} \\ \text{Short Range} & R_0 \simeq 2 \times 10^{-16} \text{ cm} \end{split}$$

Comparing the Cross section of two Processes:

$$e^- + p \rightarrow e^- + p$$

$$\nu_e + n \rightarrow e^- + p$$

 $e^- + p \rightarrow e^- + p$ Rutherford Formula: **e** e $Q^2 = (p_e - p'_e)^2$ p $\simeq \frac{\alpha^2}{Q^4} \, (\hbar c)^2$ $d\sigma_{ep}$

 $\sigma_{\nu n} = \int dQ^2 \; \frac{d\sigma_{\nu n}}{dQ^2} \;$ $\simeq rac{(4\pi g^2)^2}{M_W^4} (Q_{\max}^2 - Q_{\min}^2)$

$$Q_{\rm max}^2 = (p_{\nu} + p_n)^2 = M^2 + 2M E_{\nu}$$

$$\sigma_{\nu}(E_{\nu}) \sim \frac{\alpha^2}{M_W^4} M_p E_{\nu} (\hbar c)^2 \sim 10^{-38} E(\text{GeV}) \text{ cm}^2$$

PARITY SYMMETRY

Can we understand if we see the real world or a "Mirror Image" of the world ?

MIRROR

MIBBOB

Spin ¹/₂ Particles are described by 4 components "Dirac Spinors"

Left and Right Chirality Projectors

$$\psi_L = \left(rac{1-\gamma_5}{2}
ight) \psi$$
 $\psi_R = \left(rac{1+\gamma_5}{2}
ight) \psi$

Only the Left-Chirality component of a fermion interacts with the W bosons.

For a massless particle CHIRALITY = HELICITY

Fermion Particles in the Standard Model

$$\begin{pmatrix} u \\ d' \end{pmatrix}_{L} \qquad \begin{pmatrix} c \\ s' \end{pmatrix}_{L} \qquad \begin{pmatrix} t \\ b' \end{pmatrix}_{L} \qquad Y = -\frac{1}{2}$$

$$d_{R} \qquad s_{R} \qquad b_{R} \qquad Y = -\frac{1}{3}$$

$$u_{R} \qquad c_{R} \qquad t_{R} \qquad Y = +\frac{2}{3}$$

$$\begin{pmatrix} \nu_e \\ e \end{pmatrix}_L & \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix}_L & \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix}_L & Y = -\frac{1}{2} \\ e_R & \mu_R & \tau_R & Y = -1 \\ (\nu_e)_R & (\nu_\mu)_R & (\nu_\tau)_R & Y = 0 \\ \end{cases}$$

$$\begin{pmatrix} H^+ \\ H^\circ \end{pmatrix}$$
$$Y = +\frac{1}{2}$$

Neutrino

Neutrino

Neutrino Neutrino Neutrino

Possible Picture

Impossible Picture

Neutrino Roggin Meutrino

Possible Picture Impossible Picture

PARITY VIOLATION

DISCOVERY of PARITY VIOLATION

Lee and Yang

"Madame" Wu

Cobalt-60 in a Cryostat

 ${}^{60}\mathrm{Co} \rightarrow {}^{60}\mathrm{Ni} + e^- + \overline{\nu}_e$

The Experiment (dec. 1956) lead by: "Madame" Chien-Shiung WU

that determined that "PARITY" is VIOLATED

Neutrino

Possible Picture

MIRROR

Neutrino

Impossible Picture

Neutrino gg

Possible Picture

MIRROR

Anti-Neutrino

Possible Picture

Charge Conjugation Operation

APPROXIMATE SYMMETRY of NATURE

CP Transformation

C = Charge Conjugation[Particle \leftrightarrow Anti-Particle]

P = Parity [Reflection in a Mirror]

Paul M. Dirac

The NEUTRINO FLAVOR

3 type (FLAVORs) of Neutrinos

 $u_e \quad
u_\mu \quad
u_ au$

 $\overline{\nu}_e \quad \overline{\nu}_\mu \quad \overline{\nu}_\tau$

In 1947 Powell, Occhialini and Lattes discover the existence of the pion thanks to observation of Cosmic Rays with Emulsions in the Chacaltaya Laboratory.

Based on a drawing in Scientific American, March 1963.

 $\left(\begin{array}{c} u \\ d' \end{array} \right)$ L d_R u_R ν_e) $(e^{-})_{R}$ $(\nu_e)_R$

 $\left| \begin{array}{c} c \\ s' \end{array} \right|$ s_R c_R $\left(\begin{array}{c} \nu_{\mu} \\ \mu^{-} \end{array} \right)_{L}$ $(\mu^-)_R$ $(
u_{\mu})_R$

 $t \\ b'$ t_R b_R $_{ au^{-}}^{
u_{ au}}$) L $(\tau^{-})_R$ $(\nu_{\tau})_R$

PION DECAY

$$\pi^{+} = [\overline{u}d]$$
$$\pi^{-} = [\overline{d}u]$$
$$\pi^{0} = \frac{1}{\sqrt{2}}[\overline{u}u + [\overline{d}d]]$$

$$\begin{array}{ccc} \pi^+ \rightarrow & \mu^+ + \nu_\mu \\ & \downarrow \\ & e^+ + \nu_e + \overline{\nu}_\mu \end{array}$$

Dynamically suppressed

Kinematically Forbidden

Decay is nearly forbidden by Angular Momentum Conservation

CHIRALITY

versus

HELICITY

MUON DECAY: $\mu^- \rightarrow \nu_\mu + e^- \overline{\nu}_e$

How Many Light Neutrinos Exist ?

