Radio detection of neutrinos

Anna Nelles Emmy-Noether group leader HU Berlin & DESY Zeuthen

Highest energies?

Ahlers & Halzen, 2018

Even higher energies

Detector volumes of ~100 bigger than current IceCube needed

Why radio?

• Large volumes of dense medium with reasonable attenuation length, at no cost

Why radio?

• Large volumes of dense medium with reasonable attenuation length, at no cost

• Air shower arrays (LOFAR, AERA, Tunka-Rex, ...) have shown feasibility:

4 Anna Nelles, TeVPa Berlin, 2018

Askaryan effect

- Neutrino interaction creates (hadronic/electromagnetic) shower
- During shower development, shower front accumulates negative charge
- Macroscopic: Changing current along axis, changing as function of time/ distance propagated
- Changing current induces electric emission
- Subtle differences between hadronic and electromagnetic showers

Compton effect Ţē,

Cherenkov-like effects

Anna Nelles, TeVPa Berlin, 2018 6

Cherenkov-like effects

- Signal gets enhanced when it arrives in phase = coherence
- Enhancement at the Cherenkov angle

Several concepts compete to detect ultra-high energy neutrinos

In, on, above ice

this talk and more detail in Neutrino Astronomy 3, Wed

Several concepts compete to detect ultra-high energy neutrinos

In, on, above ice

this talk and more detail in Neutrino Astronomy 3, Wed Near, on, at mountains

GRAND, TAROGE, BEACON, ...

see talk Tuesday by Kotera and poster by Bustamante

- Several concepts compete to detect ultra-high energy neutrinos
- Main difference: Deep vs. shallow
 - Attached: cost/effective volume, background rejection, sky coverage, energy and direction resolution, power consumption, …

interferometric

balloon

payload

- Several concepts compete to detect ultra-high e
- Main difference: Deep vs. shallow
 - Attached: cost/effective volume, background energy and direction resolution, power consu

• The future: pick and choose the best components

- Deep: better ice, larger effective volume per antenna, farther away from human background, higher costs, limited by borehole geometry, likely better energy resolution
- Shallow: better cosmic ray rejection, more flexibility in antenna design, cheaper, likely better polarization (=direction) resolution
- Combine the best of both

+ some "technical details" ...

Power:

OR

OR

DAQ boards, trigger strategy, ...

Results so far

: Magnitude vs Frequency

Energy (GeV)

Backgrounds

- If detector can distinguish inair signals from in-ice signals, no particle physics background
- Astronomical background: Diffuse Galactic emission (not pulse-like) and solar flares (point to sun)

12 Anna Nelles, TeVPa Berlin, 2018

Backgrounds

- If detector can distinguish inair signals from in-ice signals, no particle physics background
- Astronomical background: Diffuse Galactic emission (not pulse-like) and solar flares (point to sun)

 Most *dangerous* background: humans

12 Anna Nelles, TeVPa Berlin, 2018

New LBL Amp Gain: Magnitude vs Frequency

0-

MHz

New LBL Amp Gain: Magnitude vs Frequency

Cosmic rays

Cosmic rays

- Neutrino detectors work in a different frequency range than cosmic ray radio detectors
- Broad-band response provides opportunities, but new algorithms needed

- For example: Combination out integral and slope is excellent energy estimator
- Work in progress

 Polar ice has a density gradient with depth

JCAP 07(2018)055

- Classically, signals will be bent towards higher densities, leading to "forbidden" regions
- Strongly affects effective volume of neutrino detectors as certain signals will be unable to reach detector

Jan 8th SPICE Core KU Pulser Run

- Excellent angular reconstruction of pulse in deep ice
- Resolution of 0.8 degrees for station
- Systematic offset likely related to station geometry and uncertainties in the ice modeling

- At South Pole, Moore's Bay and Greenland also signals observed that should be 'forbidden'
- Tentative explanation: Ice is layered, not smooth gradient as usually assumed
- Density fluctuation lead to ray trapping and horizontal propagation

- At South Pole, Moore's Bay and Greenland also signals observed that should be 'forbidden'
- Tentative explanation: Ice is layered, not smooth gradient as usually assumed
- Density fluctuation lead to ray trapping and horizontal propagation

19 Anna Nelles, DPG Würzburg, 2018

JCAP 07(2018)055

²⁰ Anna Nelles, DPG Würzburg, 2018

Simulation: NuRadioMC

Sensitivities to neutrinos

Diffuse flux from cosmic rays and cosmic microwave background

- "Sensitivity a linear function of money"
- Needs a target sensitivity

- Here:
 - 300 stations, South Pole
 - 5 years, 90% uptime
 - 90% analysis efficiency

Sensitivities to neutrinos

Transient flux from explosive events (here NS-NS merger)

- Radio arrays will have excellent sensitivity to explosive events
- Already existing arrays, promising sensitivity uptime a challenge in Antarctica

Outlook - Large neutrino array

- Radio detection is a intriguing (new) technique to detect neutrinos of the highest energies and solve long-standing questions
- Emission properties well understood

24

- Sufficient previous experiences in building detectors
- Neutrino community is coming together to propose a large array which has discovery potential