Answer: 3

$$Z^0 \to \nu_{\alpha} + \overline{\nu}_{\alpha}$$

 $\Gamma_{\nu\bar{\nu}} = 166.9 \text{ MeV}$

 $\Gamma_{\text{invisible}} = N_{\nu} \ \Gamma_{\nu\overline{\nu}}$

 $\Gamma_{\rm invisible} = \Gamma_{\rm tot} - \Gamma_{\rm vis} = 498 \pm 4.2 ~{\rm MeV}$

$$N_{\nu} = \frac{\Gamma_{\rm inv}}{\Gamma_{\nu\bar{\nu}}} = 2.994 \pm 0.012$$

NEUTRINO FLAVOR OSCILLATIONS

3 Neutrinos states: 3 masses

$$m_{1}^{}, m_{2}^{}, m_{3}^{}$$

States with definite masses in general do **not** coincide with the "flavor" states

$$\{ |\nu_e\rangle \ , \ |\nu_{\mu}\rangle \ , \ |\nu_{\tau}\rangle \}$$
 Flavor basis
$$\{ |\nu_1\rangle \ , \ |\nu_2\rangle \ , \ |\nu_3\rangle \}$$
 Mass basis

$$W^- \rightarrow \overline{u} + d'$$

 $\rightarrow \overline{c} + s'$
 $\rightarrow \overline{t} + b'$

$$-(+2/3) + (-1/3) = -1$$

$$\begin{array}{rrrr} W^+ & \to & e^+\nu_e \\ & \to & \mu^+\nu_\mu \\ & \to & \tau^+\nu_\tau \end{array}$$

Cabibbo, Kobayashi, Maskawa matrix

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = V^{\rm CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U^{\text{PMNS}} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Pontecorvo, Maki, Nakagawa, Sakata Matrix

Neutrino Propagation

$$|\nu(0)\rangle = |\nu_{\mu}\rangle = \cos\theta |\nu_{1}\rangle + \sin\theta |\nu_{2}\rangle$$

$$\nu_{\mu}$$
 created at t =0 with momentum **p**

$$E_i = \sqrt{p^2 + m_i^2} \simeq p + \frac{m_i^2}{2p} \simeq E + \frac{m_i^2}{2E}$$

Different mass components have different energy

$$\nu(t)\rangle = \cos\theta \, e^{-iE_1t} |\nu_1\rangle + \sin\theta \, e^{-iE_2t} |\nu_2\rangle$$

 ν state at time t

Oscillation Probability

$$P(\nu_{\mu} \to \nu_{\tau}; t) =$$

- $= |\langle \nu_{\tau} | \nu(t) \rangle|^2$
- $= |\{-\sin\theta \langle \nu_1| + \cos\theta \langle \nu_2|\}|\{\cos\theta e^{-iE_1t}|\nu_1\rangle + \sin\theta e^{-iE_2t}|\nu_2\rangle\}|^2$
- $= \cos^2 \theta \, \sin^2 \theta \, \left| e^{-iE_2 t} e^{-iE_1 t} \right|^2$
- $= 2 \cos^2 \theta \sin^2 \theta \{1 \cos[(E_2 E_1)t]\}$

$$P(\nu_{\mu} \rightarrow \nu_{\tau}; L) = \sin^2 2\theta \sin^2 \left[1.27 \,\Delta m^2 (\text{eV}^2) \frac{L(\text{Km})}{E(\text{GeV})} \right]$$

Probability

3 X 3 Unitary Matrix 3 angles 6 phases

Mixing Matrix: 3 angles, 1 phase

(relevant for neutrino oscillations)

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

U* : Mixing Matrix for Antineutrinos

More complex expressions for the Oscillation Probabilities

3 - Flavor Transitions

$$|\nu(0)\rangle = |\nu_{\alpha}\rangle = \sum_{j} U_{\alpha j}^{*} |\nu_{j}\rangle$$
$$|\nu(t)\rangle = \sum_{j} U_{\alpha j}^{*} e^{-iE_{j}t} |\nu_{j}\rangle$$

$$\begin{aligned} A(\nu_{\alpha} \to \nu_{\beta}; t) &= \langle \nu_{\beta} | \nu(t) \rangle \\ &= \{ U_{\beta k} \langle \nu_{k} | \} \left\{ e^{-iE_{j}t} U_{\alpha j}^{*} | \nu_{j} \rangle \right\} \\ &= U_{\beta k} U_{\alpha j}^{*} e^{-iE_{j}t} \langle \nu_{k} | \nu_{j} \rangle \\ &= U_{\beta j} U_{\alpha j}^{*} e^{-iE_{j}t} \end{aligned}$$

Oscillation Probability

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| \sum_{j} U_{\beta j} U_{\alpha j}^{*} e^{-im_{j}^{2} \frac{L}{2E_{\nu}}} \right|^{2} \qquad L, E$$
$$= \sum_{j=1,3} |U_{\beta j}|^{4} |U_{\alpha j}|^{4}$$
$$+ \sum_{j < k} 2 \operatorname{Re}[U_{\beta j} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\alpha k}] \cos\left(\frac{\Delta m_{jk}^{2} L}{2E}\right)$$
$$+ \sum_{j < k} 2 \operatorname{Im}[U_{\beta j} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\alpha k}] \sin\left(\frac{\Delta m_{jk}^{2} L}{2E}\right)$$

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \sum_{j} U_{\beta j} U_{\alpha j}^{*} e^{-i m_{j}^{2} \frac{L}{2E_{\nu}}} \right|^{2}$$

$$P(\nu_{\alpha} \to \nu_{\beta}) \neq P(\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta}) \qquad \mathbf{CP} \text{ violated}$$

$$P(\nu_{\alpha} \to \nu_{\beta}) \neq P(\nu_{\beta} \to \nu_{\alpha}) \qquad \mathbf{T} \text{ violated}$$

$$P(\nu_{\alpha} \to \nu_{\beta}) = P(\overline{\nu}_{\beta} \to \overline{\nu}_{\alpha}) \qquad \mathbf{CPT} \text{ conserved}$$

Neutrino Description

Normal Hierarchy

Inverted Hierarchy

Mass of the lightest Neutrino $\, {
m m}_{
m o} \,$

DIRAC or MAJORANA ?

 ν_{I} $u_{
m R}$

 ν_{L}

Gedanken

Experiment

Massive Neutrino at rest in the center of this room.

Spin pointing Down

Layer of Matter

Accelerate the neutrino to relativistic energy in the direction Opposite to the spin.

A few of the Left-Handed particles interact and generate **Negative Muons** Crucial Gedanken Experiment

Accelerate the neutrino to relativistic energy In the direction parallel to the spin

Right-Handed particles **Never Interact**

The Neutrino is a

DIRAC v_{μ} Particle

Layer of Matter

Accelerate the neutrino to relativistic energy In the direction parallel to the spin

Right-Handed particles Interacting generate Positive Muons

The Neutrino is a

MAJORANA \mathcal{V}_{μ} Particle

Layer of Matter

Gedanken Experiment

Neutrino at Rest with spin pointing downward.

Double beta decay

Double Beta Decay

 $_{32}^{76}\text{Ge} \rightarrow _{34}^{76}\text{Se} + e^- e^- \overline{\nu}_e \overline{\nu}_e$

Double Beta Decay

 $\nu_e = \overline{\nu}_e$

Neutrino-less Double beta decay

Resolution

Isotope	isotopic abundance $(\%)$	$Q_{\beta\beta}$ [MeV]
48 Ca	0.187	4.263
$^{76}\mathrm{Ge}$	7.8	2.039
82 Se	9.2	2.998
$^{96}\mathrm{Zr}$	2.8	3.348
$^{100}\mathrm{Mo}$	9.6	3.035
$^{116}\mathrm{Cd}$	7.6	2.813
$^{130}\mathrm{Te}$	34.08	2.527
136 Xe	8.9	2.459
¹⁵⁰ Nd	5.6	3.371

TABLE V. Isotopic abundance and Q-value for the known $2\nu\beta\beta$ emitters [175].

 $T_{1/2}^{2\nu}$ [⁷⁶Ge] $\simeq 1.78 \times 10^{21}$ yr

 $T_{1/2}^{0\nu}[^{76}\text{Ge}] \gtrsim 2 \times 10^{25} \text{ yr}$

Experiment	Isotope	Techinique	Total mass [kg]	Exposure [kg yr]	FWHM $@Q_{\beta\beta}$ [keV]	0	$\frac{S^{0\nu}{}_{\rm (90\% C. L.)}}{[10^{25}{\rm yr}]}$
Past	-						
Cuoricino, [179]	$^{130}\mathrm{Te}$	bolometers	$40.7 (\text{TeO}_2)$	19.75	5.8 ± 2.1	0.153 ± 0.006	0.24
CUORE-0, [180]	$^{130}\mathrm{Te}$	bolometers	$39 (\text{TeO}_2)$	9.8	5.1 ± 0.3	0.058 ± 0.006	0.29
Heidelberg-Moscow, [181]	$^{76}\mathrm{Ge}$	Ge diodes	$11 (^{enr}Ge)$	35.5	4.23 ± 0.14	0.06 ± 0.01	1.9
IGEX, [182, 183]	$^{76}\mathrm{Ge}$	Ge diodes	$8.1 (^{enr}Ge)$	8.9	~ 4	$\lesssim 0.06$	1.57
GERDA-I, [167, 184]	$^{76}\mathrm{Ge}$	Ge diodes	$17.7 \ (enrGe)$	21.64	3.2 ± 0.2	~ 0.01	2.1
NEMO-3, [185]	$^{100}\mathrm{Mo}$	tracker + calorimeter	6.9 (100 Mo)	34.7	350	0.013	0.11
Present							
EXO-200, [186]	$^{-136}$ Xe	LXe TPC	175 (^{enr} Xe)	100	89 ± 3	$(1.7 \pm 0.2) \cdot 10^{-3}$	1.1
KamLAND-Zen, [187, 188]	136 Xe	loaded liquid scintillator	348 (^{enr} Xe)	89.5	244 ± 11	~ 0.01	1.9
Future							
CUORE, [189]	- ¹³⁰ Te	bolometers	741 (TeO ₂)	1030	5	0.01	9.5
GERDA-II, [174]	$^{76}\mathrm{Ge}$	Ge diodes	37.8 (enrGe)	100	3	0.001	15
LUCIFER, [190]	82 Se	bolometers	$17 \ (Zn^{82}Se)$	18	10	0.001	1.8
MAJORANA D., [191]	$^{76}\mathrm{Ge}$	Ge diodes	$44.8 \ (enr/natGe)$	100^{a}	4	0.003	12
NEXT, [192, 193]	136 Xe	Xe TPC	100 (^{enr} Xe)	300	12.3 - 17.2	$5 \cdot 10^{-4}$	5
AMoRE, [194]	$^{100}\mathrm{Mo}$	bolometers	200 ($Ca^{enr}MoO_4$)	295	9	$1 \cdot 10^{-4}$	5
nEXO, [195]	$^{136}\mathrm{Xe}$	LXe TPC	4780 (^{enr} Xe)	12150^{b}	58	$1.7 \cdot 10^{-5} \mathrm{b}$	66
PandaX-III, [196]	$^{136}\mathrm{Xe}$	Xe TPC	1000 (^{enr} Xe)	$3000^{\rm c}$	12 - 76	0.001	11 ^c
SNO+, [197]	$^{130}\mathrm{Te}$	loaded liquid scintillator	2340 (^{nat} Te)	3980	270	$2 \cdot 10^{-4}$	9
SuperNEMO, [198, 199]	82 Se	tracker + calorimeter	$100 (^{82}Se)$	500	120	0.01	10

TABLE VII. In this table, the main features and performances of some past, present and future $0\nu\beta\beta$ experiments are listed.

^aour assumption (corresponding sensitivity from Fig. 14 of Ref. [191]). ^bwe assume 3 tons fiducial volume.

^c our assumption by rescaling NEXT.

$$\left[t^{1/2}\right]^{-1} = G_{0\nu} \left|\mathcal{M}\right|^2 \left|f(m_i, U_{\mathrm{e}i})\right|^2$$

$$f(m_i, U_{ei}) \equiv \frac{m_{\beta\beta}}{m_e} = \frac{1}{m_e} \left| \sum_{k=1,2,3} U_{ek}^2 m_k \right|$$

$$m_{\beta\beta} = \left| \sum_{i=1,2,3} e^{i\xi_i} |U_{ei}^2| m_i \right|$$

WHY is the NEUTRINO MASS so much smaller than the other Fermion Masses ?

Possible Answer:

Because the Neutrino is a Majorana Fermion.

Neutrino as Astrophysical Messenger

Essentially *all our knowledge* about the Universe outside the solar system Stars, Galaxies,

is because we have "seen" it

[that is we have observed photons emitted from this far regions of space.

Light (Photons) "Nuncius Sidereus"

Messenger from the stars

History of Astronomy :

Improvement of the "telescope". expansion of the range of wavelengths available for observations.

New, more dramatic expansion of our method to ``SEE'' the Universe

Use of NEW PARTICLES as "MESSENGERS of the STARS"

Photons

Neutrinos

Cosmic Rays

Gravitational Waves

New, more dramatic expansion of our method to "SEE" the Universe

Use of NEW PARTICLES as "MESSENGERS of the STARS"

Photons

Neutrinos

Cosmic Rays

Gravitational Waves

A "Messenger" with very different properties that will allow us to "SEE" the universe in a profoundly different way

Very small cross section. neutrinos arrive from the "deep interior" of astrophysical sources Neutrino Astronomy has just been born at the end of the last Century

TWO (+1) ASTROPHYSICAL OBJECTS have been "seen" in neutrinos"

The SUN

SuperNova SN1987A

The Earth: (Geophysical Neutrinos detection)

Natural Neutrino Fluxes

SOLAR NEUTRINOS

Source of Energy of the SUN : Nuclear Fusion

 $4p + 2e^- \rightarrow {}^4\text{He} + 2\nu_e$

Energy Released per each Cycle $Q = 4m_p + 2m_e - m_{He} = 26.73 \text{ MeV}$

$$\begin{split} \Phi_{\nu_e} \simeq \frac{1}{4\pi \, d_{\odot}^2} \, \frac{2 L_{\odot}}{(Q - \langle E_{\nu} \rangle)} \\ \phi_{\nu_{\odot}} \sim 6 \times 10^{10} \, \, (\mathrm{cm}^2 \, \mathrm{s})^{-1} \end{split}$$

Raymond Davis, Jr.

Chemistry Department, Brookhaven National Laboratory, Upton, New York (Received 6 January 1964)

$$\nu_e + {}^{37}\mathrm{Cl} \to {}^{37}\mathrm{Ar} + e^-$$

On the other hand, if one wants to measure the solar neutrino flux by this method one must use a much larger amount of C_2Cl_4 , so that the expected ³⁷Ar production rate is well above the back-ground of the counter, 0.2 count per day. Using Bahcall's expression,

$$\sum \varphi_{\nu}(\text{solar}) \sigma_{\text{abs}}$$

= $(4 \pm 2) \times 10^{-35} \text{ sec}^{-1} ({}^{37}\text{Cl atom})^{-1}$,

then the expected solar neutrino captures in $100\,000$ gallons of C_2Cl_4 will be 4 to 11 per day, which is an order of magnitude larger than the counter background.

NEUTRINOS from SUPERNOVAE EXPLOSIONS (Gravitational Collapse)

Energy ~ 30 MeV

Neutrinos from Supernovae

From Georg Raffelt

From Georg Raffelt

Gravitational binding energy $E_b ~\approx~ 3 \times 10^{53} ~erg ~\approx~ 17\% ~M_{_{SUN}} ~c^2$

This shows up as 99% Neutrinos 1% Kinetic energy of explosion (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy

Neutrino luminosity $L_v \approx 3 \times 10^{53} \text{ erg } / 3 \text{ sec}$ $\approx 3 \times 10^{19} L_{SUN}$ While it lasts, outshines the entire visible universe

From Georg Raffelt

The neutrinos from SN1987A still the subject of many works every year !

Detector	$N_{ m events}$	$\langle E_{e^+} \rangle ~[{\rm MeV}]$
KII	11	15.4 ± 1.1
IMB	8	31.9 ± 2.3

Kamiokande + IMB detection of SN1987A

Controversial Results from other detectors [LSD - Mont Blanc]

A. Mirizzi and G. G. Raffelt, "New analysis of the SN 1987A neutrinos with a flexible spectral shape," Phys. Rev. D **72**, 063001 (2005) [astro-ph/0508612].

$$\varphi(E) = \frac{1}{E_0} \frac{(\alpha+1)^{(\alpha+1)}}{\Gamma(\alpha+1)} \left(\frac{E}{E_0}\right)^{\alpha} \exp\left[-(\alpha+1)\frac{E}{E_0}\right]$$

A. Mirizzi and G. G. Raffelt,
"New analysis of the SN 1987A neutrinos with a flexible spectral shape,"
Phys. Rev. D 72, 063001 (2005) [astro-ph/0508612].

23 february 1987

.... 32 years ago

We want a new close-by (... but not too much....) Gravitational Collapse Supernova

Scientific Potential (with the new detectors) is very important

GEOPHYSICAL NEUTRINOS

²³⁸U
$$\xrightarrow{100\%}$$
 ²⁰⁶Pb + 8⁴He + 6 e^{-} + 6 $\bar{\nu}_{e}$ + 51.7 [MeV]
²³²Th $\xrightarrow{100\%}$ ²⁰⁸Pb + 6⁴He + 4 e^{-} + 4 $\bar{\nu}_{e}$ + 42.7 [MeV]
⁴⁰K $\xrightarrow{100\%}$ ⁴⁰Ca + e^{-} + $\bar{\nu}_{e}$ + 1.311 [MeV]

152 events observed <u>Geoneutrino results</u> "signal" 25 +19 _18

 $3.9^{+1.6}_{-1.3}(^{+5.8}_{-3.2})$ events/(100 ton·yr)

Cosmic Ray

 π^+

ATMOSPHERIC NEUTRINOS

Atmospheric v energy spectrum

Fully Contained (FC)

Partially Contained (PC)

Upward-going Muons (Up-µ**)**

Atmospheric Neutrino events

Cherenkov Radiation

Och

$$\beta \left(=\frac{v}{c}\right) > \frac{1}{n}$$
$$\cos \theta_{Ch} = \frac{1}{\beta n}$$

in water, n = 1.33 as $\beta \rightarrow 1$, $\theta_{Ch} \rightarrow 41$ degrees

vertex

~340 photons/cm pathlength $300 \text{ nm} < \lambda < 600 \text{ nm}$

Photomultiplier Tubes (PMTs)

IMB detector

11,146 20 inch Photomultipliers (PMT's) (40 % of surface is sensitive)

μ**-like**

electron shower

ELECTRON

Neutrino Event Classes

Super-Kamiokande data

1489day FC+PC data + 1678day upward going muon data

HIGH ENERGY NEUTRINO DETECTION

The Km3 concept

"Beaded string"

Amundsen-Scott South Pole station

Deployment of the strings

France

ANTARES

Running since 2007

High-energy events in IceCube-40

~ EeV air shower

More events

A cascade event, candidate for a high energy ne ~50 TeV

RICAP 25-05-2011

Tom Gaisser

Observation of neutrino-induced muons

(see $\frac{1}{2}$ of the sky)

IceCube - Point Sources – 7 years

No significant PS reported

No correlation with list of 74 sources in both hemispheres. Galactic & Extragalactic

ApJ 835 (2017) 151

ANTARES – Point Sources

Sky map in equatorial coordinates of pre-trial p-values

Phys. Rev. D96 (2017), 082001

ANTARES is the most sensitive instrument for a large fraction of the southern sky below 100 TeV

IceCube is the most sensitive instrument in the northern sky and a fraction of the southern sky New class of events where the Neutrino interacts inside the detector Fiducial Volume

"High Energy Starting Events"

HESE

Outer Layer of the detector is used as a **Veto**

No PMT us have a hit in the veto With an "early time"

[charged particles can exit the detector, but not enter]

Starting events

- total calorimetry
- complete sky coverage
- flavor determined
- some will be muon neutrinos with good angular resolution

loss in statistics is compensated by event definition

"TRACK"

Deposited Energy (TeV)	Time (MJD)	Declination (deg.)	RA (deg.)	Med. Ang. Resolution (deg.)	Topology
$71.4^{+9.0}_{-9.0}$	55512.5516214	-0.4	110.6	$\lesssim 1.2$	Track

"Shower"

Two Classes of events

"Tracks"

$$\nu_{\mu}(\overline{\nu}_{\mu}) + N \to \mu^{\mp} + \text{hadrons}$$

"Showers"

 $\nu_e(\overline{\nu}_e) + N \to e^{\mp} + \text{hadrons}$ $\nu_\tau(\overline{\nu}_\tau) + N \to \tau^{\mp} + \text{hadrons}$

 $\nu_{\alpha}(\overline{\nu}_{\alpha}) + N \to \nu_{\alpha}(\overline{\nu}_{\alpha}) + \text{hadrons}$

Tau Neutrinos

$$\tau^- \to \nu_\tau + (\mu^- + \overline{\nu}_\mu)$$

$$\tau^- \to \nu_\tau + (e^- + \overline{\nu}_\mu)$$

$$\tau^- \to \nu_\tau + (q_d + \overline{q}_u)$$

Path-length of tau's before decay

$$\tau_{\tau} = 2.9 \times 10^{-13}$$

$$\ell_{\tau} = c \, \tau \, \frac{E}{m} \simeq 49 \, \mathrm{m} \, E_{PeV}$$

Atmospheric neutrino self veto

Effect of VETO: rejection of atmospheric neutrinos

Absorption of neutrinos in the Earth

Fraction of up-going neutrinos (isotropic flux) that survives crossing the Earth

"Glashow Resonance"

$$E^* = \frac{M_W^2 - m_e^2}{2 m_e} \simeq 6.4 \text{ PeV}$$

$$\overline{\nu}_e + e^- \to W^- \to \dots$$

$$(p_{\overline{\nu}_e} + p_e)^2 = M_W^2$$
$$m_e^2 + 2 m_e E_{\overline{\nu}} = M_W^2$$

High-Energy Starting Events (HESE) – 7.5 yr

No evidence for point sources, nor a correlation with the galactic plane

High-Energy Starting Events (HESE) – 7.5 yr

Prior result 6 years ICRC 2017 arXiv:1710.01191 Updates to calibration and ice optical properties 103 events, with 60 events >60 TeV

→ Changes to RA, Dec, energy

IceCube. Nature volume 551 (2017) 596 Poster #175. Wandkowsky et al. (IceCube)

High Energy Starting Events

 $E_{\rm vis} \gtrsim 30 {
m TeV}$

Track [(small) black circles] Showers [(large) blue circles]

IceCube 4-years HESE events

High Energy Starting Events [HESE]

First evidence for an extra-terrestrial h.e. neutrino flux

High Energy Starting Events [HESE]

First evidence for an extra-terrestrial h.e. neutrino flux

Upgoing (neutrino induced) Muons

Upgoing muon events

$E_{\mu} \gtrsim 200 \text{ TeV}$

EXTRA-GALACTIC NEUTRINOS

Main candidate sources

Intimate relation with UHECR [extragalactic cosmic rays]

 $\bullet \bullet \bullet \bullet \bullet \bullet$

AGN

GRB

The 3-dimensional lampposts ensemble "paradox" [Kepler – Olbers paradox].

Linear sequence of lampposts:

Most of the light you receive from the nearest lamppost

3D ensemble of lampposts: [Euclidean static space]

Light diverges !

Homogeneous (in average) density of sources: spherical shells between radii: 1, 2, 3, 4,

All spherical shells contribute equally.: DIVERGENCE!

$$\left(\frac{1}{4\pi R^2}\right) \quad \left(4\pi R^2 \,\Delta R\right)$$

Homogeneous (in average) density of sources: spherical shells between radii: 1, 2, 3, 4,

All spherical shells contribute equally.: DIVERGENCE!

Expected flavor composition of High energy astrophysical neutrinos

[Standard mechanism of production]

$\nu_e \simeq \nu_\mu \simeq \nu_\tau$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(E_{\nu}, L) = \left| \sum_{j} U_{\beta j} U_{\alpha j}^{*} e^{-i m_{j}^{2} \frac{L}{2E_{\nu}}} \right|^{2}$$
$$= \sum_{j=1,3} |U_{\beta j}|^{2} |U_{\alpha j}|^{2}$$
$$+ \sum_{j < k} 2 \operatorname{Re}[U_{\beta j} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\alpha k}] \cos\left(\frac{\Delta m_{jk}^{2} L}{2E}\right)$$
$$+ \sum_{j < k} 2 \operatorname{Im}[U_{\beta j} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\alpha k}] \sin\left(\frac{\Delta m_{jk}^{2} L}{2E}\right)$$

Space averaged flavor transition probability

Neutrinos created in volume of sufficiently large linear size $X_{\text{source}} \gg E/|\Delta m_{jk}^2|$

Oscillating terms average to zero

$$\langle P(\nu_{\alpha} \to \nu_{\beta}) \rangle = \sum_{j} |U_{\alpha j}|^2 |U_{\beta j}|^2$$

$$\simeq \begin{pmatrix} 1-2v & v & v \\ v & (1-v)/2 & (1-v)/2 \\ v & (1-v)/2 & (1-v)/2 \end{pmatrix} \simeq \begin{pmatrix} 0.6 & 0.2 & 0.2 \\ 0.2 & 0.4 & 0.4 \\ 0.2 & 0.4 & 0.4 \end{pmatrix}$$

$$\theta_{13} \simeq 0$$

$$\theta_{23} \simeq 45^{\circ}$$

$$v = \cos^2 \theta_{12} \sin^2 \theta_{12} \simeq 0.2$$

$$\begin{pmatrix} 0.6 & 0.2 & 0.2 \\ 0.2 & 0.4 & 0.4 \\ 0.2 & 0.4 & 0.4 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Significant presence of tau-neutrinos

A 5.9 PeV event in IceCube

Potential hadronic nature of this event under study

IceCube GCN 21916 17/09/23

TITLE: GCN CIRCULAR NUMBER: 21916 SUBJECT: IceCube-170922A - IceCube observation of a high-energy neutrino candidate event DATE: 17/09/23 01:09:26 GMT FROM: Erik Blaufuss at U. Maryland/IceCube <blaufuss@icecube.umd.edu>

Claudio Kopper (University of Alberta) and Erik Blaufuss (University of Maryland) report on behalf of the IceCube Collaboration (http://icecube.wisc.edu/).

On 22 Sep, 2017 IceCube detected a track-like, very-high-energy event with a high probability of being of astrophysical origin. The event was identified by the Extremely High Energy (EHE) track event selection. The IceCube detector was in a normal operating state. EHE events typically have a neutrino interaction vertex that is outside the detector, produce a muon that traverses the detector volume, and have a high light level (a proxy for energy).

After the initial automated alert (https://gcn.gsfc.nasa.gov/notices_amon/50579430_130033.amon), more sophisticated reconstruction algorithms have been applied offline, with the direction refined to:

Date: 22 Sep, 2017 Time: 20:54:30.43 UTC RA: 77.43 deg (-0.80 deg/+1.30 deg 90% PSF containment) J2000 Dec: 5.72 deg (-0.40 deg/+0.70 deg 90% PSF containment) J2000

We encourage follow-up by ground and space-based instruments to help identify a possible astrophysical source for the candidate neutrino.

The IceCube Neutrino Observatory is a cubic-kilometer neutrino detector operating at the geographic South Pole, Antarctica. The IceCube realtime alert point of contact can be reached at roc@icecube.wisc.edu

Fermi-LAT detection of increased gamma-ray activity of TXS 0506+056, located inside the IceCube-170922A error region.

ATel #10791; Yasuyuki T. Tanaka (Hiroshima University), Sara Buson (NASA/GSFC), Daniel Kocevski (NASA/MSFC) on behalf of the Fermi-LAT collaboration on 28 Sep 2017; 10:10 UT Credential Certification: David J. Thompson (David J.Thompson@nasa.gov)

Subjects: Gamma Ray, Neutrinos, AGN

Referred to by ATel #: 10792, 10794, 10799, 10801, 10817, 10830, 10831, 10833, 10838, 10840, 10844, 10845, 10861, 10890, 10942, 11419, 11430

... Great source of excitement

Texas Survey of Radio Sources [365 Mhz, (1974-1983)] 66841 sources [TXS]

Very Long Baseline Array (VLBA) [ensemble of 10 radio telescopes]

8000 km baseline

$z = 0.3365 \pm 0.0010$

 $\dot{\Omega} = 332 \pm 82 \ \mu as/year$

$$d = 706 \text{ Mpc}$$

 $eta_{ ext{app}} = rac{\dot{\Omega} d}{c} = 3.7 \pm 0.9$

TXS 0506+056

TXS 0506+056 © 💿 зіпізар 👄

Canonical Name: TeVCat Name: Other Names: Source Type: R.A.: Dec.: Gal Long: Gal Lat: Distance: Flux: Energy Threshold: Spectral Index: Extended: **Discovery Date:** Discovered By: TeVCat SubCat:

Source Notes:

TXS 0506+056 TeV J0509+056 EHE 170922A 3FGL J0509.4+0541 3FHL J0509.4+0542 Blazar 05 09 25.96370 (hh mm ss) +05 41 35.3279 (dd mm ss) 195.41 (deg) -19.64 (deg) z=0.3365 (Crab Units) 100 GeV No 2017-10 MAGIC

Newly Announced

The blazar TXS 0506+056 lies within the error circle of lceCube-170922A, the lceCube high-energy neutrion candidate event whose detection was reported in <u>GCN circular #21916</u>. Follow-up observations were performed by a number of GeV-TeV instruments with both Fermi-LAT and MAGIC reporting evidence for gamma-ray emission from positions consistent with the lceCube neutrino error circle which they thus associate with the blazar TXS 0506+056. Upper limits on the gamma-ray emission from the region were reported by H.E.S.S, HAWC and VERITAS.

1	3C	454.3	9.65
2	PKS	1510-08	4.06
3	PKS	1502 + 106	4.01
4	PKS	0537-441	3.71
5	4C	21.35	3.54
6	PKS	0426-380	3.11
7	Mkn	421	2.97
8	3C	66A	2.56
9	3C	279	2.56
10	PKS	2155-304	2.35
11	PKS	0454-234	2.27
12	PKS	0727-11	2.2
13	NGC	1275	1.88
14	AO	0235 ± 164	1.87
15	S 5	0716 + 71	1.83
16	B2	1520+31	1.76
17	PMN	J1802-3940	1.69
18	3C	273	1.51
19	PKS	0805-07	1.5
20	PKS	B1424-418	1.47
21	PG	1553+113	1.4
22	PMN	J1603-4904	1.29
23	MG2	J201534 + 3710	1.2
24	PKS	1830-211	1.19
25	PKS	1454-354	1.19

	70	MG2	J071354+1934	0.519
	71	PKS	0735 + 17	0.516
	72	AP	Librae	0.516
	73	4C	1.28	0.512
	74	B2	2234+28A	0.508
	75	PKS	0250-225	0.503
	76	PMN	J1626-2426	0.503
	77	PKS	1329-049	0.501
	78	PMN	J1344-1723	0.501
	79	PKS	0829 ± 046	0.5
•	80	TXS	0506 + 056	0.494
	81	PKS	0521-36	0.488
	82	PKS	1551+130	0.487
	83	TXS	1055 + 567	0.479
	84	ΒZQ	J0850-1213	0.464
	85	4C	31.03	0.456

Flux [10⁻⁹ cm⁻² s⁻¹]

Three More Topics:

- [1.] "Cosmogenic Neutrinos"
- [2.] Neutrinos from Dark Matter Self-annihilation
- [3.] New Concepts for Neutrino detection

Neutrino Astronomies

Energy Loss Mechanisms for Protons:

Greisen-Zatsepin- Kuzmin (GZK) suppression

NEUTRINO PRODUCTION

Proton Energy Evolution with Redshift

High Energy Proton Horizon

Number of neutrinos in the sun

$$\Gamma_a(t) = \eta \, \int_{\mathrm{Sun}} d^3 \mathbf{x} \, \langle \sigma_{\mathrm{ann}} v \rangle \, n^2(t, \mathbf{x}) = \frac{C_a}{2} \, N^2$$

$$\frac{dN}{dt} = C_c - C_a N^2$$

$$N(t) = \sqrt{\frac{C_c}{C_a}} \tanh\left\{\frac{t}{\tau_c}\right\}$$

$$\tau_c = (C_c C_a)^{-1/2}$$

$$t = t_{\odot} = 4.6 \text{ Gyr}$$

$$\tau_{c,\odot} \approx 10^8 \text{ yr}$$

$$\Gamma_a(t) = \frac{C_c}{2} \tanh^2\left\{\frac{t}{\tau_c}\right\} \xrightarrow{t \gg \tau_c} \frac{C_c}{2}$$
Annihilation Rate

Muon (up-going) from the direction of the SUN.

No excess from the sun direction (cos theta = 1)

Red line= estimated Background from atmospheric neutrinos

Neutrino Astronomy: beyond the "Km3 concept"

Radio, Acoustic,.....

Radio Detection of neutrinos

ANITA-II over Antarctica

FIG. 3: Events remaining after unblinding. The Vpol neutrino channel contains two surviving events. Three candidate UHECR events remain in the Hpol channel. Ice depths are from BEDMAP [12].

http://arxiv.org/abs/1003.2961 RICAP25-05-2011 Tom Gaisser Vpol:1 neutrino candidate; HPol:2525 1019 eV

RICE experiment architecture

- Antarctic ice is neutrino target
- In-ice array of radio antennas
- 20 channels, 200-500 MHz
- Depths 100-300 meters
- Signal digitized at the surface
- Deployed near South Pole Station

10⁷ to 10¹¹ GeV: Radio ice Cherenkov detection Askaryan Radio Array (ARA)

- a very large radio neutrino detector at the South Pole

Ref: Allison et al., Astropart.Phys. 35 (2012) 457-477, arXiv:1105.2854 (Design and performance paper)

Scientific Goal:

- Discover and determine the flux of highest energy cosmic neutrinos.
- Understanding of highest energy cosmic rays, other phenomena at highest energies.

Method:

Monitor the ice for radio pulses generated by interactions of cosmic neutrinos with nuclei of the 2.8km thick ice sheet at the South Pole Poster session at this conference:

- \rightarrow H. Landsman, ARA Design and Status
- ightarrow J. Davies, ARA prototype and first station

10⁷ to 10¹¹ GeV: Radio ice Cherenkov detection

31 x 31 array

ARIANNA

- L. Gerhardt et al., Nucl.Instrum.Meth. A624 (2010) 85-91
- Poster 18-3: J. Tatar, S. Barwick

US, S. Korea, England, New Zealand

Barwick, astro-ph/0610631

Reflected Ray